ECE/CS 584: Verification of
Embedded Computing Systems

Propositional Logic Summary

Syntax (rules for constructing well formed sentences)
— Countable set of (atomic) propositions PS: P1, P2, P3, ...
— S=True | p1| =81 S1A S | (Sy)

Semantics defines a truth value functions or valuations v that maps each
proposition PS to a truth value (T or F), v: PS> {T, F} and by extension a
valuation v’':PROPS—>{T,F}

A proposition A is valid v’(A) = T for all valuations v. A is also called a tautology

A proposition is satisfiable if there is a valuation (or truth assignment) v such
that v(A) =T.

Checking (un)satisfiability is called boolean satisfiability problem (SAT).

SAT is (decidable) NP-complete problem

Predicate Logic or First Order Logic

* Syntax defined by a signature of predicate & function symbols
— Variables
— Predicate symbols with some valence or arity
* ais predicate of 0-arity, like propositions
* P(x)is a predicate of 1-arity
* Q(x,y) is a predicate of 2-arity
— Function symbols of some valence,
* Function symbols of 0 arity are called constants
* f(x) is a function of arity 1, e.g., -x
— Atermt:=x| f(t1,t2,13,...), where t1, t2, t3, ... are terms
— Aformulag@ z=a | P(x) | Q(xy) |t1=12 |=¢@ | (pl=> @2)]| ... | ..
| Vx| 3xg
* Example of Well Formed Formula

— 3x P(x), VXVy(E(x, y) = E(y, X)), Vx ¥y Q(x, f (%)) = Q(f(¥),)
* Bounded and unbounded variables, closed formulas

Semantics

* An of a FOL formula assigns
meaning to all the non-logical symbols and a domain for
the variables (i.e., the variables, the predicate symbols,
and the function symbols)

— D: Domain of discourse
— For each variable x, a valuation v(x) gives a value in D
— Each function symbol f of arity n is assigned a function D" - D
— Each predicate symbol P of atity n is assigned a predicate D"
-2 {T, F}
* If formula ¢ evaluates to T with model M, then we say M
satisfies ¢, M E @pand ¢ is said to be

c @is if it is true for every interpretation

Undecidable

Decidable

Example (Un)Decidable Classes

Prefix # of n-ary # of n-ary With Name
predicate function Equalit
symbols symbols y
v3av w, 1 0 N Kahr 1962
V33 w, 1 0 N Suranyi 1959
v*3 0,1 0 N Kalmar-Suranyi 1950
v3av3a* 0,1 0 N Gurevich 1966
v 0 2 Y Gurevich 1976
v 0 0,1 Y Gurevich 1976
V23 w, 1 0 Y Goldfarb 1984
J*v* all 0 Y Ramsey 1930
J*v3* all all N Maslov-Orevkov 1972
3* all all Y Gurevich 1976
all W W N Lob 1967

Theory of Time Input/Output
Automata

Lecture 02
Sayan Mitra

Roadmap

Syntax

Semantics

Abstraction, Implementation
Simulations

Composition

Substitutivity

Variables and Valuations

A variable x is a name * x:R

for a state component « color:{R,G,B}
type(x) e clock:R =°

A set of variables X e X ={x,color,clock}

A valuation for X maps e x=<x=> 55 color >G
each x € X to an clock > 12>

element in type(x) . y=<x - 7.90, color

val(X): set of all G, clock 2 1>

valuations of X e x.color =G, X.x = 5.5, y.x

=7.90

Trajectories

Time = R =°

Time interval = [a,b]

A trajectory for X is a function
7: 10, t] = val(X), where [0,t]
is an interval

T.dom = [0, t]

X is continuous (or analog) if all
its trajectories are piecewise
continuous

Discrete if they are piecewise
constant

Notations: 7.fstate, t.Istate, T.x,
T.X

Prefix, suffix, concatenation

Hybrid Automata (a.k.a Timed

Automata Kaynar, et al. 2005)

A=(X,0,0,E,H,D,T)

e X:setof internal
variables

* Q S val(X) set of states
e O C (Q set of start states

 E H sets of internal and
external actions, A=E U H

* D CQXAXQ

e J':set of trajectories for X
which is closed under
prefix, suffix, and
concatenation

Bouncing Ball

Automaton Bouncingball(c,h,g)
variables: analog x: Reals := h, v: Reals := 0
states: True
actions: external bounce
transitions:
bounce
prex=0/\v<0

eff v :=-cv

trajectories:
evolve d(x) = v; d(v) = -g
invariant x = 0

Graphical Representation used in TIOA Specification Language
many articles (close to PHAVer & UPPAAL's language)

Trajectory Semantics

