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ABSTRACT
We investigate the problem of constructing exponentially
converging estimates of the state of a continuous-time sys-
tem from state measurements transmitted via a limited-
data-rate communication channel, so that only quantized
and sampled measurements of continuous signals are avail-
able to the estimator. Following prior work on topological
entropy of dynamical systems, we introduce a notion of es-
timation entropy which captures this data rate in terms of
the number of system trajectories that approximate all other
trajectories with desired accuracy. We also propose a novel
alternative definition of estimation entropy which uses ap-
proximating functions that are not necessarily trajectories
of the system. We show that the two entropy notions are
actually equivalent. We establish an upper bound for the
estimation entropy in terms of the sum of the system’s Lip-
schitz constant and the desired convergence rate, multiplied
by the system dimension. We propose an iterative proce-
dure that uses quantized and sampled state measurements
to generate state estimates that converge to the true state
at the desired exponential rate. The average bit rate uti-
lized by this procedure matches the derived upper bound
on the estimation entropy. We also show that no other es-
timator (based on iterative quantized measurements) can
perform the same estimation task with bit rates lower than
the estimation entropy. Finally, we develop an application
of the estimation procedure in determining, from the quan-
tized state measurements, which of two competing models
of a dynamical system is the true model. We show that
under a mild assumption of exponential separation of the
candidate models, detection is always possible in finite time.
Our numerical experiments with randomly generated affine
dynamical systems suggest that in practice the algorithm
always works.
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1. INTRODUCTION
Entropy is a fundamental notion in the theory of dynam-

ical systems. Roughly speaking, it describes the rate at
which the uncertainty about the system’s state grows as
time evolves. One can think of this alternatively as the
exponential growth rate of the number of system trajecto-
ries distinguishable with finite precision, or in terms of the
growth rate of the size of reachable sets. Different entropy
definitions (notably, topological and measure-theoretic ones)
and relationships between them are studied in detail in the
book [10] and in many other sources, and continue to be a
subject of active research in the dynamical systems commu-
nity. The concept of entropy of course also plays a central
role in thermodynamics and in information theory, as dis-
cussed, e.g., in [5].

In the context of control theory, if entropy describes the
rate at which uncertainty is generated by the system (when
no measurements are taken), then it should also correspond
to the rate at which information about the system should be
collected by the controller in order to induce a desired behav-
ior (such as invariance or stabilization). This link has been
recognized in the control community, and suitable entropy
definitions for control systems have been proposed and re-
lated to minimal data rates necessary for controlling the sys-
tem over a communication channel. The first such result was
obtained by Nair et al. in [15], where topological feedback
entropy for discrete-time systems was defined in terms of
cardinality of open covers in the state space. An alternative
definition was proposed later by Colonius and Kawan in [3],
who instead counted the number of “spanning” open-loop
control functions. The paper [4] summarized the two notions
and established an equivalence between them. Colonius sub-
sequently extended the formulation of [3] from discrete-time
to continuous-time dynamics and from invariance to expo-
nential stabilization in [2]. The survey paper [16] provides a
broader overview of control under data rate constraints.

In this work we are concerned with the problem of es-
timating the state of a continuous-time system when state
measurements are transmitted via a limited-data-rate com-
munication channel, which means that only quantized and
sampled measurements of continuous signals are available
to the estimator. We do not address control problems here,
although such observation problems and control problems
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are known to be closely related (through duality and the
fact that state estimates can be used to close a feedback
loop). Observability over finite-data-rate channels and its
connection to topological entropy has been studied, most
notably by Savkin [17]. Our point of departure in this pa-
per is a synergy of ideas from Savkin [17] and Colonius [2].
As in [17], we focus on state estimation rather than control.
However, we follow [2] in that we consider continuous-time
dynamics and require that state estimates converge at a pre-
scribed exponential rate. As a result, our definition of es-
timation entropy combines some features of the definitions
used in [17] and [2]. We also propose a novel alternative def-
inition of entropy which uses approximating functions that
are not necessarily trajectories of the system. We show that,
somewhat surprisingly, the two entropy notions turn out to
be equivalent (Theorem 1). We proceed to establish an up-
per bound of (L+ α)n/ln 2 for the estimation entropy of an
n-dimensional nonlinear dynamical system with Lipschitz
constant L, when the desired exponential convergence rate
of the estimate is α (Proposition 2).

State estimation and monitoring of continuously evolving
processes over data networks arise in a variety of engineering
applications ranging from power grids to vehicular embed-
ded control systems. Typically these estimation algorithms
share a communication bus with many other competing pro-
tocols, and therefore, a principled approach to bandwidth
allocation is necessary. One of the goals of this work is to
develop algorithms for state estimation of continuous sys-
tem behavior that are optimal with respect to sensing and
communication data rates. To this end, we propose an iter-
ative procedure that uses quantized and sampled state mea-
surements to generate state estimates that converge to the
true state at the desired exponential rate. The main idea in
the algorithm, which borrows some elements from [13] and
earlier work cited therein, is to exponentially increase the
resolution of the quantizer while keeping the number of bits
sent in each round constant. This is achieved by using the
quantized state measurement of each round to compute a
bounding box for the state of the system for the next round.
Then, at the beginning of the next round, this bounding
box is partitioned to make a new and more precise quan-
tized measurement of the state. We show that the bounding
box is exponentially shrinking in time at a rate α when the
average bit rate utilized by this procedure matches the upper
bound (L+ α)n/ln 2 on the estimation entropy (Theorem 3
and Proposition 4). We also show that no other algorithm
that performs state estimation based on iterative quantized
measurements can perform the same estimation task with
bit rates lower than the estimation entropy (Proposition 5).
In other words, the “efficiency gap” of our estimation proce-
dure is at most as large as the gap between the estimation
entropy of the dynamical system and the above upper bound
on it.

In the last part of the paper, we show an application of
the estimation procedure in solving model detection prob-
lems. Suppose we are given two competing candidate models
of a dynamical system and from the quantized state mea-
surements we would like to determine which one is the true
model. For example, the different models may arise from
different parameter values or they could model “nominal”
and “failure” operating modes of the system. This can be
viewed as a variant of the standard system identification
or model (in)validation problem (see, e.g., [9, 18]) except,

unlike in classical results which rely on input/output data,
here we use quantized state measurements and do not ap-
ply a probing input to the system. We show that under a
mild assumption of exponential separation of the candidate
models’ trajectories, a modified version of our estimation
procedure can always definitively detect the true model in
finite time (Theorem 6). Our experiments with an imple-
mentation of this model detection procedure on randomly
generated affine dynamical systems suggest that the model
detection algorithm always works in practice.

1.1 Notation and terminology
By default, the base of all logarithms is 2 (when we use

the natural logarithm we write ln). We denote by | · | some
chosen norm in Rn. In general definitions and results this
norm can be arbitrary, but in specific quantized algorithm
implementations we will find it convenient to use the ∞-
norm ‖x‖∞ := max1≤i≤n |xi|; in those places, the choice of
the∞-norm will be explicitly declared. For any x ∈ Rn and
δ > 0, B(x, δ) ⊆ Rn is the closed ball of radius δ centered
at x, that is, B(x, δ) = {y ∈ Rn : |x − y| ≤ δ}; for the
∞-norm this is a hypercube. For a bounded set S ⊆ Rn and
δ > 0, a δ-cover is a finite collection of points1 C = {xi}
such that ∪xi∈CB(xi, δ) ⊇ S. For a hyperrectangle S ⊆ Rn
and δ > 0, a δ-grid is a special type of δ-cover of S by
hypercubes centered at points along axis-parallel planes that
are 2δ apart. The boundaries of the δ-hypercubes centered
at adjacent δ-grid points overlap. For a given set S, there are
many possible ways of constructing specific δ-grids. We can
choose any strategy for constructing them without changing
the results in this paper. For example, we can construct a
special grid on, say, the unit interval. Then, when working
with a general interval I (a cross-section of S in any given
dimension), we map I to the unit interval, mark the chosen
grid on it, and then map it back to I. We denote the δ-grid
on S by grid(S, δ).

2. ESTIMATION ENTROPY
Consider the (continuous-time) system model

ẋ = f(x), x ∈ Rn (1)

where f is a Lipschitz continuous function.2 Let ξ : Rn ×
R≥0 → Rn denote the trajectories or solutions of (1), i.e., for
x ∈ Rn, ξ(x, ·) denotes the solution from the initial point x.
We assume that these solutions are defined globally in time.
Suppose that initial states of the system live in a known
compact set K ⊂ Rn. Let there be given a time horizon
T > 0 and a desired convergence rate α ≥ 0.

For each ε > 0, we say that a finite set of functions
X̂ = {x̂1(·), . . . , x̂N (·)} from [0, T ] to Rn is (T, ε, α,K)-
approximating if for every initial state x ∈ K there exists
some function x̂i(·) ∈ X̂ such that

|ξ(x, t)− x̂i(t)| < εe−αt ∀ t ∈ [0, T ]. (2)

1With a slight abuse of terminology, we take the elements
of a cover to be the centers of the balls covering S and not
the balls themselves.
2The Lipschitz continuity assumption is quite standard in
nonlinear systems theory; in particular, it is needed to en-
sure the system’s well-posedness (existence of unique solu-
tions) [11].



Let sest(T, ε, α,K) denote the minimal cardinality of such
a (T, ε, α,K)-approximating set. We define estimation en-
tropy as

hest(α,K) := lim
ε↘0

lim sup
T→∞

1

T
log sest(T, ε, α,K).

It is easy to see that instead of limε↘0 we could equiva-
lently write supε>0, because sest(T, ε, α,K) grows as ε → 0
for fixed T, α,K. Intuitively, since sest corresponds to the
minimal number of functions needed to approximate the
state with desired accuracy, hest is the average number of
bits needed to identify these approximating functions. The
inner lim sup extracts the base-2 exponential growth rate of
sest with time and the outer limit computes the worst case
over ε > 0.

As a special case, further considered below, we can de-
fine the x̂i(·)’s to be trajectories ξ(x, ·) of the system from
different initial states. Then, sest corresponds to the num-
ber of different quantization points needed to identify the
initial states, and hest gives a measure of the long-term bit
rate needed for communicating sensor measurements to the
estimator. We pursue this connection in more detail in Sec-
tion 3. We note that the norm in the above definition can
be arbitrary.

2.1 Alternative entropy notion
In the above definition, the functions x̂i(·) are arbitrary

functions of time and not necessarily trajectories of the sys-
tem (1). If we insist on using system trajectories, then we
obtain the following alternative definition: a finite set of
points S = {x1, . . . , xN} ⊂ K is (T, ε, α,K)-spanning if for
every initial state x ∈ K there exists some point xi ∈ S such
that the corresponding solutions satisfy

|ξ(x, t)− ξ(xi, t)| < εe−αt ∀ t ∈ [0, T ]. (3)

Letting s∗est(T, ε, α,K) denote the minimal cardinality of
such a (T, ε, α,K)-spanning set, we could define estimation
entropy differently as

h∗est(α,K) := lim
ε↘0

lim sup
T→∞

1

T
log s∗est(T, ε, α,K).

Since every (T, ε, α,K)-spanning set gives rise to a
(T, ε, α,K)-approximating set via x̂i(t) := ξ(xi, t), and since
entropy is determined by the minimal cardinality of such a
set, it is clear that

sest(T, ε, α,K) ≤ s∗est(T, ε, α,K) ∀T, ε, α,K (4)

and therefore

hest(α,K) ≤ h∗est(α,K) ∀α,K.

We will now show that, interestingly, this last inequal-
ity is actually always equality. In other words, there is no
advantage—as far as estimation entropy is concerned—in
using any approximating functions (even possibly discontin-
uous ones) other than system trajectories.

Theorem 1 For every α ≥ 0 and every compact set K we
have hest(α,K) = h∗est(α,K).

To prove this, we bring in the notion of separated sets.
The arguments that follow are along the lines of [10, Section
3.1.b], see also Lemma III.1 of [17]. With T , ε, α, K given as
before, let us call a finite set of points E = {x1, . . . , xN} ⊂ K

a (T, ε, α,K)-separated set if for every pair of points x1, x2 ∈
E the solutions of (1) with these points as initial states have
the property that

|ξ(x1, t)− ξ(x2, t)| ≥ εe−αt for some t ∈ [0, T ]. (5)

Let n∗est(T, ε, α,K) denote the maximal cardinality of such
a (T, ε, α,K)-separated set. The next two lemmas relate
n∗est to the previously defined quantities s∗est and sest, re-
spectively.3

Lemma 1 For all T , ε, α, K we have

s∗est(T, ε, α,K) ≤ n∗est(T, ε, α,K). (6)

Proof. The inequality (6) follows immediately from the
observation that every maximal (T, ε, α,K)-separated set E
is also (T, ε, α,K)-spanning; indeed, if E is not (T, ε, α,K)-
spanning then there exists an x ∈ K such that for every
xi ∈ E the inequality (3) is violated at least for some t, but
then we can add this x to E and the separation property
will still hold, contradicting maximality.

Lemma 2 For all T , ε, α, K we have

n∗est(T, 2ε, α,K) ≤ sest(T, ε, α,K).

Proof. Let X̂ = {x̂1(·), . . . , x̂N (·)} be an arbitrary
(T, ε, α,K)-approximating set of functions, and let E =
{x1, . . . , xM} be an arbitrary (T, 2ε, α,K)-separated set of
points in K. We claim that M ≤ N which would prove
the lemma. By the approximating property of X̂, for every
x ∈ K there exists some x̂i(·) ∈ X̂ such that (2) holds. Sup-

pose that M > N . Then, for at least one function x̂i(·) ∈ X̂
we can find (at least) two points xp, xq ∈ E such that (2)
holds both with x = xp and with x = xq. By the triangle
inequality, this implies |ξ(xp, t) − ξ(xq, t)| < 2εe−αt for all
t ∈ [0, T ]. But this contradicts the (T, 2ε, α,K)-separating
property of E, and the claim is established.

Proof of Theorem 1. Combining Lemmas 1 and 2
and (4), we obtain for all T, ε, α,K

n∗est(T, 2ε, α,K) ≤ sest(T, ε, α,K)

≤ s∗est(T, ε, α,K) ≤ n∗est(T, ε, α,K)

This implies that

lim sup
T→∞

1

T
logn∗est(T, 2ε, α,K) ≤ lim sup

T→∞

1

T
log sest(T, ε, α,K)

≤ lim sup
T→∞

1

T
log s∗est(T, ε, α,K)

≤ lim sup
T→∞

1

T
logn∗est(T, ε, α,K)

(7)

for all T, ε, α,K. We can now take the limit as ε→ 0 in (7).
This limit always exists (but may be infinite) because all
quantities in (7) are monotonically non-decreasing as ε →
0 (so taking the limit is actually equivalent to taking the
supremum over ε > 0). The difference between 2ε in the
first term and ε in the last term disappears as we pass to the
limit, hence all inequalities become equalities. This proves
that hest(α,K) = h∗est(α,K) as claimed in Theorem 1.

3We do not define a quantity nest corresponding to separa-
tion between arbitrary curves (not necessarily system tra-
jectories) as such a notion does not seem to be useful here.



Remark 1 The above proof shows, in addition, that the
two entropy quantities appearing in the statement of Theo-
rem 1 are also equal to

lim
ε↘0

lim sup
T→∞

1

T
logn∗est(T, ε, α,K).

By compactness of K and by the property of continu-
ous dependence of solutions of (1) on initial conditions (see,
e.g., [11]), for given ε, α, T there exists a δ > 0 such that (3)
holds whenever x and xi satisfy |x − xi| < δ. From this
it immediately follows that s∗est(T, ε, α,K), and hence also
sest(T, ε, α,K), is finite for every ε > 0. This does not in
principle preclude h∗est(α,K) and hest(α,K) from being infi-
nite (the supremum over positive ε could still be ∞). How-
ever, we will see next that this does not happen because the
system’s right-hand side is Lipschitz.

2.2 Entropy bounds
In this section, we establish an upper bound on the esti-

mation entropy of nonlinear systems. This bound is in terms
of the global Lipschitz constant L of the system’s right-hand
side f . In case the system trajectories are confined to a com-
pact invariant set, the result holds for a local Lipschitz con-
stant over that set. We will also see that the entropy bound
is independent of the choice of the initial set K; without
significant loss of generality, we assume in the sequel that K
is a set of positive measure and “regular” shape, such as a
hypercube, large enough to contain all initial conditions of
interest.

Proposition 2 For the system (1), the estimation entropy
hest(α,K) is finite and does not exceed (L+ α)n/ln 2 where
L is the Lipschitz constant of f .

Proof. This proceeds along the lines of the proof of The-
orem 3.3 in [2] (see also [1] and the references therein for
earlier results along similar lines). We fix the convergence
parameters ε, α > 0, the initial set K, and the time horizon
T > 0, and try to come up with a bound on sest(T, ε, α,K).
Let us consider an open cover C of K with balls of radii
εe−(L+α)T centered at points x1, . . . , xN ; N is the cardinal-
ity of the set C.

Consider any initial state x ∈ K. By the construction of
C, we know that there exists an xi ∈ C such that |x−xi| ≤
εe−(L+α)T . For any t ≤ T ,

|ξ(x, t)− ξ(xi, t)| ≤ |x− xi|+
∫ t

0

|f(ξ(x, s))− f(ξ(xi, s))|ds

≤ |x− xi|+ L

∫ t

0

|ξ(x, s)− ξ(xi, s)|ds

using the Lipschitz constant of f . By the Bellman-Gronwall
inequality (see, e.g., [11]), this implies

|ξ(x, t)− ξ(xi, t)| ≤ |x− xi|eLt ≤ εe−(L+α)T eLt

≤ εe−(L+α)teLt = εe−αt.

It follows that the cover C = {x1, . . . , xN} defines a

(T, ε, α,K)-approximating set: X̂ = {ξ(x1, ·), . . . , ξ(xN , ·)}.
That is, sest(T, ε, α,K) is upper bounded by N which is the
minimum cardinality of the cover of K ⊆ Rn with balls of
radii εe−(L+α)T . Let c(δ, S) denote the minimal cardinality
of a cover of a set S with balls of radius δ. Then we can write

that sest(T, ε, α,K) ≤ c(εe−(L+α)T ,K). Next we proceed to
compute a bound on hest as follows:

lim sup
T→∞

1

T
log sest(T, ε, α,K)

≤ lim sup
T→∞

1

T
log c(εe−(L+α)T ,K)

= (L+ α) lim sup
T→∞

log c(εe−(L+α)T ,K)

T (L+ α)

=
(L+ α)

ln 2
lim sup
T→∞

ln c(εe−(L+α)T ,K)

ln(e(L+α)T /ε) + ln ε

=
(L+ α)

ln 2
lim sup
T→∞

ln c(εe−(L+α)T ,K)

ln(e(L+α)T /ε)

[constant does not affect lim sup]

=
(L+ α)

ln 2
lim sup
δ↘0

ln c(δ,K)

ln(1/δ)

[defining δ = εe−(L+α)T ]

≤ (L+ α)n

ln 2
.

The last step follows from the fact that for any K ⊆ Rn,

the quantity lim supδ↘0
ln c(δ,K)
ln(1/δ)

, also called the upper box

dimension of K, is no larger than (and typically equal to) n;
cf. [10, Section 3.2.f]. By taking the limit ε→ 0, we obtain
the result hest(α,K) ≤ (L+ α)n/ln 2.

Remark 2 In the case when (1) is a linear system

ẋ = Ax (8)

the result of Proposition 2 can be sharpened. Namely, in
this case one can show that the exact expression (not just
an upper bound) for the estimation entropy is

1/(ln 2)
∑

Reλi(A+αI)>0

Reλi(A+αI) = 1/(ln 2)
∑

Reλi(A)>−α

(Reλi(A) +α)

(9)
where Reλi(A) are the real parts of the eigenvalues of A.
This follows from results that are essentially well known, al-
though not well documented in the literature (especially for
continuous-time systems); for discrete-time systems this is
shown, e.g., in [17]. Namely, since the flow is ξ(x, t) = eAtx,
the volume of the reachable set at time T from the initial
set K is det(eAT )vol(K) which by Liouville’s trace formula

equals e(trA)T vol(K). The decaying factor e−αt on the right-
hand side of (2) can be canceled by multiplying by eαt on
both sides; the effect of doing this on the left-hand side
is that of replacing solutions of ẋ = Ax by solutions of
ẋ = (A + αI)x, and suitably modifying the approximating
functions. Projecting onto the unstable subspace of A+αI,
we can refine the trace to be the sum of only unstable eigen-
values of this matrix. The number of approximating func-
tions must be at least proportional to the above volume
(since the ε-balls around their endpoints must have enough
volume to cover the reachable set), and after taking the loga-
rithm, dividing by T , and letting T → 0 we obtain (9) as the
lower bound. The upper bound is obtained by reducing A to
Jordan normal form followed by an argument similar to the
proof of Proposition 2 above applied to each Jordan block



(with the corresponding eigenvalue replacing the Lipschitz
constant L), and ends up giving the same expression (9).

3. ESTIMATION OVER INFINITE HORI-
ZON

We will first describe a procedure for state estimation of
the system (1) over infinite time horizon. Next, we will show
that the output from this estimation procedure exponen-
tially converges to the actual state of the system. Finally,
we will prove a bound on the bit rate that is sufficient to
achieve this convergence. This is a measure of the rate at
which information has to be communicated from the sensors
of the plant to the estimator.

3.1 Estimation procedure
From this point on in this section, we will discuss a spe-

cific estimation procedure based on quantized state measure-
ments. The norm used here will be the infinity norm ‖ · ‖∞.
Accordingly, the B(x, δ) balls will be the hypercubes and
the grids will be sets of hypercubes. We will treat all pre-
vious definitions and results related to entropy in terms of
the infinity norm.

The estimation procedure computes a function v :
[0,∞) → Rn and an exponentially shrinking envelope
around v(t) such that the actual state of the system ξ(x, t)
is guaranteed to be within this envelope. It has several in-
puts: (1) a sampling period Tp > 0, (2) a desired exponential
convergence rate α > 0, (3) an initial set K and an initial
partition size d0 > 0, and (4) the Lipschitz constant L of the
function f in (1), and (5) a subroutine for computing solu-
tions of the differential equation (1). In this paper we do
not distinguish between this subroutine for computing solu-
tions and the actual solutions ξ(·, ·). The procedure works
in rounds i = 1, 2, ... and each round lasts Tp time units. In
each round, a new state measurement q is obtained and the
values of three state variables S, δ, C are updated. We de-
note these updated values in the ith round as qi, δi, Si, and
Ci. Roughly, Si ⊆ Rn is a hypercubic over-approximation
of the state estimate, δi is the radius of the set Si, and Ci is
a grid on Si which defines the set of possible state measure-
ments qi+1 for the next round. We think of the quantized
state measurements qi as being transmitted from the sen-
sors to the estimator via a finite-data-rate communication
channel, while the variables δi, Si, and Ci are generated in-
dependently and synchronously on both sides of the channel.

The initial values of these state variables are: δ0 = d0; S0

is a hypercube with center, say xc, and radius rc = diam(K)
2

,

such that K ⊆ B(xc, rc); and C0 = grid(S0, δ0e
−(L+α)Tp).

Recall the definition of a grid cover from Section 1.1: C0

is a specific collection of points in Rn such that S0 ⊆
∪x∈C0B(x, δ0e

−(L+α)Tp).
At the beginning of the ith round, the algorithm takes

as input (from the sensors) a measurement qi of the cur-
rent state of the system with respect to the cover Ci−1

computed in the previous round. The measurement qi is
obtained by choosing a grid point c ∈ Ci−1 such that the
corresponding δi−1e

−(L+α)Tp -ball B(c, δi−1e
−(L+α)Tp) con-

tains the current state ξ(x, iTp) of the system. (If there
are multiple grid points satisfying this condition—and this
may happen as Ci−1 is a cover with closed sets having over-
lapping boundaries—then one is chosen arbitrarily.) Using
this measurement, the algorithm computes the following:

(1) vi : [0, Tp] → Rn, which is an approximation function
for the state over the interval spanning this round, defined
as the solution of the system (1) from qi, (2) δi is updated
as e−αTpδi−1, (3) Si ⊆ Rn is an estimate of the state af-
ter Tp time, that is, at the beginning of round i + 1, and
(4) Ci is a δie

−(L+α)Tp -grid on Si, where L is the Lipschitz
constant of f . Specifically, Si is computed by first evalu-
ating the solution vi(Tp) = ξ(qi, Tp) of the system starting
from qi after time Tp, and then constructing the hypercube
B(vi(Tp), δi). Note that the size of this hypercube decays
geometrically at the rate e−αTp with each successive round.
Recall Section 1.1 where we defined grids and provided ex-
amples of specific ways of constructing them. For what fol-
lows, the specific construction is less important than the fact
that each Ci can be computed from qi by translating and
scaling Ci−1.

Consider the beginning of the ith round for some i > 0.
From the algorithm it follows that if the current state x is
contained in the estimate Si−1 computed in the last itera-
tion, then the measurement qi is one of the points in the
cover Ci−1 computed in the last iteration, and further, the
error in the measurement |qi − x| is at most the precision

of the cover which is δi−1e
−(L+α)Tp . This property will be

used in the analysis below.

1 input : Tp ,α ,K ,d0 ,L ,ξ(·, ·)
2 i = 0 ;
3 δ0 ← d0 ;
4 S0 ← B(xc, rc) ; // xc i s the c e n t e r o f K

5 C0 ← grid(S0, δ0e
−(L+α)Tp) ;

6 while ( t rue )

// at ith round , i > 0
7 i+ + ;
8 input qi ∈ Ci−1 ;
9 // measurement o f curren t s t a t e

10 vi(·)← ξ(qi, ·)|[0, Tp] ;

11 δi ← e−αTpδi−1 ;
12 Si ← B(vi(Tp), δi) ;

13 Ci ← grid(Si, δie
−(L+α)Tp) ;

14 output Si ⊆ Rn, Ci, vi : [0, Tp]→ Rn ;
15 wait (Tp ) ;

Figure 1: Estimation procedure.

Remark 3 Line 10 of the estimation procedure uses a sub-
routine for computing numerical solutions of the differential
equation (1) from a given quantized initial state qi over a
fixed time horizon Tp. In this paper, we assume that these
computations are precise. Extending the algorithms and re-
sults to accommodate numerical imprecisions would proceed
along the lines of the techniques used in numerical reacha-
bility computations (for example, in [6, 12]). The present
case, however, is significantly simpler as the solutions have
to be computed from a single initial state and up to a fixed
time horizon.

In order to analyze the accuracy of this estimation proce-
dure, we define a piecewise continuous estimation function
v : [0,∞)→ Rn by v(0) := v1(0) and

v(t) = vi(t−(i−1)Tp) for all t ∈ ((i−1)Tp, iTp], i = 1, 2, . . .
(10)



The following theorem establishes an exponentially decaying
upper bound on the error between the actual state of the
system and the approximating function computed by the
procedure.

Theorem 3 For any choice of the parameters α, d0, Tp > 0,
the procedure in Figure 1 has the following properties: for
i = 0, 1, 2, . . . and for any initial state x ∈ K,

(a) for any t = iTp, ξ(x, t) ∈ Si, and

(b) for any t ∈ [iTp, (i+ 1)Tp), ‖ξ(x, t)− v(t)‖∞ ≤ d0e−αt.

Proof. Part (a): We fix x ∈ K and proceed to prove the
statement by induction on the iteration index i. The base
case: i = 0, that is, t = 0 and ξ(x, 0) = x. The required
condition follows since x ∈ K ⊆ B(xc, rc) = S0.

For the inductive step, we assume that ξ(x, iTp) ∈ Si and
have to show that ξ(x, (i + 1)Tp) ∈ Si+1. We proceed by
establishing an upper bound on the distance between the
actual trajectory of the system at t = (i + 1)Tp and the
computed approximation v(t):

‖ξ(x, (i+ 1)T )− v((i+ 1)Tp)‖∞
= ‖ξ(ξ(x, iTp), Tp)− vi+1(Tp)‖∞

[From Equation (10) defining v(t)]

= ‖ξ(ξ(x, iTp), Tp)− ξ(qi+1, Tp)‖∞ (11)

[From Line 10 vi+1(Tp) = ξ(qi+1, Tp)]

≤ eLTp‖ξ(x, iTp)− qi+1‖∞. (12)

[Bellman-Gronwall inequality]

The measurement qi+1 is the input received at the beginning
of round i + 1 for the actual state ξ(x, iTp) with respect to
the cover Ci of Si. From the induction hypothesis we know
that ξ(x, iTp) ∈ Si, and therefore, qi+1 ∈ Ci. Since Ci is a

δie
−(L+α)Tp -cover of Si, it follows that

‖ξ(x, iTp)− qi+1‖∞ ≤ δie−(L+α)Tp . (13)

We have ‖ξ(x, (i+ 1)Tp)− v((i+ 1)Tp)‖∞

≤ δie−(L+α)TpeLTp

= δie
−αTp

= δi+1. [Using definition of δi+1]

Thus, it follows that ξ(x, (i+1)Tp) ∈ B(v((i+1)Tp), δi+1) =
Si+1.

Part (b): We fix an iteration index i ≥ 0 and an initial
state x ∈ K. If t = iTp then the result follows from Part (a)
because δi = d0e

−αiTp . For any t ∈ (iTp, (i + 1)Tp), we
establish an upper bound on the distance between the actual
trajectory ξ(x, t) of the system at time t and the computed

approximation v(t):

‖ξ(x, t)− v(t)‖∞ = ‖ξ(ξ(x, iTp), t− iTp)− vi+1(t− iTp)‖∞
[From equation (10) defining v(t)]

= ‖ξ(ξ(x, iTp), t− iTp)− ξ(qi+1, t− iTp)‖∞
[From vi+1(t) = ξ(qi+1, t)]

≤ ‖ξ(x, iTp)− qi+1‖∞eL(t−iTp)

[Bellman-Gronwall inequality]

≤ δie−(L+α)TpeL(t−iTp)

[From (13)]

= d0e
−αiTpe−(L+α)TpeL(t−iTp)

[δi = d0e
−αiTp ]

= d0e
−α(i+1)TpeL(t−(i+1)Tp)

≤ d0e−αt.[Since iTp ≤ t ≤ (i+ 1)Tp]

3.2 Bit rate of estimation scheme and its rela-
tion to entropy

Now we estimate the communication bit rate needed by
the estimation procedure in Figure 1. As the states Si−1

and Ci−1 are maintained and updated by the algorithm in
each round, the only information that is communicated from
the system to the estimation procedure in each round is
the measurement qi. The number of bits needed for that is
log(#Ci), where # stands for the cardinality of a set. The
long-term average bit rate of the algorithm is given by

br(α, d0, Tp) := lim sup
j→∞

1

jTp

j∑
i=1

log(#Ci−1).

We proceed to characterize this quantity from the descrip-
tion of the estimation procedure in Figure 1. We calculate

#C0 = d diam(K)

2d0e
−(L+α)Tp

en. For each successive iteration i,

#Ci = d δi

δie
−(L+α)Tp

en = de(L+α)Tpen. Thus, br(α, d0, Tp) =

limi→∞
1
Tp

log(#Ci) = (L+ α)n/ln 2 is the bit rate utilized

by the procedure for any d0 and Tp. Since it is independent
of d0 and Tp, we write it as br(α) from now on. We state
our conclusion as follows.

Proposition 4 The average bit rate used by the estimation
procedure in Figure 1 is (L+ α)n/ln 2.

By Proposition 2, the bit rate (L+ α)n/ln 2 used by
the above algorithm is an upper bound on the entropy
hest(α,K). We now establish that no other similar algo-
rithm can perform the same task with a bit rate lower than
the entropy hest(α,K). In other words, the “efficiency gap”
of the algorithm is at most as large as the gap between the
entropy and its upper bound known from Proposition 2. (In-
cidentally, combining this result with Proposition 4 we can
arrive at an alternative proof of Proposition 2.) The lower
bound in terms of entropy is proved below for an algorithm
that uses a constant number of bits at each round; since in
the above algorithm #C0 may be higher than #Ci for i ≥ 1,
we can think of this comparison as being valid once the al-
gorithm has reached “steady state.” Instead of giving a more
formalized description of the class of algorithms to which
Proposition 5 applies, we refer the reader to [17, Section 2]



and the references therein for these details (which are by
now quite standard).

Proposition 5 Consider an algorithm of the above type
with an arbitrary choice of the cover Ci but such that at
each step i the set Ci has the same number of elements:
#Ci = N ∀ i (i.e., the coding alphabet is of fixed size). If
this algorithm achieves the properties listed in Theorem 3 for
an arbitrary d0 > 0, then its bit rate cannot be smaller than
hest(α,K).

Proof. This proof follows along the same lines as the
proof of Statement 1 of Theorem III.1 in [17]. Here the
choice of norm does not matter so we revert to an arbitrary
norm | · | on Rn. Seeking a contradiction, suppose that an
algorithm achieves the properties listed in Theorem 3 and
has a bit rate smaller than hest(α,K). Recall (see the proof
of Lemma 2 and Remark 1) that

hest(α,K) = lim
ε↘0

lim sup
T→∞

1

T
logn∗est(T, 2ε, α,K)

= sup
ε>0

lim sup
T→∞

1

T
logn∗est(T, 2ε, α,K).

Thus for some ε > 0 small enough we have

br(α) < lim sup
T→∞

1

T
logn∗est(T, 2ε, α,K).

Let d0 be equal to this ε. Next, for a sufficiently large fixed
integer j we must have

br(α) <
1

jTp
logn∗est(jTp, 2ε, α,K)

where Tp is the sampling period in the algorithm. Since the
average bit rate is given by

br(α) =
1

Tp
logN

we obtain

N j < n∗est(jTp, 2ε, α,K)

The left-hand side of the above inequality is the number of
possible sequences of codewords {qi} that can be produced
by the algorithm over j rounds, while the right-hand side
is the cardinality of a maximal (jTp, 2ε, α,K)-separated set.
This means that there must exist two different initial con-
ditions x1, x2 in this (jTp, 2ε, α,K)-separated set such that
the corresponding solutions ξ(x1, t), ξ(x2, t) will produce the
same sequence of qi’s, and hence will be approximated within
εe−αt by the same approximating function v(t):

|ξ(xi, t)− v(t)| < εe−αt ∀ t ∈ [0, jTp], i = 1, 2. (14)

On the other hand, by the definition of a (jTp, 2ε, α,K)-
separated set it must hold that

|ξ(x1, t)− ξ(x2, t)| ≥ 2εe−αt for some t ∈ [0, jTp]

which contradicts (14) in view of the triangle inequality.

We note that the algorithm described in [17] performs a
similar estimation task (with α = 0 and in discrete time) and
operates at an arbitrary bit rate above the entropy. How-
ever, that algorithm is quite abstract, since it relies on the
existence of a suitable spanning set and does block coding
over a sufficiently large time window using sequences from

this spanning set. By contrast, our algorithm given in Sec-
tion 3.1 is constructive in that it utilizes a specific quantiza-
tion procedure and works with an arbitrary fixed sampling
period.

Remark 4 For the case of a linear system (8), the algo-
rithm of Section 3.1 can be modified so that its average bit
rate equals the entropy of the linear system given by the for-
mula (9). This can be achieved by aligning the grids Ci used
in the algorithm with eigenvectors of the matrix A and re-
placing the Lipschitz constant L with eigenvalues of A (i.e.,
using a different number of quantization points for each di-
mension). Constructions of this type for linear systems are
well established in the literature; see, e.g., [8, 19].

4. MODEL DETECTION
In this section, we show that the estimation algorithm

of Figure 1 can be used to distinguish two system models,
provided they are in some sense adequately different.

Consider two continuous-time system models:

ẋ = f1(x), x ∈ Rn, (15)

ẋ = f2(x), x ∈ Rn (16)

where the initial state is in the known compact set K ⊂ Rn
and f1 and f2 are Lipschitz functions with Lipschitz con-
stants L1 and L2. Here we assume that these are global
Lipschitz constants; in case the system trajectories are con-
fined to a compact invariant set, the result holds for local
Lipschitz constants over that set. We denote the trajecto-
ries of the systems (15) and (16) by ξ1 : Rn × R≥0 → Rn
and ξ2 : Rn × R≥0 → Rn, respectively. From runtime data,
we are interested in distinguishing whether the true dynam-
ics of the system is f1 or f2. For example, if f1 and f2
correspond to models with different sets of parameter val-
ues, then solutions to this problem could be used for model
parameter identification. As another example application,
consider a scenario where f1 captures the nominal dynamics
of the system and f2 models a known aberration or failure
mode. Then, solution to the above detection problem can be
used for failure detection. It is straightforward to generalize
the solution proposed below to handle multiple competing
models.

For Ls, Ts > 0 we say that the two models are (Ls, Ts)-
exponentially separated if there exists a constant εmin > 0
such that for any ε ≤ εmin, for any two states x1, x2 ∈ Rn
with |x1 − x2| ≤ ε,

|ξ1(x1, Ts)− ξ2(x2, Ts)| > εeLsTs .

Remark 5 The exponential separation property can be
shown to hold if there exist constants αmin ∈ (0, 2π) and
vmin > 0 such that the two models satisfy the following two
conditions at each x ∈ Rn (or at each x reachable from K):
(1) the two vector fields have a separation angle of at least
αmin (here we are assuming n ≥ 2), and (2) at least one of
them has a velocity of at least vmin (in particular, they have
no common equilibria). Under these conditions, trajectories
of the two systems with nearby initial conditions diverge
from each other at the rate of at least a := vmin sin(αmin).
Since for every L > 0 and every T > 0 we have aT−ε > εeLT

if ε > 0 is small enough, the exponential separation property
follows (with arbitrary Ls, Ts). If the above transversality



condition (1) fails, we may still be able to establish expo-
nential separation for Ls small enough. We also believe that
conditions (1) and (2) are “generic” in the sense that we
expect them to hold for almost all pairs of systems; for ex-
ample, for affine systems this claim can be made precise and
is confirmed by the numerical experiments discussed below.

4.1 Distinguishing algorithm
In the above definition of exponential separation the norm

can be arbitrary, but in the algorithm below we work with
the infinity norm. With some modifications, the procedure
in Figure 1 can detect models using observations. In Fig-
ure 2, we show the procedure for detecting models. First of
all, before taking the measurement in each round (Tp time)
it makes an additional check. If the current state is not in
the set Si (line 8) computed from the previous round, then
the procedure immediately halts by detecting model 2. If
the current state is in Si, then it proceeds as before and
records a measurement qi of the current state as one of the
points in the cover Ci. Secondly, the function vi (line 13)
is now computed as a solution ξ1(qi, ·) of the system given
by (15). Finally, in computing the radius of the elements
in the cover Ci (line 16), the Lipschitz constant L1 of the
system (15) is used.

1 input : Tp ,α ,K ,d0 ,L1 ,ξ1(·, ·)
2 i = 0 ;
3 δ0 ← d0 ;
4 S0 ← B(xc, rc) ;

5 C0 ← grid(S0, δ0e
−(L1+α)Tp) ;

6 while ( t rue ) // at ith round , i > 0
7 i+ + ;
8 i f current state /∈ Si−1

9 output ‘ ‘ second model ’ ’ ;
10 break ;
11 else
12 input qi ∈ Ci−1 ;
13 vi(·)← ξ1(qi, ·)|[0, Tp] ;

14 δi ← e−αTpδi−1 ;
15 Si ← B(vi(Tp), δi) ;

16 Ci ← grid(Si, δie
−(L1+α)Tp) ;

17 wait (Tp ) ;

Figure 2: Procedure for detecting models.

Theorem 6 Suppose that the true system model is either
equation (15) or (16) and that the two models are (L1, Tp)-
exponentially separated. Then the procedure in Figure 2 out-
puts “second model” if and only if the system model is (16).

Proof. For the “if” part, assume that the true model is
the second model, that is, given by equation (16). Fixing
an initial state of the system x0, we have the true trajec-
tory ξ2(x0, ·). Let us also fix the parameters Tp, d0, α of the
detection algorithm. Since the value of the program vari-
able δi = d0e

−αiTp decays geometrically in each iteration,
there exists an i∗ such that for any iteration k − 1 ≥ i∗,
δk−1e

−(L1+α)Tp ≤ εmin. We consider the execution of the
algorithm at one such iteration k − 1 and show that the
condition in line 8 will be satisfied at the next iteration k.

We denote the actual state of the system at the begin-
ning of the (k − 1)st iteration as x2 = ξ2(x0, (k − 1)Tp).

Assume that the condition in line 8 is not satisfied, i.e.,
x2 ∈ Sk−1; otherwise, the algorithm would have already
produced the correct “second model” output. The measure-
ment qk of x2 obtained in this iteration is an element of
Ck−1. Thus, ‖x2 − qk‖∞ ≤ δk−1e

−(L1+α)Tp ≤ εmin. By the
(L1, Tp)-separation with the infinity norm, it follows that

‖ξ2(x2, Tp)− ξ1(qk, Tp)‖∞ > δk−1e
−(L1+α)TpeL1Tp (17)

= δk−1e
−αTp = δk.

As vk(·) = ξ1(qk, ·), from the above strict inequality it fol-
lows that ξ2(x0, kTp) = ξ2(x2, Tp) /∈ B(vk(Tp), δk) = Sk.
Thus, at the beginning of the kth iteration, the condition in
line 8 will hold.

For the “only-if” part, assume that the true model is not
the second (equation (16)). Let us fix an initial state of
the system x0. From the hypothesis we know that the true
model is the first model and the true trajectory of the system
is ξ1(x0, t). From Theorem 3, it follows that at every itera-
tion i, the state of the system at that round ξ1(x0, iTp) ∈ Si.
Thus the if-condition in Line 8 is not satisfied at any itera-
tion and consequently the algorithm never outputs “second
model.”

Remark 6 The definition of exponential separation does
not imply that the value of the upper bound εmin is known,
and short of that we cannot conclude for sure that the true
model is the first model even if the state measurements con-
form with the constructed bound Si in every round. How-
ever, if we know such an upper bound εmin for which the
models are (L1, Tp)-exponentially separated, then with one
extra conditional, the above algorithm can be made to de-
cisively halt with the output “first model.” For this, the
conditional statement

else i f δie
−L1Tp < εmin

output ‘ ‘ f i r s t model ’ ’ ; break ;

is to be inserted after line 10. This branch is executed by the
algorithm at the ith round only if we had δi−1e

−(L1+α)Tp ≤
εmin at the (i − 1)st round and the measured state was in
Sj for each of the preceding rounds j < i. At this point the
algorithm can soundly infer “first model” because, according
to the above proof of Theorem 6, the second model would
have already triggered line 8 in the current round or one of
the earlier rounds.

Remark 7 It is possible to run two versions of the detection
algorithm, one with each of the candidate models, in parallel.
While this may speed up detection in practice, in the worst
case the two versions would take the same amount of time
to reach a decision. This would also double the data rate
without guaranteeing faster model detection. We thus opted
for an approach which, while “asymmetric,” works with the
minimal needed data rate.

4.2 Experimental evaluation of detection al-
gorithm

We have implemented the detection algorithm of Figure 2
in Python4. In this section, we discuss certain details about
this implementation and numerical simulation-based results.

All sets in Rn in the implementation, including the ini-
tial set K and the Si’s, are n-dimensional hyperrectangles

4Available at https://bitbucket.org/mitras/detection.

https://bitbucket.org/mitras/detection


and they are represented either by two corner points or by
a center point and a radius. The choice of this representa-
tion has implications on the efficiency of the algorithms. It
enables the implementation of all the necessary operations
such as testing membership in S, computing a grid on S,
and quantizing a point with respect to a grid, in time that
is linear in the number of dimensions n. Specifically, the
grid(S, δ) function computes n lists of points in R where
the ith list is generated by uniformly partitioning the ith

dimension of S into intervals of length 2δ. This list rep-
resentation of grid(S, δ) is adequate for quantizing a state
with respect to it. The detection algorithm has to compute
solutions ξ1(·, ·) of the system (15) over [0, Tp]. Moreover, in
order to simulate the algorithm we have to compute the ac-
tual trajectories ξ2(·, ·) of the system (16). For affine models
ẋ = Ax+ b, considered below, the analytic solution is given
by

ξ(x, t) = eAt(x+A−1b)−A−1b

(provided A is invertible). Our implementation can handle
more general models using the Python ODE solvers.

We generate pairs of random affine dynamical systems
sys1 : ẋ = A1x + b1, sys2 : ẋ = A2x + b2, and then sys1 is
used as the input model for the algorithm while sys2 is used
as the true model of the system. With this set-up we per-
formed many experiments to arrive at the following empiri-
cal conclusions. First of all, the detection algorithm always
works (unless we deliberately choose A2 = A1 and b2 = b1).
The detection time depends on several factors. As is ex-
pected from the algorithm, it increases with smaller values
of α and T . If A2 and b2 are generated by perturbing A1 and
b1 (not independently at random) then the detection time
increases with smaller perturbations. Finally, on the aver-
age, the detection time increases with smaller-dimensional
systems. This is possibly because with increasing n, there is
a higher probability of having a larger separation in at least
one of the eigenvalues of the models, and therefore, a faster
detection.

5. CONCLUSIONS AND FUTURE DIREC-
TIONS

This paper proposed a framework for studying state esti-
mation algorithms that have guaranteed efficiency with re-
spect to sensing and communication data rates. We intro-
duced two different notions of estimation entropy and es-
tablished their equivalence. We derived an upper bound of
(L+ α)n/ln 2 for the estimation entropy of an n-dimensional
nonlinear dynamical system with Lipschitz constant L, when
the desired exponential convergence rate of the estimate is α.
We developed an iterative procedure whose average bit rate
matches this upper bound on the entropy. We showed that
no other iterative estimation algorithm can work with bit
rates lower than the entropy. Finally, we presented an appli-
cation of the estimation procedure in picking out one from
a pair of candidate models using measurement data. We
showed that under a mild assumption of exponential separa-
tion—which holds almost surely for randomly chosen model
pairs—the algorithm can always detect the true model in
finite time.

This work suggests several avenues for future investiga-
tions. First of all, the bounds given in this paper using Lip-
schitz constants could be refined to bounds using suitable
matrix norms of the Jacobian matrix, following the results

Figure 3: Two sample executions of the detection al-

gorithm for four- and six-dimensional systems (n = 4, 6)

from initial state to the detection of second model. The

dashed lines (−−) show the trajectories of the four (six)

state variables of the actual system, sys2, and the solid

lines show the estimates computed by the detection al-

gorithm, v(t). The vertical segments show the expo-

nentially decaying envelope defined by diam(Si) in each

round. Any one of the state components falling outside

of Si triggers detection.

in [1, 7, 14]. Second, it would be desirable to have more
rigorous and readily checkable versions of the sufficient con-
ditions for exponential separation, building on what is de-
scribed in Remark 5. Third, it would be interesting to estab-
lish a lower bound on the estimation entropy for the general
nonlinear case; this result would parallel Theorem 3.2 of [2]
which gives a lower bound for the control version of entropy.
Finally, while here the digital communication channel was
assumed to be error-free, it would be of interest to incorpo-
rate packet losses, delays, noise, etc.
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