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Abstract— Rendezvous is a fundamental maneuver in au-
tonomous space operations in which an active chaser spacecraft
is required to navigate safely to the proximity of a second
passive target spacecraft. Ensuring safety of such control
maneuvers is challenging and design errors can be expensive.
We present the first verified control solution to a benchmark
formulation of spacecraft autonomous rendezvous in the form of
a hybrid LQR controller verified using a data-driven algorithm.
Our hybrid LQR scheme is motivated by enforcing safety
constraints rather than optimizing performance, and the control
law is formulated by periodically solving optimization problems
that depend on the current state. The resulting hybrid system
presents a challenge for existing automated formal verification
tools due to its lack of a closed-form model description. We
overcome this challenge by using a data-driven approach
(implemented in the new verification tool DryVR). DryVR relies
on simulation traces to compute reachable states of the system
over bounded time horizon and initial conditions to rigorously
verify that the system does not violate any safety requirements.

I. INTRODUCTION

A new age of deep space exploration is underway with
several ongoing public-private partnerships. Autonomous
operations where a spacecraft can operate independent of
human intervention in a wide variety of conditions are
essential for deployment, construction, and maintenance
missions in deep space. Despite many spectacular successes
like the Mars landing of the Curiosity rover, ensuring safety
of autonomous spacecraft operations remains a daunting
challenge and failures can be extremely expensive. For exam-
ple, NASA’s DART spacecraft was designed to rendezvous
with the MUBLCOM satellite. In 2005, approximately 11
hours into a 24-hour mission, DART’s propellant supply
depleted due to excessive thrusting, and as it began maneuvers
for departure, it collided with MUBLCOM. Most mission
objectives were not met, and the failure resulted in a loss
exceeding $1 million. In another incident, a navigation error
caused the Mars Climate Orbiter to reach a low altitude
of only 57 kms, instead of the intended 140-150 kms for
entering orbit. The spacecraft was destroyed by the resulting
atmospheric stresses and friction and the cost incurred was
$85 million. These and several others [30] highlight the
consequences of failures and the need for more rigorous
verification and validation (V&V) before deployment.

Although formal verification has played an important role
in design and safety analysis of spacecraft hardware and
software (see, for example [16] and the references therein),
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they have not been used for model-based design and system-
level V&V. In this paper, we present and verify a challenging
spacecraft maneuver, the autonomous rendezvous problem.
The original hybrid control design problem are introduced by
Jewison and Erwin in [19], where rendezvous is only a part
of an overacrching mission called autonomous rendezvous,
proximity operations, and docking (ARPOD). ARPOD is a
fundamental set of operations needed for a variety of space
missions such as on-orbit transfer of personnel [29], resupply
for on-orbit personnel [27], assembly [31], servicing, repair,
and refueling [15].

A generic ARPOD scenario involves a passive module or a
target (launched separately into orbit) and a chaser spacecraft
that must transport the passive module to an on-orbit assembly
location. The chaser maintains a relative bearing measurement
to the target, but initially it may be too far away from the
target to use its range sensors. Range measurements become
available within a given range, giving the chaser accurate
relative positioning data so that it can stage itself to dock the
target. The target must be docked with a specific angle of
approach and closing velocity, so as to avoid collision and
ensure that the docking mechanisms on each body will mate.
The controller in this paper is designed for the portion of the
mission where the chaser must carefully approach the target,
while maintaining knowledge of its exact relative position.

In this paper, we present a hybrid control scheme and
apply it to the constrained, linear time-invariant benchmark
rendezvous model given in [19]. We present a switched
linear quadratic (LQ) control scheme, where a piecewise
continuous feedback control law is periodically updated by
recomputing a quadratic optimization problem that implicitly
enforces system constraints. The optimization program itself
is unconstrained, which may result in a more efficient and
lightweight controller than existing optimization control
schemes like Model Predictive Control (MPC). In fact,
each subproblem takes the form of an infinite-horizon LQR
problem, where at every periodic update, the LQR cost
functional evolves according to a function of the current
state. This function is responsible for implicitly capturing
system constraints. We will refer to this control scheme as
the state-dependent LQ (SDLQ) control. Formal verification
algorithms are applied to the closed-loop system model to
check that the particular control solution does indeed satisfy
all constraints because the LQR formulations do not admit
constraints.

The latter step is achieved using automated tools for
simulation-driven reachability analysis. Such tools conve-
niently provide rigorous guarantees on all possible system
behaviors starting from a bounded set of states over a finite



time horizon. Until recently, we did not have the tools to
perform this type of analysis on models that could not be
precisely defined by closed-form mathematical models. The
new verification tool DryVR [10] treats these complex systems
as black boxes and employs learning techniques to infer
properties of the black box, which are subsequently used to
compute reachsets.

In this paper, we will present an example SDLQ controller
for the autonomous rendezvous mission and demonstrate that
it meets the requirements we design for using DryVR. We
compare its expected performance with existing controllers
proposed for rendezvous. The results of this paper are the
first to demonstrate feasibility of system-level verification of
autonomous space operations, and they provide a foundation
for future analysis of more sophisticated spacecraft models.

II. RELATED WORK

A survey of system-level verification approaches and how
they may apply to small satellite systems is presented in [18].
Architecture and Analysis Design Language (AADL) and
verification and validation (V&V) over AADL models for
satellite systems have been reported in [3]

A feasibility study for applying formal verification of
autonomous satellite maneuvers is presented in [22]. That
approach relied on creating rectangular abstractions (dynamics
of the form ẋ ∈ [a, b]) of the system through hybridization
and verification using PHAVer [13] and SpaceEx [14]. The
generated abstract models have simple dynamics but hundreds
of locations, and also, the analysis is necessarily conservative.

The ARPOD challenge [19] has been taken up by several
researchers in proposing control strategies: A two-stage
optimal control strategy is developed in [12], where the first
part involves trajectory planning under a differentially-flat
system and the second part implements MPC on a linearized
model. A supervisor is introduced to robustly coordinate
a family of hybrid controllers in [24]. Safe reachsets are
computed for the ARPOD mission in [17] and used to solve
for minimum fuel and minimum time trajectories, from which
a control strategy could be inferred.

The notion of a state-dependent LQR function was
first introduced in the state-dependent Riccati equations
(SDRE) [26][28][25]. SDRE is a strategy for designing
optimal feedback control (as well as observers and filters,)
for nonlinear systems. The SDRE method is utilized for
constrained discrete-time systems in [5], which provides a
similar context to our constrained (continuous-time) problem.
However to the best of our knowledge, state-dependent LQR
methods have not been proposed for linear systems nor for
the purpose of implicitly constraining solutions.

III. SPACECRAFT RENDEZVOUS MODEL

In this section, we outline the system model, beginning
with the uncontrolled spacecraft dynamics in Section III-A,
and followed by the constraints in Section III-B. Both the
structure of the spacecraft motion and mission constraints are
derived from a much more generalized benchmark in [19].
Then, we present the hybrid control solution in Section IV.

A. Linearized dynamics

We assume the two spacecraft orbit in the same plane and
that the target maintains a circular geostationary equatorial
orbit (GEO). Hill’s relative coordinate frame is used to
describe the resulting two-dimensional, planar relative motion.
The chaser’s thrusters provide an external force or control
input represented by the vector ~u = [Fx, Fy]T .

Fig. 1: Hill’s relative coordinate frame. The chaser’s relative
position vector is ~ρ = x̂i + yĵ.

The uncontrolled dynamics are described by the Clohessy-
Wiltshire-Hill (CWH) equations [2], which are commonly
used to capture relative dynamics of two satellites within
reasonably close range. Then the system dynamics are
captured by the following linear time-invariant model:

~̇x = A~x+B~u, where

A =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

 ,B =


0 0
0 0
1
mc

0

0 1
mc

 , (1)

where mc = 500kg is the mass of the chaser and n =
√

µ
r3

is the mean-motion parameter, given µ = 3.698×1014m3/s2

and r = 42164km for GEO. Furthermore, we will denote
and often refer to the separation distance between the two
spacecraft by ρ =

√
x2 + y2.

The CWH equations (~̇x = A~x) constitute the linear
approximation of the chaser’s Keplerian orbit under the
gravitational two body problem (i.e. motion between two
point masses governed only by a mutual gravitational force.)

B. Mission Safety and Progress

We will define a couple of safety properties motivated by
physical phenomena that will be checked using a software
verification tool discussed in Section V.

The maximal output that can be provided by the spacecraft’s
thrusters are modeled by a constraint on the control as follows:

|Fx|, |Fy| ≤ 10N.

Sensors and the docking bay on the target vehicle are
assumed to be positioned facing the Earth, so the chaser must
approach the target along the −î direction. This forms an
acceptable region of operation in the plane of motion, called
the line-of-sight (LOS) region (see Figure 2). This constraint
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Fig. 2: The LOS region is gridded here. The blue and green
regions correspond to the different modes in Figure 3a.

on the chaser’s position is only required when it arrives within
100m of the target, and is specified by:

x ≥ −100 ∩ y ≤ x tan
(π

6

)
∩ −y ≤ x tan

(π
6

)
.

Within the LOS region, relative velocity is further restricted
to reduce impact forces when the vehicles dock, or:√

ẋ2 + ẏ2 ≤ 5cm/s.

Irrespective of constraints, the metric for performance
of the rendezvous operation is fuel consumption, which is
generalized to the total amount of control effort exerted:

J =

∫ T

0

||~u||dt. (2)

Note that this is different from the cost functional that will
be applied to solve for control inputs.

Finally, the mission completion time can be considered both
a constraint and performance metric, though we will not check
that the constraint is met using verification tools. Instead we
restrict the time horizon of our simulations accordingly and
observe that the terminal state reaches a small neighborhood
of the target. The mission must be completed before the time
of eclipse, which is given to be 4 hours in [19].

IV. HYBRID CONTROLLER DESIGN

In this section, we present an overview of the control
scheme we have developed. We begin with a review of the
hybrid LQR-based controller for the rendezvous presented
in [4]. The the state-dependent extension used in this case
study is presented in Section IV-B.

A. Switched linear quadratic control

In [4], the state space is partitioned such that the chaser
operates in two discrete modes: either inside or outside of
the LOS region. State-feedback control is used in each mode,
so the control law is of the form: ~u = −Ki~x, i ∈ {1, 2}.
Thus, the result is a switched system with two subsystems
and a state-dependent switching signal.

Each gain matrix Ki ∈ R2×4, i ∈ {1, 2}, is obtained from
two independent infinite-horizon LQR problems, as follows:

min
~u=−Ki~x

J̃i,

Mode1:

~̇x = (A−BK1)~x

Mode2:

~̇x = (A−BK2)~x

~x0
[ρ≤100] {}

[ρ>100] {}

(a) Switched LQ control from [4].

Mode:

~̇x = (A−BK)~x

˙tmr = 1

~x0,tmr:=0

[tmr == δ]

{tmr := 0,

K := update(~x)}

(b) State-dependent LQ control.

Fig. 3: Hybrid models for spacecraft rendezvous with two dif-
ferent controllers. Transition guards are specified in “[]” and
resets “{}”. The update(·) method solves SDLQ problem.

where we distinguish the fuel consumption cost in (2) from
the quadratic objective function used here:

J̃i =

∫ ∞
0

(~xTQi~x+ ~uTRi~u)dt. (3)

The solution to this particular optimization problem is
obtained by solving the continuous algebraic Riccati equation
(ARE). Part of the motivation for relying on a LQR-like
framework is that ARE solvers are well-studied and readily
available. Given the controllability of the relative motion
model (1) and a restriction of Qi, Ri to symmetric, positive
definite matrices, there exists a unique optimal control solution
~u = −Ki~x = −R−1i BTPi, where Pi is a positive definite
solution to the ARE. The solution is not only optimal but
ensures the closed-loop system is globally asymptotically
stable (GAS) about the origin in each mode. This does not
guarantee the overall system is GAS under switching.

The objective function in each mode is formulated by
loosely accounting for the constraints on the states and inputs.
Bryson’s rule [21] is adapted, where Qi and Ri consist of
diagonals such that Qii = 1

max(x2
i )

and Rii = 1
max(u2

i )
.

Typically these terms correspond to the expected range of
values for each variable, which then normalizes the cost of
errors in each direction. We take these terms to refer to the
largest desired value of each variable, given by the constraints.

We note that a conventional switched LQR controller would
require the solution of the following finite horizon problem:

min
{~ui}

N∑
i=1

∫ ti+1

ti

(~xTQi~x+ ~uTRi~u)dt, (4)

where ti denotes switching times with N -total switches. Thus,
an optimal LQR solution would drive the state of the system



to the origin by the specified time horizon TN+1, while
minimizing (4). The infinite-horizon formulation in (3) is
easier to solve, but it loses the guarantee that the state reaches
the origin when it is applied to a finite-horizon problem. This
is acceptable for the rendezvous maneuver as the goal is to
drive the spacecraft within closer range, not to a terminal
point. The infinite-horizon LQR result will still drive the
spacecraft towards the origin, which can be observed by
formulating invariant sets of states using Lyapunov functions.
At each switching time ti, the invariant set of states at ti is
strictly contained in the invariant set at ti−1. It follows that
this switched controller with i = {1, 2} (and the SDLQ in
Section IV-B) are stable in the sense of Lyapunov.

B. State-Dependent Linear Quadratic (SDLQ) Control

We extend the two-stage, switched LQ control from the
previous section to N > 2 finitely many switches where the
switches are brought about by a time-dependent switching
signal. Additionally, subsystem dynamics are not computed
a priori but determined by a function of the current state,
thus we refer to the new control scheme as state-dependent
linear quadratic (SDLQ) control. The switched LQ and SDLQ
schemes applied to the system model in (1) results in a hybrid
automaton as shown in Figure 3.

At every switching time, the state-feedback law is computed
according to (3). In the switched LQ scheme, Q{1,2}, R{1,2}
are constant matrices. Now, they are functions denoted
Qi(~x(ti)) and Ri(~x(ti)). For this paper, we choose a constant
Ri = R, ∀i ∈ {0, 1, ..., N}, and Qi(~x(ti)) defined as:

Qi(~x(ti)) = diag

(
1

q2x
,

1

q2y
,

1

q2ẋ
,

1

q2ẏ

)
,

qx = 5 (|x(ti)|+ ε)

(
1 +

(|x(ti)|+ ε)2

ρ2

)
,

qy = 5 (|y(ti)|+ ε)

(
1 +

(|y(ti)|+ ε)2

ρ2

)
,

qẋ =
40 (|x(ti)|+ ε)

ρ
,

qẏ =
40 (|y(ti)|+ ε)

ρ
,

(5)

for some small ε > 0 to avoid division by zero.
Notice Qi remains symmetric positive definite for all ~x ∈

R4 and R is also chosen to be symmetric positive definite.
Then, as in the switched LQ control, we are guaranteed to
find a stabilizing solution ~u[ti,ti+1) = −Ki~x.

The current choice of (5) is motivated by satisfying the
LOS constraint, hence why it is only a function of x, y and
not relative velocities ẋ, ẏ. Bryson’s rule can be observed
as a starting design choice in qx, qy in the (|x(ti)| + ε),
(|y(ti)| + ε) terms. In other words, the maximum desired
values for x, y contract as the chaser moves towards the
origin. The terms (|{x, y}(ti)|+ ε)/ρ approximate | cos(θ)|
and | sin(θ)|, where θ is the angular position of the total
displacement vector ~ρ. These terms could be used to enforce
the θ restriction in the LOS region more directly.

V. DATA-DRIVEN BOUNDED SAFETY VERIFICATION

In this section, we give an overview of the verification
algorithm used to check the space rendezvous problem using
the SDLQ controller. The data-driven, bounded-time safety
verification algorithm uses simulation data and sensitivity
analysis of the model to compute over-approximations of the
bounded-time reachable states of the system.

The sensitivity of the system is formalized by the notion of
a discrepancy function [6]: A uniformly continuous function
β : Rn × Rn × R≥0 → R≥0 is a discrepancy function of a
dynamical (or switched) system if (1) for any pair of states
x, x′ ∈ Rn, and any time t > 0, the solutions ξ(·, ·) of the
system satisfy the properties

‖ξ(x, t)− ξ(x′, t)‖ ≤ β(x, x′, t), and (6)

(2) for any t, as x → x′, β(., ., t) → 0. In [6] an invariant
verification algorithm is presented assuming that the user will
provide the necessary discrepancy functions as annotations
to the system model. This algorithm, which is the basis of
the C2E2 tool [11][7], proceeds as follows: First, a δ-cover
C = {xi}ki=1 of the initial set of states Θ is computed. That
is, Θ ⊆ ∪iBδ(xi). For each xi ∈ C, a numerical simulation
from xi of the required time duration T is computed. The
simulation from xi over each sub-interval [t1, t2] is expanded
by a factor given by the discrepancy function β:

βmax,i = max
x∈Bδ(xi),t∈[t1,t2]

β(xi, x, t).

The expansion results in the set of states Bβmax,i
(ξ(xi, t)),

which can be shown to contain all the states reachable from
Bδ(xi) over time interval [t1, t2].

If the complete reachable set is disjoint from the given
unsafe U set then xi is removed from the cover. Else if the
simulation is contained in U for any of the intervals then the
algorithm outputs Unsafe. Otherwise, if neither case holds,
then xi is replaced in C by a finer cover of Bδ(xi). If the
cover C becomes empty, then the algorithm outputs Safe.
Essentially, the algorithm computes increasingly finer covers
of Θ until the reachtubes from each of the elements in the
cover are inferred to be disjoint from U or a counter-example
simulation is discovered. Property (2) of the discrepancy
function ensures that as the elements in the cover become
finer, the over-approximation of the computed reachtubes
becomes more precise, and a decision is reached. We refer the
interested reader to [6] for more details including the precise
statements about soundness and completeness guarantees
provided by the algorithm for bounded safety verification.

Unfortunately, discrepancy functions can be difficult to
come by. There is a line of work on computing accurate
discrepancy functions for general nonlinear models [9], [8],
[11]. But even these results are not applicable to the control
system of Section IV-B, where there is no closed-form model
of the system—the control inputs are computed up to a
finite horizon by solving optimization problems. Thus, we
use the recent tool DryVR [10] which uses the same safety
verification algorithm described above, but implements a new
randomized algorithm for learning discrepancy functions of



black-box models. A template for discrepancy called global
exponential discrepancy is fixed which is of the form:

β(x1, x2, t) = |x1 − x2|Keγt.

Here K and γ are constants that will be learned from
simulation data, such that they satisfy inequality (6) for
all x1, x2 and t, with high probability. DryVR relies on
a method for discovering discrepancy functions that only
uses simulations, solving linear programs, and is based on
classical results on PAC learning linear separators [23]. The
high probability guarantee follows from the PAC-learnability
of concepts with low VC-dimension (see [10] for details).
Assuming that the learned discrepancy function is correct, the
safety verification algorithm is sound and relatively complete.
In Section VI, we will present the verification results from
DryVR on the rendezvous problem and we will independently
check the correctness of the computed discrepancy function
through random sampling.

VI. EXPERIMENTAL RESULTS

In this section, we present the verification results for our
SDLQ control system using the DryVR tool.

A. Safety Verification

The SDLQ control system is implemented in a Matlab
program. This involves simulating the plant model described
in Equations (1), computing the state-dependent matrices
Qi according to the method described in Section IV-B,
and solving the infinite-horizon optimization problem of
Equation (3) using Matlab’s lqr() function. For the current
experiments, we only run simulations for the distance range
up to ρ = 20m—a range we define to be sufficiently
close for completion of a generic rendezvous mission. If
this state is reached before T , the last state is copied to
remaining time steps. The simulations are performed using
Matlab’s ODE solvers, however, for more rigorously generated
simulations the exact same verification approach can be used
with validated numerical simulators such as CAPD [1].

The DryVR tool interfaces with the above program as
follows: it provides as input to SDLQ an initial state of the
form: ~x0 = [x, y, ẋ, ẏ, Fx, Fy], and a finite time horizon T ;
the SDLQ Matlab program generates as output an array of
points corresponding to running the control system while
updating the control every δ = 30 seconds.

The parameters for bounded-verification used by DryVR
are as follows: The total time horizon for is chosen to be
T = 240 minutes. The initial set Θ is a subset of R6, for
example, for the results reported below it is the set: −905m ≤
x ≤ −895m, −405m ≤ y ≤ −395m, ẋ = ẏ = 0m/min,
Fx = Fy = 0kg ·m ·min−2. And, the unsafe set is defined
by the set of constraints:
• thrust constraints |Fx| > 10, |Fy| > 10,
• LOS constraints (x ≥ −100 ∩ y > x tan(π/6)) and

(x ≥ −100 ∩ y < −x tan(π/6)).
For these parameters, DryVR checks safety of SDLQ au-
tomatically and returns a Safe. The reachtubes computed
in the process are plotted in Figures 4a and 4b. While

the running time of this verification experiment is not
immediately practical, it establishes feasibility of the approach
and motivates the need for more careful engineering and
parallelization. In another experiment with a smaller Θ (1m
radius in x and y dimensions), the verification process took
just under 1 hour to complete and returned a safe result.

Using the same T and Θ as before, but this time checking
a velocity constraint defined by U = {~x ∈ R6 : (x ≥
−100 ∩

√
ẋ2 + ẏ2 > 3)}, DryVR returns a Unsafe and

finds a counter-example. The result of the corresponding
simulation trace plotted in Figure 4c. It took DryVR less than
1 minute to find this counter-example, which illustrates its
effectiveness as an approach for finding design bugs. This
result is not surprising given that our SDLQ design only
considered meeting the LOS and thrust constraints.

Finally, we check the correctness of the discrepancy func-
tion learned in DryVR, that is, whether the learned function
meets the property of discrepancy functions stated in (6). For
this experiment, we randomly sample the initial states in Θ,
generate their simulation traces, and check whether any pair
of these traces provide a counterexample to (6). We do this
for 600 samples and find no such counterexamples, thus we
conclude that the discrepancy function computed by DryVR
in this example holds with high confidence.

B. SDLQ Performance Comparison

Though we do not design explicitly for optimal perfor-
mance using the SDLQ control scheme, we evaluate and
compare its performance against the switched LQR scheme
used in [4] and the baseline controller used in [19] (which is
based on the MPC problem in [20]) under the same scenarios
used for the verification tool.

We simulate from the center initial state of Θ, or ~x0 =
[−900,−400, 0, 0, 0, 0], using each of the three different
controllers up to an upper time horizon bound T = 240min.

~xtf tf J(tf )

SDLQ [-19.99, -0.23, 3.52, 0.09] 223.7min 168.6N
LQR [-19.09, -5.97, 0.57, 0.18] 166.4min 531.8N
MPC [-19.91, -0.01, 0.003, 0.0] 180.0min 213.0N

TABLE I: Comparison of terminal states, completion times,
and total fuel cost.

Figure 4d shows the cumulative fuel consumption, as
defined by the performance metric in (2). Table I summarizes
the different categories each control scheme performs best and
worst in. MPC minimizes the closing velocity best without
sacrificing too much in completion time and fuel consumption.
The switched LQR achieves the best completion time but at
a high cost in fuel consumption. Finally, SDLQ achieves the
best fuel costs with acceptable increase in completion time
but unacceptable ranges of velocity that violate constraints.

VII. CONCLUSIONS

We presented a hybrid state-dependent LQ (SDLQ) con-
trol framework for constrained linear systems. The SDLQ
controller is a piecewise continuous state-feedback controller



(a) (b) (c) (d)

Fig. 4: (a) Reachable positions (blue) and unsafe positions (red). (b) Reachable thrusts: Fx (blue) and Fy (green). (c)
Simulated trajectory of total velocity starting from a state in Θ that violates the velocity constraint (red). (d) Cumulative fuel
consumption for three different controllers obtained through simulation under same initial state and termination condition.

obtained by periodically recomputing a quadratic optimization
problem that implicitly enforces system constraints. The
design framework involves choosing an appropriate state-
based function for the quadratic objective and then verifying
that the resulting closed-loop system does not violate safety
constraints using the data-driven reachability analysis tool
DryVR. We applied this approach to a benchmark autonomous
spacecraft rendezvous (ARPOD) problem of [19] and have
demonstrated its promise by creating the first verified con-
troller for this problem. While this approach has proven to be
feasible and promising, the quest for creating a fully verified
globally stabilizing controller for ARPOD remains open.
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