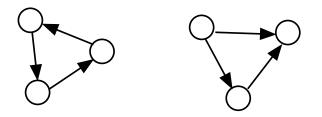
Synchronized Behavior in Networks of Hybrid Systems

Sean Shahkarami

December 16, 2012


Informal Motivational Question

What can the configuration of a network of hybrid systems tell us about synchronous behavior amoung its nodes?

Simple Example

Example

Are there general conditions ensuring synchronous behavior of the nodes in either of these networks of hybrid systems?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

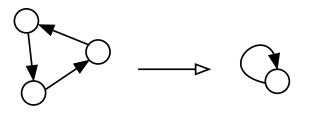
Our first step towards an answer is built on the following two ingredients

- Graph Fibrations
- Hybrid Networks

Graph Fibrations

Definition

A graph fibration is a graph homomorphism $\phi : G \to G'$ with the property that for all $v \in G$ and all edge $e' \in G'$ with target $\phi(v)$ there exists a unique edge $e \in G$ such that $\phi(e) = e'$.


(ロ) (型) (E) (E) (E) (O)

Graph Fibrations

Definition

A graph fibration is a graph homomorphism $\phi : G \to G'$ with the property that for all $v \in G$ and all edge $e' \in G'$ with target $\phi(v)$ there exists a unique edge $e \in G$ such that $\phi(e) = e'$.

Example

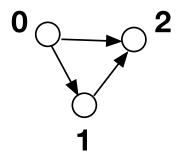
The most important idea to keep in mind with graph fibrations is the following motto

Proper Graph Fibrations \implies Synchronous Behaviors

Useful Criteria for Graph Fibrations

Theorem

If $\phi : G \to G'$ is a graph fibration then for each vertex $v \in G$ there is a bijection between the incoming edges of v and the incoming edges of $\phi(v)$.


In other words, the local incoming edge structure of all the verticies above a base vertex is the same.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Simple Counterexample

Example

Our second example admits no proper graph fibration by a simple counting argument and the above criteria.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hybrid Networks

Definition

A hybrid network consists of

- ► A directed graph G.
- An assignment A(v) of hybrid automata to each vertex v ∈ G with the modification that the continuous dynamics of A(v) is allowed to depend on the state of A(w) for each incoming neighbor of v.

ション ふゆ く 山 マ チャット しょうくしゃ

Associated Hybrid Automata

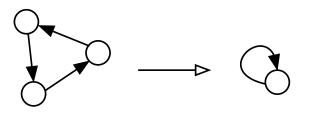
To a hybrid network $(G, \mathcal{A}(v))$ we associate an ordinary hybrid automata $G_{||}$ defined by

- ► The variables of G_{||} is the disjoint union of the variables of each A(v).
- The state space is the product of the state spaces of the $\mathcal{A}(v)$.
- The start states are the product of the start states of the $\mathcal{A}(v)$.
- The actions are the union of the actions of the $\mathcal{A}(v)$.
- A transition x ^a→ y exists if and only if for each v ∈ G either
 (1) a ∈ A_v and x[X_v ^a→ y[X_v or (2) a ∉ A_v and x[X_v = y[X_v.
- Trajectories are solutions to the differential equations (now without parameters).

Main Result

Theorem

Given hybrid networks (G, A_v) and (G', A'_v) and a surjective graph fibration $\phi : G \to G'$ such that $A_v = A_{\phi(v)}$, there exists a forward simulation from $G'_{||}$ to $G_{||}$.


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Main Result

Theorem

Given hybrid networks (G, A_v) and (G', A'_v) and a surjective graph fibration $\phi : G \to G'$ such that $A_v = A_{\phi(v)}$, there exists a forward simulation from $G'_{||}$ to $G_{||}$.

Example

Formal result aside, the main point to take away from this project is motto

Proper Graph Fibrations \implies Synchronous Behaviors