ECE/CS 584: Verification of
Embedded Computing Systems
Model Checking Timed Automata



What we have seen so far

A very general modeling framework (Lynch et al.’s Hybrid
Automata)

— Complex discrete dynamics

— Possibly nonlinear continuous dynamics
— Distributed

General proof techniques for the above model
— Inductive invariants for proving safety
— Simulation relations for trace inclusion
Introduction to a General-purpose theorem prover (PVS)
and examples of mechanizing proofs for state machines
— How to model state machines in PVS
— How to construct invariant proofs
— Can be partially automated but requires a lot of manual work



Next

* Focus on specific classes of Hybrid Automata for
which safety properties (invariants) can be
verified completely automatically

— Alur-Dill’s Timed Automata (Today)
— Rectangular initializaed hybrid automata

— Linear hybrid automata

* Later we will look at other types of properties like
stability, liveness, etc.

* Abstractions and invariance are still going to be
Important



Today

e Algorithmic analysis of (Alur-Dill’s) Timed Automata

— Arestricted class of what we call hybrid automata in this course with
only clock variables

* Reference: Rajeev Alur and David L. Dill. A theory of timed
automata. Theoretical Computer Science, 126:183-235, 1994.



http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf
http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf

Clocks and Clock Constraints

A clock variable x is a continuous (analog)
variable of type real such that along any
trajectory T of x, forallt € t.dom, (7 | x)(t) = t.

For a set X of clock variables, the set ®(X) of
integral clock constraints are expressions defined
by the syntax:

g:=x=qlx=2ql-g g 92
wherex € X and q € 7Z

Examples: x = 10; x € [2, 5); true are valid clock
constraints

Semantics of clock constraints [g]



Integral Timed Automata

e Definition. A integral timed automaton is a
HIOAA=(V,0Q,0,A,D,T) where

—V =XU {l}, where X is a set of n clocks and [l is a
discrete state variable of finite type t

— A is a finite set

— D is a set of transitions such that
* The guards are described by clock constraings @ (X)
e (x,1) —a - (x', ") implies eitherx' = xorx =0

— T set of clock trajectories for the clock variables in
X



Example: Light switch

Switch can be turned on whenever at least 2 time
units have elapsed since the last turn off. Switches
off automatically 15 time units after the last on.

automaton Switch

internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions
internal push

pre x =2

eff if loc = on then y := 0 fi; x := 0; loc := off
internal pop

prey =15 /\ loc = off

effx:=0
trajectories

invariant loc = on \/ loc = off

stop when y = 15 /\ loc = off

evolve d(x) =1;d(y)=1

off



Control State (Location) Reachability
Problem

* Given an ITA, check if a particular location is
reachable from the initial states

* This problem is decidable
* Key idea:

— Construct a Finite State Machine that is a time-
abstract bisimilar to the ITA

— Check reachability of FSM



A Simulation Relation with a finite
guotient

When two states x, and x, in Q behave identically?
X,.loc = x,.loc and

X, and x, satisfy the same set of clock constraints
— For each clock y int(x,.y) = int(x,.y) or int(x,.y) = ¢4, and
int(X,.y) = Cqy
— For each clock y with x,.y < ¢4, frac(x;.y) = 0 iff
frac(x,.y) =0

— For any two clocks y and z with x;.y < ¢4, and x;.y <
C.u,, frac(x;.y) < frac(x,.z) iff frac(x,.y) < %rac(xz.z)

Lemma. This is a equivalence relation on Q

The partition of Q induced by this relation is are called
clock regions



What do the clock regions look like?

X ={y,z}
Cc,qy =2
Caz =3

ydvdvd
ydvdvd




Complexity

* Lemma. The number of clock regions is
bounded by |X|! 2X],ex(2c4, + 2).



Region Automaton

* |TA (clock constants) defines the clock regions

* Now we add the “appropriate transitions”
between the regions to create a finite automaton
which gives a time abstract bisimulation of the
ITA with respect to control state reachability

— Time successors: Consider two clock regions y and y’,
we say that ¥’ is a time successor of y if there exits a
trajectory of ITA starting from y that ends in y’

— Discrete transitions



Time Successors

AV
A
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Example 1: Region Automata
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Summary

ITA: (very) Restricted class of hybrid automata
— Clocks, integer constraints

— No clock comparison, linear

Control state reachability

Alur-Dill’s algorithm
— Construct finite bisimulation (region automaton)

— Idea is to lump together states that behave similarly
and reduce the size of the model

UPPAAL model checker based on similar model of
timed automata



