Lecture 15
Stability of hybrid and switched systems

- Define notions of stability
- Sufficient conditions

Defy Lyapunov Stability

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists \delta_{1}=\delta_{1}(\varepsilon) \quad \text { st } \forall \alpha \in \text { Exec }_{f} \\
& |\alpha(0)| \leq \delta_{1} \Rightarrow \forall t \in \alpha . \text { lime }|\alpha(t)| \leq \varepsilon
\end{aligned}
$$

Remark 1 if A lyapunov Stable then
for any $\varepsilon>0$ if we choose $\theta_{A} \subseteq B_{\delta_{1}(\varepsilon)}$
B_{ε} is an invariant

Example

Convergence $\alpha(t) \rightarrow x^{*}, x^{*} \in \mathbb{R}^{n}$ as $t \rightarrow \infty$

$$
\begin{aligned}
& \alpha(t) \rightarrow x^{*}, x^{*} \in \mathbb{R}^{R} \text { as } \quad \forall\left(t^{\prime}\right) \leq B_{x^{*}, \varepsilon} \\
& \forall \varepsilon>0 \quad f t=t(\varepsilon) \quad \forall t^{\prime} \geqslant t \quad
\end{aligned}
$$

Def 2 (Asymptotic Stability)
(1) Lypunov Stable and
(2) $\exists \delta_{2}>0$ ot $|\alpha(0)| \leqslant \delta_{2} \Rightarrow t \rightarrow \infty|\alpha(t)| \rightarrow 0$

Globally AS if this hold for all δ_{2}
Def 3 (Exponential Stability)

$$
1 c c . \lambda>0
$$

$$
\ldots . . \cdot=0^{-\lambda t}|\alpha(0)|
$$

Ouch that $|\alpha(0)| \leqslant \delta \Rightarrow \forall t \quad|\alpha(t)|=\smile \quad$ MN,
Globally $E S$ if this holds for all δ.

Sufficient Conditions for proving Stability
Lyapunov functions
$\dot{x}=f(x)(1)$ dynamical system $x \in \mathbb{R}^{n} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
Solutions f
$\tau(t)$
$\dot{x}=A x$

$$
\begin{aligned}
& (1) \quad \tau:[0, T] \rightarrow \mathbb{R}^{2} \\
& \tau(t) \cdot x=e^{A t} \tau(0) \cdot x
\end{aligned}
$$

C^{\prime} : class of continuously differentiable functions f is positive definite of $f(x)>0 \quad \forall x \neq 0$
f is radially Unbounded if $f(x) \rightarrow \infty$ as $x \rightarrow \infty$
Level sets $f f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad L(f, b) \stackrel{\Delta}{\triangleq}\left\{x \in \mathbb{R}^{n} \mid f(x)=b\right\}$

$$
S L(f, b) \stackrel{A}{=}\left\{x \in \mathbb{R}^{n} \mid f(x) \leq b\right\}
$$

Def Lyapunar for $\nu: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \nu \in C^{\prime}$
(1) ν is positive definite
(2) $' \nu<0 \equiv \frac{\partial V}{\partial x} f(x)<0$

$$
x \neq 0 / \sqrt{ }: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

Weak LF $\left.\left(2^{\prime}\right) \dot{\nu}\right) \leq 0 \quad \forall x \in \mathbb{R}^{2}$
Example: $\nu: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{gathered}
\nu(x) \stackrel{\Delta}{\triangleq} x^{2} \\
\tau, x(t)=t^{2}+2 t<
\end{gathered}
$$

$\dot{\gamma}$?

$$
\left\{\begin{array}{l}
\dot{\nu}(\tau(t))=\frac{\partial v}{\partial x} \frac{d x}{d t} \\
\dot{x}=f(x) \quad=\frac{\partial V}{\partial x} \frac{f(x)}{} \leqslant 0 \forall x
\end{array}\right.
$$

$$
\ldots x(t)=1+\left(t^{2}+2 t\right)^{2} \ldots \text { orr }
$$

$$
\begin{aligned}
& \tau \cdot x(t)=t^{2}+2 t< \\
& \nu(x(t))=\left(t^{2}+2 t\right)^{2} \\
& \dot{\nu}(x(t))=\frac{d}{d t}\left(t^{2}+2 t\right)^{2}=\frac{\partial}{\partial x}\left(x^{2}\right) \cdot f(x)
\end{aligned}
$$

Not <0

Lemma $\forall \mathcal{V}$ weak lyapuner fr. $f \dot{x}=f(x)$
and any $b \geqslant 0 \quad S L(\nu, b)$ is an invariant (if start state is in $S L(\nu, b))$
Proof. Suppose $\tau:[0, T] \rightarrow \mathbb{R}^{2}$ is a solution $f \dot{x}=f(x)$.
$\tau(0) \in S L(\nu, b)$ we have to show that

$$
\begin{aligned}
& \forall t \leqslant T \quad \tau(t) \in S L(\nu, b) \\
& \nu(\tau(t)) \leqslant \nu(\tau(0)) \leqslant b \text { as } \nu \leqslant 0
\end{aligned}
$$

$$
\Rightarrow \tau(t) \in S L(\nu, b)
$$

Remark

TuM (i) if V is a WLF for $\dot{x}=f(x)$ then it is Lyapunov Stable
(ii) if $\bar{\nu}$ is a LF for $\dot{x}=f(x)$ then it is $A S$.

Proof (i) $\forall \varepsilon \exists \delta$ \qquad
Fix ε.
Pick b ot $\operatorname{SL}(\nu, b) \subseteq B_{\varepsilon}$
Then pick δ ant $B_{\delta} \subseteq \operatorname{SL}(\nu, b)$
ArR.

From Lemma 1 we know that as $\theta \subseteq B_{\delta}$
$S L(\nu, b)$ is an invariant $\tau(t) \in B_{\varepsilon}$

Proof(ii) τ is the solution $f \dot{x}=f(x)$
Since ν is decreasing and its positive definite as $t \rightarrow \infty \nu(\tau(t))$ must be converging to same limit, say c.
if $c=0$ we are done $\nu(\tau(t))=0 \Rightarrow \tau(t)=0$ we now that C cannot be >0.

Suppose $c>0$.
$\tau(t)$ evolves outside $S L(\nu, c)$
in some compact set that does not contain the
$S=\{x \mid r \leqslant x \leqslant \varepsilon\}$ for some small r

$d \stackrel{A}{=} \max _{x \in S} \dot{\gamma}(x)$ well defined because S is camact

$$
\begin{equation*}
V(\tau(t)) \leqslant \nu(\tau(0))+d t \tag{角}
\end{equation*}
$$

and t is large enough then $\nu(\rho(t))<C$ (Contradicts)
Example linear $x=A x \quad x \in \mathbb{R}^{n} \quad A \in \mathbb{R}^{n \times n}$
Fix Positive definite matrix $Q \in \mathbb{R}^{n \times n}$

$$
\begin{gathered}
P \in \mathbb{R}^{n 凶 n} \\
V(x)=x^{\top} P x \\
\dot{V}(x)=-x^{\top} Q x
\end{gathered}
$$

PD Mary $M \in \mathbb{R}^{n m}$ M if $\forall z \in \mathbb{R}^{n} \quad z \neq 0$

$$
\rightarrow A^{\top} P+P A=-Q \quad \text { Lyapunov Equation }
$$

$$
z^{\top} M z>0
$$

1 ic Hurwitz
ice. all eigenvalues of A are in the left nary

