
ECE/CS 584: Verification of
Embedded Computing Systems

Model Checking Timed Automata

Sayan Mitra

Lecture 09

What we have seen so far

• A very general modeling framework (Lynch et al.’s Hybrid
Automata)
– Complex discrete dynamics
– Possibly nonlinear continuous dynamics
– Distributed

• General proof techniques for the above model
– Inductive invariants for proving safety
– Simulation relations for trace inclusion

• Introduction to a General-purpose theorem prover (PVS)
and examples of mechanizing proofs for state machines
– How to model state machines in PVS
– How to construct invariant proofs
– Can be partially automated but requires a lot of manual work

Next

• Focus on specific classes of Hybrid Automata for
which safety properties (invariants) can be
verified completely automatically
– Alur-Dill’s Timed Automata (Today)
– Rectangular initializaed hybrid automata
– Linear hybrid automata
– …

• Later we will look at other types of properties like
stability, liveness, etc.

• Abstractions and invariance are still going to be
important

Today

• Algorithmic analysis of (Alur-Dill’s) Timed Automata
– A restricted class of what we call hybrid automata in this course with

only clock variables

• Reference: Rajeev Alur and David L. Dill. A theory of timed
automata. Theoretical Computer Science, 126:183-235, 1994.

http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf
http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf

Clocks and Clock Constraints

• A clock variable x is a continuous (analog)
variable of type real such that along any
trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡.

• For a set X of clock variables, the set Φ(X) of
integral clock constraints are expressions defined
by the syntax:
g ::= x ≤ 𝑞 𝑥 ≥ 𝑞 ¬ 𝑔 | 𝑔1 ∧ 𝑔2
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈ ℤ

• Examples: x = 10; x ∈ [2, 5); true are valid clock
constraints

• Semantics of clock constraints [𝑔]

Integral Timed Automata

• Definition. A integral timed automaton is a
HIOA A = 〈𝑉, 𝑄, Θ, 𝐴, 𝒟, 𝒯〉 where
– V = X ∪ 𝑙 , where 𝑋 is a set of n clocks and 𝑙 is a

discrete state variable of finite type Ł

– A is a finite set

– 𝒟 is a set of transitions such that
• The guards are described by clock constraings Φ(𝑋)

• 𝑥, 𝑙 − 𝑎 → 𝑥′, 𝑙′ implies either 𝑥′ = 𝑥 or 𝑥 = 0

– 𝒯 set of clock trajectories for the clock variables in
X

Example: Light switch

• Switch can be turned on whenever at least 2 time
units have elapsed since the last turn off. Switches
off automatically 15 time units after the last on.

automaton Switch
• internal push; pop
• variables
 internal x, y:Real := 0, loc:{on,off} := off
• transitions
• internal push
 pre x ≥ 2
 eff if loc = on then y := 0 fi; x := 0; loc := off
• internal pop
 pre y = 15 /\ loc = off
 eff x := 0
• trajectories
 invariant loc = on \/ loc = off
 stop when y = 15 /\ loc = off
 evolve d(x) = 1; d(y) = 1

• An execution of Switch

Control State (Location) Reachability
Problem

• Given an ITA, check if a particular location is
reachable from the initial states

• This problem is decidable

• Key idea:

– Construct a Finite State Machine that is a time-
abstract bisimilar to the ITA

– Check reachability of FSM

A Simulation Relation with a finite
quotient

• When two states x1 and x2 in Q behave identically?
• x1. 𝑙𝑜𝑐 = x2.𝑙𝑜𝑐 and
• x1 and x2 satisfy the same set of clock constraints

– For each clock 𝑦 int(x1.𝑦) = int(x2.𝑦) or int(x1.𝑦) ≥ 𝑐𝒜𝑦 and
int(x2.𝑦) ≥ 𝑐𝒜𝑦

– For each clock 𝑦 with x1.𝑦 ≤ 𝑐𝒜𝑦, frac(x1.𝑦) = 0 iff
frac(x2.𝑦) = 0

– For any two clocks 𝑦 and 𝑧 with x1.𝑦 ≤ 𝑐𝒜𝑦 and x1.𝑦 ≤
𝑐𝒜𝑧, frac(x1.𝑦) ≤ frac(x1.𝑧) iff frac(x2.𝑦) ≤ frac(x2.𝑧)

• Lemma. This is a equivalence relation on Q
• The partition of Q induced by this relation is are called

clock regions

What do the clock regions look like?

X = {y,z}
𝑐𝒜𝑦 = 2

𝑐𝒜𝑧 = 3

Complexity

• Lemma. The number of clock regions is
bounded by |X|! 2|X| (2𝑐𝒜𝑧 + 2)𝑧∈𝑋 .

Region Automaton

• ITA (clock constants) defines the clock regions

• Now we add the “appropriate transitions”
between the regions to create a finite automaton
which gives a time abstract bisimulation of the
ITA with respect to control state reachability

– Time successors: Consider two clock regions 𝛾 and 𝛾′,
we say that 𝛾′ is a time successor of 𝛾 if there exits a
trajectory of ITA starting from 𝛾 that ends in 𝛾’

– Discrete transitions

Time Successors

Example 1: Region Automata

Example 2

|X|! 2|X| (2𝑐𝒜𝑧 + 2)𝑧∈𝑋

Summary

• ITA: (very) Restricted class of hybrid automata
– Clocks, integer constraints

– No clock comparison, linear

• Control state reachability

• Alur-Dill’s algorithm
– Construct finite bisimulation (region automaton)

– Idea is to lump together states that behave similarly
and reduce the size of the model

• UPPAAL model checker based on similar model of
timed automata

