
Differentially Private Distributed Optimization ∗

Zhenqi Huang Sayan Mitra Nitin Vaidya
{zhuang25, mitras, nhv}@illinois.edu

Coordinate Science Laboratory
University of Illinois at Urbana Champaign

Urbana, IL 61801

ABSTRACT
In distributed optimization and iterative consensus litera-
ture, a standard problem is for N agents to minimize a
function f over a subset of Euclidean space, where the cost
function is expressed as a sum

∑
fi. In this paper, we study

the private distributed optimization problem (PDOP) with
the additional requirement that the cost function of the in-
dividual agents should remain differentially private. The
adversary attempts to infer information about the private
cost functions from the messages that the agents exchange.
Achieving differential privacy requires that any change of
an individual’s cost function only results in unsubstantial
changes in the statistics of the messages. We propose a class
of iterative algorithms for solving PDOP, which achieves dif-
ferential privacy and convergence to a common value. Our
analysis reveals the dependence of the achieved accuracy and
the privacy levels on the the parameters of the algorithm.
We observe that to achieve ϵ-differential privacy the accu-
racy of the algorithm has the order of O(1

ϵ2
).

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Distributed
programming

General Terms
Algorithm

Keywords
Distributed Optimization, Differential Privacy, Iterative Con-
sensus

1. INTRODUCTION
We introduce the private distributed optimization prob-

lem (PDOP) in which N agents are required to minimize a

∗The authors are supported by NSA SoS grant (W911NSF-
13-0086) and NSF CAREER grant (CNS 10-54247)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDCN ’15 Jan. 4-7, Goa, India
Copyright 2015 ACM 978-1-4503-2928-6 ...$10.00.

global cost function f that is the sum ΣN
i=1fi of N cost func-

tions for the individual agents. An instance of the problem
arises when N secretive agents (with their own convex travel
costs) wish to agree on a rendezvous point in a country such
that (a) the travel cost for the entire group is minimized and
(b) an adversary reading all the communication between the
agents is unable to deduce the cost functions for the indi-
viduals. Similar problems arise in other applications such
as balancing load of nodes in a network and fusing data
for distributed sensors. We study iterative distributed al-
gorithms for solving this problem in which agents exchange
information about their current estimates for the optimal
point and then update their estimates based on the infor-
mation received from their neighbors. In doing so, however,
the agents must preserve the privacy of their individual cost
functions. The agents communicate over a communication
network in which the connectivity may change over time.
While iterative solutions for distributed optimization have
been explored previously (see [11,15,16]), to our knowledge
this paper is the first attempt to achieve this goal while
maintaining privacy.

An alternative to distributed iterative optimization is a
centralized strategy wherein a trusted leader is identified,
with its task being to collect cost functions from all the
other agents, perform the optimization centrally, and the
distribute the results to all the other agents. While ap-
pealing for its simplicity, this strategy requires election of
a leader, and maintenance of routes from all agents to the
leader. The centralized scheme is then vulnerable to fail-
ure of the leader. Also, there is non-trivial cost of leader
election and route maintenance in time-varying topologies,
and in some systems learning the network topology itself
violates privacy of the agents. Therefore, there has been
significant interest in designing completely distributed algo-
rithms for network-wide optimization and consensus. For
instance, such algorithms have been designed for the smart
grids [3] and sensor networks [13].

The notion of privacy we adopt is derived from ϵ-differential
privacy [4–6] applied to continuous bit streams in [7]. This
ϵ-differential privacy ensures that an adversary with access
to all the communication in the system—we call this an ob-
servation sequence—cannot gain any significant information
about the cost function of any agent.

In [1, 9] the authors solve a privacy preserving optimiza-
tion problem with two methods: output perturbation and
objective perturbation. In this problem, the cost functions
of the individual are assumed to have a template and the
computation is done by an entity that has access to all the

agents’ individual data. In contrast, we study a class of
problems that have to be solved in distributed ways without
relying on any template of the individual cost functions.
In this paper, we propose a class of synchronous itera-

tive distributed algorithms for solving PDOP. Iterative al-
gorithms proceed in rounds. In each round, each agent par-
ticipating in our algorithm executes three subroutines. First,
it adds a vector of random noise, drawn from Laplace dis-
tribution, to its estimate for the optimal point and broad-
casts this noisy estimate to its neighboring agents. Sharing
noisy estimates enables the agent to protect the privacy of its
cost functions. For convergence of the estimates to the op-
timal point, however, the noise added in successive rounds
must decay down to 0. Indeed, in our algorithm the pa-
rameters of the successive Laplace distributions are chosen
such that they converge to the Dirac distribution. Next,
the agent computes a weighted average over its neighbors’
noisy broadcasts based on the communication graph of that
round. Finally, the agent computes a new estimate by mov-
ing the average value against the gradient of its own cost
function according to a carefully chosen step size.
A key quantity which determines the amount of noise to

be added in each round for achieving differential privacy
is the sensitivity of the algorithm. Roughly, the sensitiv-
ity at round t is the change in the observable behavior of
the system at round t, namely the messages exchanged at
round t, with change in the cost function of any agent (see
Definition 5). For differential privacy, the ratio of the sen-
sitivity and the parameter for the Laplace noise must be
small (see Lemma 2). For the estimate of the optimal point
to get arbitrarily close to the optimal point, standard iter-
ative algorithms for distributed optimization (for example,
the ones discussed in [15]), require the sum of the step sizes
to be infinite. This strategy, however, would increase the
sensitivity of the system for later rounds. That is, an adver-
sary could begin to infer significant information about the
individual cost functions. Thus, unlike the standard algo-
rithms and our previous algorithm for private consensus [8],
our algorithm for PDOP uses step sizes that sum to a finite
quantity. Assuming that the domain is bounded, we then es-
tablish convergence and both the level of differential privacy
and the accuracy of the algorithm (Theorems 5 and 10).
The algorithm has four parameters: the privacy level, the

initial step size, the step size decay rate and the noise decay
rate. Our analysis reveals that the accuracy level d has the
oder of the inverse-square of the privacy level ϵ.

2. PRELIMINARIES
The algorithms presented in this paper rely on random

real numbers drawn according to the Laplace distribution.
For a constant c > 0, Lap(c) denotes the Laplace distri-

bution with probability density function pc(x)
∆
= 1

2ce
− |x|

c .
This distribution has mean zero and variance 2c2. For any

x, y ∈ R, it can be shown that pc(x)
pc(y)

≤ e
|y−x|

c .

For a natural numberN ∈ N, we denote the set {1, . . . , N}
by [N]. For a vector v of length n, the ith component is
denoted by vi. The transpose of v is denoted by vT . For a
vector v in Rn and 1 ≤ p ≤ ∞, ||v||p stands for the standard
Lp-norm for v. Without a subscript, || · || stands for L2-
norm. That is, ||v|| =

√
vT v. For any vector v ∈ Rn, the

inequality ||v||2 ≤ ||v||1 ≤
√
n||v||2 holds.

An Euclidean projection of a point x ∈ Rn onto a convex

compact set X ⊆ Rn is a point in X that is closest to x mea-
sured by Euclidean norm. If there are multiple candidate
points, one is chosen arbitrarily, and to reduce notational
overhead we treat the Euclidean projection ProjX (x) as a
function of x and X . That is, y = ProjX (x) if y ∈ X and
||y−x|| ≤ ||z−x|| for any z ∈ X . A well known property of
projection is that it does not increase the distance between
points. That is, ||ProjX (x)− ProjX (y)|| ≤ ||x− y|| for any
x, y ∈ Rn.

A differentiable function f : X '→ R is convex if for any
x, y ∈ X , ▽ f(x)T (y − x) ≤ f(y)− f(x). Moreover, if there
exists a positive constant c > 0 such that ▽ f(x)T (y− x) ≤
f(y)−f(x)− c

2 ||y−x||2, the function f is said to be strongly
convex . If f is second-order differentiable, strongly convex-
ity of f is equivalent to ▽2 f(x) − cI ≽ 0. Strongly convex
functions on compact domains have a unique minima [12].
For example, for constant a ∈ Rn, the quadratic function
f(x) = ||x− a||2 is a strongly convex function in Rn.

The following basic Lemma from [11] will be used in our
analysis.

Proposition 1. For a constant β ∈ (0, 1) and a conver-
gent scalar sequence {at}t∈N such that limt→∞ at = 0, the
following holds:

lim
t→∞

t∑

s=1

βt−sas = 0. (1)

3. THE PRIVATE DISTRIBUTED OPTIMIZA-
TION PROBLEM

A Private Distributed Optimization (PDOP) problem P
for N agents is specified by four parameters:

(i) X ⊆ Rn is the domain of optimization,

(ii) F ⊆ {Rn '→ R} is a set of real-valued, strongly convex

and differentiable individual cost functions, and f(x)
∆
=∑

fi(x) with fi ∈ F for each i ∈ [N] is the global cost
function, and

(iii) A = {At}t∈N is a sequence of N × N matrices which
specify the time-varying communication graph.

More details on these parameters and additional assump-
tions we use for solving PDOP will be stated in Section 3.1.
In Section 4.1, we introduce the class of algorithms we study
in this paper. In Section 3.3, we formally state the require-
ments for solving PDOP.

We describe the problem P as follows. The system con-
sists of N agents. Each agent i ∈ [N] is associated with an
individual cost function fi : Rn '→ R. The individual cost
fi is only known to agent i. Together the agents aim to
minimize:

f(x) =
∑

i∈[N]

fi(x), (2)

subject to the constraint x ∈ X . We define f∗
P

∆
= minx∈X f(x)

as the global minimum for f and x∗
P

∆
= argminx∈X f(x)

as the point in X that minimizes the cost function. For a
PDOP P we denote its components and related quantities
by XP ,FP , fP ,AP , f

∗
P and x∗

P . We drop the subscript when
it is clear from context. For a pair of PDOPs P and P ′, we

will also denote the corresponding quantities by X ,F , . . .,
and X ′, F ′, etc. To illustrate the idea, we present a private
rendezvous problem in Example 1.

Example 1 N agents live in a compact region X in a 2-D
plane, where the address of each agent i is a point xi ∈ X ⊆
R2. The agents wants to decide an assembly point x ∈ R2

without sharing their actual address. The cost of agent i
to go to point x is the squared distance fi(x) = ||xi − x||2.
Moreover, each agent can only keep in touch with a subset of
the other agents. Then, we can cast this problem as a PDOP,
where (i) the domain of optimization is X ⊆ R2, (ii) the set
of objective functions F = {f |a ∈ X , f(x) = ||a − x||2},
(iii) the global cost function f(x) =

∑
fi(x), and (iv) A is a

sequence of matrices that specify the possibly time-varying
communication topology.

3.1 Domain, Cost Function and Communica-
tion Graph

We make the following assumptions on the domain of opti-
mization and the set of individual cost functions throughout
the paper.

Assumption 1 (Convexity and compactness). (i) The set

X is compact and convex. Let C1
∆
= supx,y∈X ||x− y||

denote the diameter of X .

(ii) The gradients of all the individual cost function are
bounded on X . We denote C2 > 0 as the bound for X
such that for any x ∈ X and any g ∈ F , ||▽ g(x)|| ≤
C2.

(iii) The functions in F are second-order differentiable and
strongly convex. That is, there exists C3 > 0 such that
for any x ∈ Rn and any g ∈ F , C3I ≼ ▽2 g(x).

(iv) The norm of the second-order derivative of functions
in F are bounded. We denote C4 > 0 is the bound such
that ||▽2 g(x)|| ≤ C4.

The last part requires that the second-order derivatives of
the objective functions exist. The condition C3I ≼ ▽2 g(x)
implies that the objective functions are strongly convex such
that for any x, y ∈ Rn and for any g ∈ F , ▽ g(x)T (y− x) ≤
g(y)− g(x)− C3

2 ||y−x||2. The condition ||▽2 g(x)|| ≤ C4 is
a technical assumption such that the existence of C4 helps
to derive a clean proof of convergence of the algorithm. It
can be checked that the PDOP introduced in Example 1
satisfies Assumption 1.
We assume a synchronous model of distributed computa-

tion through a time varying communication network among
the agents. We model the communication network at round
t as a weighted graph Gt = (V, Et,Wt), where (i) V = [N]
is the set of agents, (ii) Et ⊆ V × V is the set of edges
over which information is exchanged at round t ∈ N, and
(iii)Wt : Et '→ (0, 1] is the weighted function that labels each
edge with a positive weight. The graph Gt is represented by

an N × N matrix At, where the entry ai,j(t)
∆
= Wt(i, j)

if (i, j) ∈ Et otherwise ai,j(t) := 0. We assume that the
matrix At is doubly stochastic. That is, for each i ∈ [N],∑

j∈[N] ai,j(t) = 1 and for each j ∈ [N],
∑

i∈[N] ai,j(t) = 1.
Roughly, a doubly stochastic At ensures that each agent’s
decision has an equal influence on the final decision. This
statement will become clearer after we introduce the algo-
rithm. There are existing distributed algorithms to derive a

doubly stochastic matrix among a network (see e.g. [2]). We
use the following technical assumptions of the time-varying
communication network A throughout the paper.

Assumption 2 (Robust connectivity). We assume that for
each t ∈ N, the graph At is strongly connected. In addition,
there exists a minimal connection strength η ∈ (0, 1] such
that for each t ∈ N:

(i) ai,i(t) ≥ η for each i ∈ [N]. And

(ii) ai,j(t) > 0 implies that ai,j(t) ≥ η.

This assumption guarantees that there exists a path in
the graph linking each pair of the agents and the product
of weights along the path is lower bounded. Notice that the
links could be undirected.

3.2 Iterative Distributed Algorithms for PDOP
We study a class of iterative distributed algorithms for

solving PDOP. As shown in Algorithm 1, R, U and F are
functions or subroutines, which when instantiated will give
candidate algorithms. The constant T is the total number
of rounds over which the algorithm is executed and it de-
termines the accuracy of the final answer. The agents have
internal states. An agent’s state is defined by the valua-
tions of individual variables. Each agent has four internal
variables: (i) xi ∈ X is agent i’s current estimate of the op-
timal point; it is initialized to an arbitrary point xi0 in X ,
(ii) yi ∈ Rn is the value agent i broadcasts to other agents,
(iii) zi ∈ Rn is the value agent i computes based on the val-
ues it receives from its neighbors, (iv) t ∈ N is the current
round number, and (v) buffer is an ordered set which stores
the messages received by agent i in a given round from its
neighbors.

Algorithm 1: Template for iterative solution of PDOP.

1: Input: fi,X ,A
2: xi ← xi0;
3: for t = 1 : T do
4: yi ← R(xi, t);
5: Broadcast(yi);
6: buffer i ← Receive();
7: zi ← F (At, buffer i) ;
8: xi ← U(zi, t, fi,X);
9: end for
10: return xi

Message exchange between agents is assumed to be atomic.
That is, the Broadcast(yi) routine of agent i broadcasts yi
to all his neighbors and the Receive() routine receives all
neighbors’ broadcasts from that round. This can be im-
plemented by underlying message exchanging protocols. In
each round t ∈ N, the algorithm has four phases: (i) each
agent executes a subroutine R to compute the value to re-
port (yi) based on his individual value (xi) (line 4), (ii) each
agent broadcasts its value (yi) and receives all neighbors’
reports (line 5-6), (iii) each agent executes a subroutine F
to compute a aggregate value (zi) based on its neighbors’
messages (line 7), and (iv) each agent executes a subroutine
U to compute a new individual value (xi) that reduces the
individual cost function fi (line 8).

Mitra, Sayan

Mitra, Sayan

Mitra, Sayan

Mitra, Sayan

We denote xi(t) as the valuation of xi ∈ X at the end of
round t. We denote the aggregate state x(t) ∈ XN as a vec-

tor of the N individual valuations: x(t)
∆
= [x1(t), . . . , xN (t)].

yi(t), zi(t), y(t) and z(t) are similarly defined as valuations
of individual variables and vectors at the end of round t.
Each round of a iterative distributed algorithm transforms
the state vector of the entire system to a new state vector.
An execution of such an algorithm, for a given PDOP, is a
possibly infinite sequence of the form α = x(0), ⟨x(1), y(1),
z(1), buffer(1)⟩, ⟨x(2), y(2), z(2), buffer(2)⟩, The observ-
able part of such an execution are the corresponding infinite
sequence of messages y(1), y(2), We denote the obser-

vation mapping R(α)
∆
= y(1), y(2), . . . which gives the se-

quence of messages exchanged for the execution α..
Note that the set of messages stored in buffer i(t) is uniquely

specified by the vector y(t) and the communication graph
for the round At. Thus, for deterministic subroutines R,
F , and U , and particular choices of the initial valuations of
the variables, and a given PDOP P an iterative distributed
algorithm has a unique execution. For fixed (possibly ran-
domized) subroutines U,R, F , and a fixed initial state x(0),
let Obs denote the set of all sequences of messages that the
resulting algorithm can produce for any PDOP problem1.
In this paper, we will study randomized versions of Algo-

rithm 1. For a fixed choice of these randomized subroutines
(to be stated in Section 4.1), ΞP denotes the set of all exe-
cutions of the resulting algorithm for a given PDOP P and
a given set of initial conditions2. The probability measure
over the space of executions PP is defined in the standard
way by first defining a σ-algebra of cones over the space of
executions, and then by defining the probability of the cones
by integrating over µ (see for example [10, 14]).

3.3 Convergence, Accuracy and Differential Pri-
vacy

An iterative distributed algorithm solves the PDOP prob-
lem if the estimates of all the agents converge to a common
value as the time bound T goes to infinity and the algorithm
preserves differential privacy of the fi’s. Furthermore, we
want this convergence point close to the optima x∗ of f .

Definition 1 (Convergence). An iterative distributed algo-
rithm converges if for any PDOP P and any initial config-
uration, for any agents i, j ∈ [N],

lim
t→∞

||(xi(t)− xj(t)|| = 0,

where the expectation is taken over the coin-flips of the al-
gorithm, that is, the randomization in the R, F and U sub-
routines of the individual agents.

We define x̄(t)
∆
= 1

N

∑
i∈[N] xi(t) as the average of the in-

dividual agent estimates at the end of round t. We define the
accuracy of the algorithm by the expected squared distance
of the average to the optima x∗.

Definition 2 (Accuracy). For a d ≥ 0, an iterative dis-
tributed algorithm is said to be d-accurate if,

lim
t→∞

||x̄(t)− x∗||2 ≤ d, (3)

1Here we are suppressing the dependence of Obs on U,R, F
and x(0) for notational convenience.
2Here we are suppressing the dependence of ΞP and PP on
U,R, F and x(0) for notational convenience.

where the expectation is taken over the coin-flips of the al-
gorithm.

The smaller the d-accuracy, the more accurate the algo-
rithm. If the algorithm converges to the exact global optimal
point x∗, then it is 0-accurate.

Our definition of privacy is a modification of the notion
of differential privacy introduced in [7] in the context of
streaming algorithms. We consider an adversary with full
access to all the communication channels. That is, he can
peek inside all the messages (y(t)) going back and forth
between the agents. For a give PDOP P, observation se-
quence of messages ρ ∈ Obs, and an initial state x(0), then
R−1(P, ρ, x(0)) is the set of executions {α ∈ ΞP : R(α) =
ρ ∧ α(0) = x(0)} that can generate the observation ρ.

Definition 3 (Adjacency). Two PDOPs P and P ′ are ad-
jacent, if the following holds:

(i) X = X ′, F = F ′ and A = A′, that is, the domain of
optimization, the set of individual cost functions and
the communication graphs are identical, and

(ii) there exists an i ∈ [N], such that fi ̸= f ′
i and for all

j ̸= i, fj = f ′
j .

That is, two PDOP are adjacent if only one agent changed
its individual cost function while all other parameters are
identical.

Definition 4. For an ϵ > 0, the iterative distributed al-
gorithm is ϵ-differentially private, if for any two adjacent
PDOPs P and P ′, any set of observation sequences Y ⊆ Obs
and any initial state x(0) ∈ XN

P[R−1(P, Y, x(0))] ≤ eϵP[R−1(P ′, Y, x(0))], (4)

where the probability is taken over the coin-flips of the algo-
rithm.

Roughly, the notion of ϵ-differential privacy ensures that
an adversary with access to all the observation sequence
cannot gain information about the individual cost function
of any agent with any significant probability. A smaller ϵ
suggests a higher privacy level. In the rest of the paper,
we discuss algorithms to solve PDOP which guarantee ϵ-
differential privacy and d-accuracy.

4. AN ALGORITHM FOR PDOP INSTAN-
TIATING THE SUBROUTINES

4.1 Algorithm Description
In Section 4.1, we introduced a class of iterative distributed

algorithms in terms of the subroutines R, F and U . In this
section, we instantiate the subroutines and analyze the con-
vergence, accuracy and differential privacy of the resulting
algorithm. The algorithm has 4 parameters: (i) the pri-
vacy parameter ϵ > 0, (ii) the initial step size parameter
c ∈ (0, 1

C3
), (iii) the step size decay rate q ∈ (0, 1) and (iv)

the noise decay rate p ∈ (q, 1).
The subroutine R, shown in Algorithm 2, computes a

value to broadcast based on agent i’s local value xi at round
t. The agent first generates a vector of n (which is the length
of xi) noise values drawn independently from the Laplace
distribution Lap(Mt) with parameter Mt, which we will de-
fine later. The value to report is the sum of xi and the noise
vector wi.

Mitra, Sayan

Algorithm 2: Subroutine R

1: Input: xi ∈ X , t ∈ [T]
2: wi ∼ Lap(Mt);
3: yi ← xi + wi;
4: return yi

The subroutine F , shown in Algorithm 3, computes a
value zi based on all the neighbors’ messages. In this sub-
routine, the agent i first reads its neighbors’ broadcasts from
its own buffer. Recall that ai,j(t) is the entry on the ith col-
umn and jth row of a doubly stochastic matrix At. Thus,
the value zi =

∑
j∈[N] aij(t)yj is indeed the weighted av-

erage of neighbors’ broadcast based on the communication
graph At.

Algorithm 3: Subroutine F

1: Input: At, buffer i
2: For all j ∈ [N], yj ← read(buffer i, j);
3: zi ←

∑
j∈[N] aij(t)yj ;

4: return zi

The subroutine U is shown in Algorithm 4. In this sub-
routine, the agent computes a new local value xi by moving
from zi against the gradient of fi. Roughly, this computa-
tion reduces the individual cost function fi from the point
zi. The parameter γt is the step size at round t, which
we will define later in Equation (8). The projection ProjX
guarantees that the estimate for agent i is in X .

Algorithm 4: Subroutine U

1: Input: zi ∈ X , t ∈ [T], fi,X
2: xi ← ProjX [zi − γt(▽ fi(zi))];
3: return xi

From Algorithms 2-4, we can write down the computation
of each agent i at round t as following three equations:

yi(t) = xi(t− 1) + wi(t) (5)

zi(t) =
∑

j∈[N]

aij(t)yj(t). (6)

xi(t) = ProjX [zi(t)− γt(▽ fi(zi(t)))]. (7)

In Equations (5)-(7), there are two undefined parameters:
the noise parameter Mt and the step size γt at round t.
We propose to choose Mt and γt as geometrically decaying
sequences depending on 4 parameters (c, q, p, ϵ):

γt = cqt−1

Mt = 2C2
√
n cp

ϵ(p−q)p
t−1.

(8)

where c ∈ (0, 1
C3

) is the initial step size parameter, q ∈
(0, 1) is the step size decay parameter, p ∈ (q, 1) is the noise
decay parameter and ϵ > 0 is the privacy parameter. The
initial noise (2C2

√
n c

ϵ(p−q)) depends on the four parameters

c, q, p, ϵ, the dimension of domain n (See (i) in Definition of
PDOP) and constant C2 from Assumption 1. Note that the
noise distribution converges to Dirac distribution and the
step size converges to 0.

Thus, the algorithm we introduced to solve the PDOP
(Algorithms 2-4) has three tunable parameters: the initial
noise parameter c, its decaying rate q and step size decay
rate p. Later we show that by any choice of c ∈ (0, 1

C3
),

q ∈ (0, 1) and p ∈ (q, 1), the iterative distributed algorithm
is ϵ-differentially private, convergent, and ensures certain
level of accuracy. In Section 4.4 we will discuss a tradeoff
between convergence rate and accuracy.

4.2 Differential Privacy
Recall in Definition 3, two PDOP P and P ′ are adjacent

if only one term of f ′ is different from that of f . The notion
of sensitivity of a mechanism captures the maximum change
in the states (x(t)) for two adjacent PDOPs. Recall that
in Section 3.3, we introduced a inverse observation mapping
R−1(P, ρ, x(0)) that maps a PDOP P, an observation se-
quence ρ and an initial configuration x(0) to a set of execu-
tions, each of which is in the form α = x(0), ⟨x(1), y(1), z(1),
buffer(1), ⟩, ⟨x(2), y(2), z(2), buffer(2)⟩,

Let R−1
x(t)(P, ρ, x(0)) be the set of x(t) component from

each of the executions α in the set of the executions α ∈
R−1(P, ρ, x(0)). The definition of R−1 is extended to a set
of observation sequences in natural ways.

Definition 5. At each round t ∈ N, any initial state x(0) ∈
XN and any adjacent PDOPs P,P ′, We define the sensitiv-
ity of Algorithm 1 as

∆(t)
∆
= sup

ρ∈Obs
sup

x∈R−1
x(t)

(P,ρ,x(0))

x′∈R−1
x(t)

(P′,ρ,x(0))

||x− x′||1,

where the norm used is L1-norm.

We will show that ∆(t) is bounded for any t ∈ N for the
algorithm. We state the following lemma which is a sufficient
condition on the amount of noise to guarantees ϵ-differential
privacy.

Lemma 2. At each round t ∈ N, if each agent adds a
noise vector wi(t) consisting of n Laplace noise indepen-

dently drawn from Lap(Mt) such that
∑∞

t=1
∆(t)
Mt
≤ ϵ, then

the iterative distributed algorithm is ϵ-differentially private.

Proof. We first fix an arbitrary time bound T and discuss
executions bounded by T . Then by letting T goes to infinity
the result holds. Fix any pair of adjacent PDOP P and P ′,
any set of observation sequence Y ⊆ Obs of length T and any
initial state x(0) ∈ X . For simplicity, we denote the sets of
executions R−1(P, Y, x(0)) and R−1(P ′, Y, x(0)) by A and
A′ respectively. First we show that R−1 gives a singleton
set.

Proposition 3. For any PDOP P, any observation se-
quence ρ ∈ Y and for any initial state x(0) ∈ XN , the set of
executions R−1(P, ρ, x(0)) is a singleton set.

Proof. Fixed P, the communication graphs At are fixed.
Fixed an observation sequence ρ, the messages y(t) at each
round t are fixed. From Equation (6), for each i ∈ [N] and
t ∈ [T], zi(t) is uniquely determined. Then by Equation (7),
recalling that fi is specified by P, we can conclude that xi(t)
is uniquely specified for each i ∈ [N] and t ∈ [T]. Thus, the
execution α = x(0), ⟨x(1), y(1), z(1)⟩, · · · = R−1(P, ρ, x(0))
is uniquely determined.

Mitra, Sayan

We define a correspondence B between the sets A and
A′. For α ∈ A and α′ ∈ A′, B(α) = α′ if and only if
they have the same observation sequence. That is R(α) =
R(α′). Fix any observation sequence ρ in Y , there is an
unique execution α ∈ A that can produce the observation.
Similarly, α′ is also unique in A′. So B is indeed a bijection.
we relate the probability measures of the sets of executions
A and A′.

P[R−1(P, Y, x(0))]
P[R−1(P ′, Y, x(0))]

=

∫
α∈A

P[α]dµ
∫
α′∈A′ P[α′]dµ′ . (9)

Changing the variable using the bijection B we have,

∫

α′∈A′
P[α′]dµ′ =

∫

B(α)∈A′
P[B(α)]dµ =

∫

α∈A

P[B(α)]dµ

(10)
From Algorithms 2-4, recall that we fixed the observation se-
quence ρ, the probability comes from the noise wi(t). Along
the execution, xi(t) is a vector of length n. We denote the

k state component of xi(t) by x(k)
i (t). From Algorithm 2,

yi(t) is obtained by adding n independently generated noise
terms to x(t), from the distribution Lap(Mt), it follows that
the probability density of an execution α is reduced to

P[α] =
∏

i∈[N],k∈[n]
t∈[T]

pMt(y
(k)
i (t)− x(k)

i (t)), (11)

where pb(x) is the probability density function of Lap(b) at
x. Then, for any t ∈ [T], we relate the distance at time t
between the state of α and B(α) with the sensitivity ∆(t).
By Definition 5, we have

||x(t)− x′(t)||1 ≤ ∆(t).

The norm in above equation is L1-norm. The global state
x(t) consists of N local state xi(t), each of which has n com-
ponent. So (x(t) − x′(t)) lives in space RnN . By definition
of L1-norm:

∑N
i=1

∑n
k=1 |x

(k)
i (t)− x′(k)

i (t)| = ||xi(t)− x′
i(t)||1 ≤ ∆(t).

Recall that by definition of B, the observations of α and
B(α) match, that is y(t) = y′(t). From the property of
Laplace distribution introduced in Section 2,

∏

i∈[N]k∈[n]

pMt(y
(k)
i (t)− x(k)

i (t))

pMt(y
′(k)
i (t)− x′(k)

i (t))

≤
∏

i∈[N],k∈[n]

exp

(
|y(k)

i (t)− x(k)
i (t)− y′(k)

i (t) + x′(k)
i (t)|

Mt

)

=
∏

i∈[N],k∈[n]

exp

(
|x(k)

i (t)− x′(k)
i (t)|

Mt

)

=exp

⎛

⎝
∑

i∈[N],k∈[n]

|x(k)
i (t)− x′(k)

i (t)|
Mt

⎞

⎠ ≤ e
∆(t)
Mt .

(12)

If Mt satisfy
∑∞

t=0
∆(t)
Mt
≤ ϵ, by combining it with Equa-

tion (11),(12),(9) and (10), we have

P[R−1(f, Y, x(0))]
P[R−1(f ′, Y, x(0))]

=

∫
α∈A

P[α]dµ
∫
α∈A

P[B(α)]dµ

≤
∫
α∈A

e
∑

t∈N
∆(t)
Mt P[B(α)]dµ

∫
α∈A

P[B(α)]dµ
≤ eϵ.

Letting the time bound T go to infinity, the same bound
holds. Thus the lemma follows.

Lemma 2 states that by adding noise drawn independently
from a carefully designed Laplace distribution, the iterative
distributed algorithm defined by Algorithms 2-4 guarantees
ϵ-differential privacy. The parameters of the noise depend
on the sensitivity of the algorithm. In the next lemma, we
state a bound of the sensitivity of our proposed algorithm
under Assumption 1,.

Lemma 4. Under Assumption 1, the sensitivity of the pro-
posed algorithm is

∆(t) ≤ 2C2
√
nγt.

Proof. Fix any observation sequence ρ, any initial state x(0) ∈
XN and any adjacent P,P ′. LetR−1(P, ρ, x(0)) = x(0), ⟨x(1),
y(1), z(1), buffer(1)⟩, . . . andR−1(P ′, ρ, x(0)) = x′(0), ⟨x′(1),
y′(1), z′(1), buffer′(1)⟩, . . . be the executions for PDOP P
and P ′ respectively. We will establish a bound on

||R−1
x(t)(P, ρ, x(0))−R−1

x(t)(P
′, ρ, x(0))||1.

Since the observation sequence ρ for both executions are
identical, we have y(t) = y′(t) for all t. From Algorithm 3,
zi(t) =

∑
j∈[N] aij(t)yj(t) =

∑
j∈[N] aij(t)y

′
j(t) = z′i(t) for

each i ∈ [N] and each round t. From Definition 3, f and
f ′ are identical except for the ith components. Thus, by
applying Algorithm 4, we have:

||R−1
x(t)(P, ρ, x(0))−R−1

x(t)(P
′, ρ, x(0))||1

= ||zi(t)− γt(▽ fi(zi(t)))− z′i(t) + γt(▽ f ′
i(z

′
i(t)))||1

= γt||▽ fi(zi(t)))−▽ f ′
i(z

′
i(t)))||1

From Assumption 1, the L2 norm ||▽ fi(zi(t)))−▽ f ′
i(zi(t)))|| ≤

2C2. By the norm inequality introduced in Section 2, we
have,

||R−1
x(t)(P, ρ, x(0))−R−1

x(t)(P
′, ρ, x(0))||1 ≤ 2C2

√
nγt.

Since the observation sequence ρ and the pair of adjacent
PDOPs P,P ′ can be chosen arbitrarily and the bound is
oblivious of ρ, we have ∆(t) ≤ 2C2

√
nγt.

With Lemma 2 and 4, it directly follows that our algo-
rithm guarantees ϵ-differential privacy.

Theorem 5. The proposed algorithm (Algorithms 1-4) guar-
antees ϵ-differential privacy with any choice of c > 0, q ∈
(0, 1) and p ∈ (q, 1).

Proof. Recall that in Equation (8), the step size at round t
is γt = cqt−1. Besides the Laplace noise at round t is drawn
from distribution Lap(Mt) with Mt = 2C2

√
n cp

ϵ(p−q)p
t−1.

Then, from Lemma 4, we have

∆(t) ≤ 2C2
√
nγt = 2C2

√
ncqt−1.

Mitra, Sayan
projection is ignored? x is defined in terms of proj of updated z.

norm over x becomes == norm over z_i ? needs explanation.

Mitra, Sayan

Then, from p ∈ (q, 1), we have:

∞∑

t=1

∆(t)
Mt

≤ ϵ(p− q)
p

∞∑

t=1

(
q
p

)t−1

=
ϵ(p− q)

p
p

p− q
= ϵ.

From Lemma 2, the algorithm guarantees ϵ-differential pri-
vacy

4.3 Convergence
In this section, we prove that the algorithm converges

following a similar idea presented in [11]. We define the
transfer matrix Φ(k, s) =

∏k
t=s+1 At and Φ(s, s) = I, which

captures the evolution of states under a sequence of commu-
nication graph {At}ks+1. We denote Φ(k, s)i,j as the entry
of Φ(k, s) on the ith row and jth column. The following
lemma (Lemma 3.2 of [11]) states that Φ(k, s) converges to
a constant matrix as k → ∞. Moreover, the convergence
rate depends on: (i) the number of agents N , and (ii) the
robust connectivity parameter η given in Assumption 2.

Lemma 6. Under Assumption 2, there exist constants θ > 0
and β ∈ (0, 1) such that for any i, j ∈ [N] for any naturals
t > s,

|Φ(t, s)i,j −
1
N

| ≤ θβt−s,

where θ =
(
1− η

4N2

)−2
and β = 1− η

4N2 .

Lemma 6 states a fundamental restriction on the rate of con-
vergence given a communication topology. We can observe
from the above lemma that: as the number of agents (N)
grows or the robustness of communication (η) decreases, β
becomes closer to 1, that is, the transition matrix (Φ) con-
verges slower.
Recall in Algorithm 3, agent j influences agent i’s compu-

tation through the entry ai,j(t) of the communication graph
At. Lemma 6 states that any two agents j and k has the
same longterm influence on agent i’s local state. As a direct
result from this lemma, any two entries of Φ(t, s) converge
to each other geometrically. That is, for any i, j, k, l ∈ [N],
|Φ(t, s)i,j − Φ(t, s)k,l| ≤ 2θβt−s. For the algorithm defined
by Algorithms 2-4, we compute the distance between any
two local state using the previous lemma.

Lemma 7. Under Assumptions 1 and 2, for the proposed
iterative distributed algorithm, for any agents i, j ∈ [N] and
any time t ∈ N, the following holds:

||xi(t)− xj(t)|| ≤ M1β
t +M2

∑t
s=1 γsβ

t−s+

M3
∑t

s=1 β
t−s supk∈[N] ||wk(s)||+

M4
∑t

s=1 β
t−sγs supk∈[N] ||wk(s)||

(13)
where β ∈ (0, 1) is defined in Lemma 6 and M1,M2,M3,M4 >
0 are bounded constants depending on the constants C1, C2, C3,
C4 introduced in Assumption 1.

Lemma 7 is proved by interactively unrolling Equation (5)-
(7) and applying Lemma 6. The proof is presented in Ap-
pendix. With Lemma 7, we can bound the distance between
two agents’ local states by three terms. The first term M1β

t

decays to 0 as t goes to infinity. The limits of the later terms
can be derived using Proposition 1. This lemma suggests
that the limit of Equation (1) depends on the limit of the
noise magnitude as well as the limit of the step size. With
Lemma 7 and Proposition 1, the convergence of Algorithm
described in Section 4.1 follows directly.

Theorem 8. The algorithm described in Section 4.1 con-
verges.

Proof. From Equation (8), we have that

lim
t→∞

γt = 0, and lim
t→∞

||wk(t)|| = 0.

Applying Proposition 1, we have limt→∞
∑t

s=1 β
t−sγs =

0, limt→∞
∑t

s=1 β
t−s supk∈[N] ||wk(s)|| = 0, and

limt→∞
∑t

s=1 β
t−sγs supk∈[N] ||wk(s)|| = 0. Then, by tak-

ing the limit of the expectation of Equation (13), we derive

lim
t→∞

||xi(t)− xj(t)|| = 0.

Thus the iterative distributed algorithm converges.

Theorem 8 shows that our proposed algorithm converges,
which requires the expected distance between local values of
different agents to converge to 0. That is, the agents will
eventually agree on a common value.

4.4 Accuracy
In this section, we establish bounds on the accuracy of

the proposed iterative distributed algorithm. We first state
a lemma which compares the sum of distance from zi(t) to
any fixed point x′ to that of distance from xi(t) to x′.

Lemma 9. Fixed any point x′ ∈ X , for our proposed it-
erative distributed algorithm, for all i ∈ [N], the following
holds,
∑

i∈[N]

||zi(t)− x′||2 ≤
∑

i∈[N]

||xi(t− 1)− x′ + wi(t)||2. (14)

The proof is given in Appendix. We will derive a bound
on the accuracy of the proposed algorithm (Theorem 10).
This bound is derived using Lemma 9 and strong convexity.

Theorem 10. The algorithm guarantees d-accuracy with

d = 2C1e
−C3c

1−q +
2C2

2c
2

1−q2
+

8C2
2nc2p2

ϵ2(p−q)2(1−p2)

+
16C2

2C
2
4nc4p2

ϵ2(p−q)2(1−p2q2)
.

(15)

Proof. We denote ui(t) = −▽ fi(zi(t)). Let x
∗ be the min-

imum of the problem. Taking 2-norm on both side of Equa-
tion (7) and applying the property of projection, we have

||xi(t)− x∗||2 ≤ ||zi(t) + γtui(t)− x∗||2

= ||zi(t)− x∗||2 + 2γtu
T
i (t)(zi(t)− x∗) + γ2

t ||ui(t)||2.
(16)

Since fi is strongly convex, we have

uT
i (t)(zi(t)− x∗) ≤ fi(x

∗)− fi(zi(t))− C3
2 ||zi(t)− x∗||2

≤ −C3
2 ||zi(t)− x∗||2.

(17)
Combining Equation (16) and (17) we have

||xi(t)− x∗||2 ≤ (1− C3γt)||zi(t)− x∗||2 + γ2
t ||ut||2.

Sum up above equations over i ∈ [N] and divided by N , we
have

1
N

∑

i∈[N]

||xi(t)−x∗||2 ≤ 1− C3γt
N

∑

i∈[N]

||zi(t)−x∗||2+γ2
t ||ut||2.

(18)

We will replace the terms ||zi(t) − x∗||2 using Lemma 9.
From Equation (14), we have:

∑

i∈[N]

||zi(t)− x∗||2 ≤
∑

i∈[N]

||xi(t− 1)− x∗ + wi(t)||2

=
∑

i∈[N]

||xi(t− 1)− x∗||2 + 2
∑

i∈[N]

[(xi(t− 1)− x∗)Twi(t)]

+
∑

i∈[N]

||wi(t)||2

Under the condition wi(t) ∼ Lap(Mt), we have [wi(t)] = 0
and ||wi(t)||2 = 2M2

t . Noticing that wi(t) and xi(t − 1)
are independent, we have:
∑

i∈[N]

||zi(t)− x∗||2 ≤
∑

i∈[N]

||xi(t− 1)− x∗||2 + 2NM2
t .

(19)

For simplicity we denote S(t)
∆
= 1

N

∑
i∈[N] ||xi(t) − x∗||2.

Combining Equation (18) and (19), we have:

S(t) ≤ (1− C3γt)S(t− 1) + γ2
t ||ut||2 + 2(1− C3γt)M

2
t (20)

We will establish a bound on ||ut||2. By taking squared of
Equation (28), we have

||us||2 ≤ 2||▽ fk(
∑

j∈[N] akj(t)xj(s− 1))||2+
2||∇2fk(v)

∑
j∈[N] akj(s)wj(s)||2

Taking expectation on both sides yields,

||us||2 ≤ 2C2
2 + 4C2

4M
2
s (21)

Recursively applying Equation (20) and (21), we ultimately
get:

S(t) ≤
[∏t

s=1(1− C3γs)
]
S(0)

+2C2
2

∑t
s=1 γ

2
s

∏t
l=s+1(1− C3γl)

+2
∑t

s=1 M
2
s

∏t
l=s(1− C3γl)

+4C2
4

∑t
s=1 M

2
s γ

2
s

∏t
l=s+1(1− C3γl).

(22)

We define Ψ(k, s)
∆
=
∏k

t=s+1(1 − C3γt). From Assump-
tion 1,we have that S(0) ≤ 2C1. Thus, we have

S(t) ≤ 2C1Ψ(t, 0) + 2C2
2

t∑

s=1

γ2
sΨ(t, s)

+2
t∑

s=1

M2
sΨ(t, s− 1) + 4C2

4

t∑

s=1

γ2
sM

2
sΨ(t, s− 1).

The above equation has three terms, each of which involves
Ψ(k, s).We will give a bound to the term Ψ(k, s). Since
Ψ(k, s) is the product of factors no larger than 1, Ψ(k, s) ≤ 1
by definition. Thus, the above inequality reduces to

S(t) ≤ 2C1Ψ(t, 0) + 2C2
2

∞∑

s=1

γ2
s + 2

∞∑

s=1

M2
s + 4C2

4

∞∑

s=1

γ2
sM

2
s .

Substituting Equation (8) into the right-hand side, we have,

S(t) ≤ 2C1Ψ(t, 0) +
2C2

2c
2

1−q2
+

8C2
2nc2p2

ϵ2(p−q)2(1−p2)

+
16C2

2C
2
4nc4p2

ϵ2(p−q)2(1−p2q2)
.

(23)

To compute a upper bound on term Ψ(t, 0), we use a stan-
dard property of exponential function, that is, 1 − a ≤ e−a

for any a ∈ R. Thus

Ψ(t, 0) =
t∏

s=1

(1− C3γt) ≤ e−
∑t

s=1 C3γt ≤ e−
C3c(1−qt)

1−q .

Substitute the above inequality into Equation (23), we have:

S(t) ≤ 2C1e
−C3c(1−qt)

1−q +
2C2

2c
2

1−q2
+

8C2
2nc2p2

ϵ2(p−q)2(1−p2)

+
16C2

2C
2
4nc4p2

ϵ2(p−q)2(1−p2q2)
.

By triangular inequality, we have

||x̄(t)− x∗||2 = || 1
N

∑

i∈[N]

xi(t)− x∗||2

≤ 1
N

∑

i∈[N]

||xi(t)− x∗||2 = S(t)

Letting t→∞, we have

lim sup
t→∞

||x̄(t)− x∗||2 ≤ 2C1e
−C3c

1−q +
2C2

2c
2

1−q2
+

8C2
2nc2p2

ϵ2(p−q)2(1−p2)

+
16C2

2C
2
4nc4p2

ϵ2(p−q)2(1−p2q2)
.

Thus the theorem follows.

In the above theorem, we derived a bound of the accu-
racy the algorithm guarantees. The first term in the bound
depends on the size of domain X , which is exponentially de-
caying. This bound depends on the four parameters ϵ, c, p, q.
Fixing other three parameter, the accuracy has the order of
d ∼ O(1

ϵ2
) for small ϵ. As ϵ converges to 0, that is, for

complete privacy for individuals, the accuracy becomes ar-
bitrarily bad.

4.5 Experiment and Discussion
The algorithm has four parameters: the privacy level ϵ,

the initial step size c, the step size decay rate q and the
noise decay rate p. We have established that the algorithm
guarantees ϵ-differential privacy for any choice of parame-
ters. If we fix the privacy level ϵ, the dependency of the
accuracy level of the algorithm on each of the other three
parameters based on the partial derivative of d. Since the
accuracy level d is not convex on c, q, p, the global optimal
choice of the parameters does not have a clean close form
expression. However, we observe that if we fix any other
two parameters, the other parameter has a local optima:
In practice, we can tune the parameters with the follow-
ing heuristic: (i) pick c, q, p randomly initially, (ii) fix two
parameters and tune the remaining parameter to the local
optima, and (iii) repeat step (ii) several times with differ-
ent choice of parameters to be tuned. We use the proposed
algorithm to solve Example 1 where the parameters (c, q, p)
are tuned with the above heuristic.

Example 2 We solve a version of Example 1 with seven
different privacy levels: ϵ = 0.1, 0.2, 0.5, 1, 2, 5 and 10. We
assign the domain of optimization X as the unit square
X = {(x, y) ∈ R2| − 1 ≤ x, y ≤ 1}. For each privacy
level ϵ, we first decide the parameters (c, q, p) using the pro-
posed heuristic, and then solve the DPOP repeatedly for
5000 times. Each time, we record the squared distance from
the convergent point to the optima. Then, the accuracy
level d of a privacy level is approximated by the average of

Mitra, Sayan

Figure 1: Accuracy level d as a function of privacy
level ϵ for Example 2.

the squared distances over the 5000 runs. The experimental
results are illustrated in Fig 1.

5. CONCLUSION
We formulated the private distributed optimization (PDOP)

problem in which N agents are required to minimize a global
cost function f that is the sum

∑N
i=1 fi of N cost func-

tions for the individual agents. The agents may exchange
information about their estimates for the optimal solution,
but are required to keep their cost functions differentially
private from an adversary with access to all the communi-
cation. We studied structurally simple iterative distributed
algorithms for solving PDOP. Like other iterative algorithms
for consensus and optimization, our algorithm proceeds in
rounds. In each round, however, an agent first adds a vec-
tor of carefully chosen random noise to its current estimate
for the optimal point and broadcasts this noisy estimate to
its neighbors. The noise is chosen from a Laplace distribu-
tion that converges to the Dirac distribution with increasing
number of rounds. In the second phase, the agent updates
its estimate by (a) taking a weighted average of the noisy es-
timates it received from its neighbors and (b) moving the es-
timate, by a carefully chosen step-size, in opposite direction
of the gradient of its own cost function. The communication
topology and hence the neighbors of an agent may change
from one round to another, yet, this structurally simple al-
gorithm solves PDOP. We establish its differential privacy
as well as its approximate convergence to the optimal point.
The analysis also reveals the dependence of the accuracy
and the privacy levels of the algorithm on the the noise and
the step-size parameters. We observe that, by fixing other
parameters, the accuracy level has the order of O(1

ϵ2
).

Accurately solving distributed coordination problems re-
quires information sharing. Participants in the coordination
might be willing to sacrifice on the quality of the solution
provided this loss is commensurate with the gain in the level
of privacy of their individual preferences. Thus, a natural
question is to quantify the cost incurred in solving the prob-
lem as a function of the privacy level. In this paper, we have
addressed this question in the context of PDOP and the class
of iterative algorithms. Even for the class of iterative algo-
rithms, establishing a lower-bound on the maximum level of
differential privacy that can be achieved for a certain level
of accuracy remains an open problem.

6. REFERENCES
[1] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.

Differentially private empirical risk minimization. J.
Mach. Learn. Res., 12:1069–1109, July 2011.

[2] A. Dominguez-Garcia and C. Hadjicostis. Distributed
matrix scaling and application to average consensus in
directed graphs. Automatic Control, IEEE
Transactions on, 58(3):667–681, 2013.

[3] A. D. Domınguez-Garcıa, S. T. Cady, and C. N.
Hadjicostis. Decentralized optimal dispatch of
distributed energy resources. In IEEE Conf. on
Decision and Control,(Maui, HI), 2012.

[4] C. Dwork. Differential privacy. In Automata,
Languages and Programming, volume 4052 of Lecture
Notes in Computer Science, 2006.

[5] C. Dwork. Differential privacy: a survey of results. In
Proceedings of the 5th international conference on
Theory and applications of models of computation,
TAMC’08, pages 1–19, Berlin, Heidelberg, 2008.
Springer-Verlag.

[6] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Advances in
Cryptology-EUROCRYPT 2006, pages 486–503.
Springer, 2006.

[7] C. Dwork, M. Naor, G. Rothblum, and T. Pitassi.
Differential privacy under continual observation. In
Proceedings of the 42nd ACM symposium on Theory of
computing, 2010.

[8] Z. Huang, S. Mitra, and G. Dullerud. Differentially
private iterative synchronous consensus. In
Proceedings of the 2012 ACM workshop on Privacy in
the electronic society, WPES ’12, pages 81–90, New
York, NY, USA, 2012. ACM.

[9] D. Kifer, A. Smith, and A. Thakurta. Private convex
empirical risk minimization and high-dimensional
regression. Journal of Machine Learning Research,
1:41, 2012.

[10] S. Mitra. A Verification Framework for Hybrid
Systems. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA 02139, September 2007.

[11] A. Nedic and A. Ozdaglar. Distributed subgradient
methods for multi-agent optimization. Automatic
Control, IEEE Transactions on, 54(1):48–61, 2009.

[12] Y. NESTEROV. Gradient methods for minimizing
composite objective function. Technical report,
Université catholique de Louvain, Center for
Operations Research and Econometrics (CORE), 2007.

[13] R. Olfati-Saber, J. Fax, and R. Murray. Consensus
and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95(1):215–233, 2007.

[14] R. Segala. Modeling and verification of randomized
distributed real-time systems. 1996.

[15] S. Sundhar Ram, A. Nedic, and V. Veeravalli.
Distributed stochastic subgradient projection
algorithms for convex optimization. Journal of
Optimization Theory and Applications,
147(3):516–545, 2010.

[16] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. Automatic Control, IEEE
Transactions on, 31(9):803–812, 1986.

APPENDIX
Proof of Lemma 7:

Proof. For brevity, we denote

ui(t) = ProjX [zi(t)− γt▽ fi(zi(t))]− zi(t).

Then, we can rewrite Equation (7) as

xi(t) =
∑

j∈[N]

aij(t)xj(t− 1) +
∑

j∈[N]

aij(t)wj(t) + ui(t).

By the property of projection, we have Recursively apply
the above equation, we have:

xi(t) =
∑

j∈[N] Φ(t, 0)i,jxj(0) +
∑t

s=1

∑
j∈[N] Φ(t, s− 1)i,juj(s)

+
∑t

s=1

∑
j∈[N] Φ(t− 1, s− 1)i,jwj(s).

(24)
Thus, the distance between two local states xi(t) and xj(t)
is:

||xi(t)− xj(t)||

=
∑

k∈[N]

|Φ(t, 0)i,k − Φ(t, 0)j,k|||xk(0)||+

t∑

s=1

∑

k∈[N]

|Φ(t, s− 1)i,k − Φ(t, s− 1)j,k|||uk(s)||+

t∑

s=1

∑

k∈[N]

|Φ(t− 1, s− 1)i,k − Φ(t− 1, s− 1)j,k|||wk(s)||.

By applying Lemma 6, the above expression becomes

||xi(t)− xj(t)|| ≤ 2Nθβt supk∈[N] ||xk(0)||+
2Nθ

∑t
s=1 β

t−s+1 supk∈[N] ||uk(s)||+
2Nθ

∑t
s=1 β

t−s supk∈[N] ||wk(s)||.
(25)

From Assumption 1, we have ||xk(0)|| is bounded. Since
the distance between zk(s) and the set X is bounded by∑

j∈[N] akj(t)||wj(t)||, from the property of projection,

||uk(s)|| = ||ProjX [zi(t)− γt▽ fi(zi(t))]− zi(t)||
≤ ||ProjX [zk(s)− γt▽ fk(zk(s))]− ProjX [zk(s)]||

+||ProjX [zk(s)]− zk(s)||
≤ γt||▽ fk(zk(s))||+

∑
j∈[N] akj(t)||wj(t)||

(26)
Since zk(s) =

∑
j∈[N] akj(t)(xj(s− 1) +wj(s)), by mean-

value theorem, there exists a point v between zk(s) and
Σj∈[N]akj(t)xj(s− 1), such that

▽ fk(zk(s)) = ▽ fk(
∑

j∈[N] akj(t)xj(s− 1))+

∇2fk(v)
∑

j∈[N] akj(s)wj(s))
(27)

Since
∑

j∈[N] akj(s)xj(s− 1) ∈ X , from with Assumption 1
we have

||▽ fk(zk(s))|| ≤ C2 + C4
∑

j∈[N] akj(s)||wj(s))||. (28)

Combining Equation (26) and (28), we have

||uk(s)|| ≤ C2γs + (C4γs + 1)
∑

j∈[N]

akj(s)||wj(s))||.

Since As is doubly stochastic, we have
∑

j∈[N] akj(s) = 1.
Thus the above equation is reduced to

||uk(s)|| ≤ C2γs + (C4γs + 1) sup
k∈[N]

||wk(s))|| (29)

Combining Equation (25) and (29) we have,

||xi(t)− xj(t)|| ≤ M1β
t +M2

∑t
s=1 γsβ

t−s+

M3
∑t

s=1 β
t−s supk∈[N] ||wk(s)||+

M4
∑t

s=1 β
t−sγs supk∈[N] ||wk(s)||,

(30)
where M1 = 2Nθ sup

x∈X
||x||,M2 = 2NC2θβ, M3 = 2Nθ(1+β)

and M4 = 2NC4θβ.

Proof of Lemma 9:

Proof. From Equation (5)-(6), we have zi(t) =
∑

j∈[N] ai,j(t)(xj(t−
1) + wj(t)). It follows that,

∑
i∈[N] ||zi(t)− x′||2 =

∑
i∈[N] ||

∑
j∈[N] ai,j(t)(xj(t− 1)

+wj(t))− x′||2

(31)
From the assumption that the matrix At is doubly stochas-
tic, we have

∑
j∈[N] ai,j(t) = 1. So we have x′ =

∑
j∈[N] ai,j(t)x

′.
Applying this trick to Equation (31), we have
∑

i∈[N]

||zi(t)−x′||2 =
∑

i∈[N]

||
∑

j∈[N]

ai,j(t)
(
xj(t− 1) + wj(t)− x′) ||2.

(32)
By triangle inequality and reordering of summation, we have

||
∑

j∈[N] ai,j(t) (xj(t− 1) + wj(t)− x′) ||2

≤
∑

i∈[N]

∑
j∈[N] ai,j(t)||xj(t− 1) + wj(t)− x′||2.

(33)
Again from the double stochasticity of At,

∑
i∈[N] ai,j(t) =

1. Then the above expression can be reduced to
∑

j∈[N]

∑

i∈[N]

ai,j(t)||xj(t− 1) + wj(t)− x′||2

=
∑

j∈[N]

||xj(t− 1) + wj(t)− x′||2.

Combining above equation with Equations (32) and (33), we
derive

∑

i∈[N]

||zi(t)− x′||2 ≤
∑

j∈[N]

||xj(t− 1)− x′ + wj(t)||2.

By changing the variable of the right-hand side, the lemma
follows.

	Introduction
	Preliminaries
	The Private Distributed Optimization Problem
	Domain, Cost Function and Communication Graph
	Iterative Distributed Algorithms for PDOP
	Convergence, Accuracy and Differential Privacy

	An Algorithm for PDOP instantiating the Subroutines
	Algorithm Description
	Differential Privacy
	Convergence
	Accuracy
	Experiment and Discussion

	Conclusion
	References

