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ABSTRACT
State estimation is a fundamental problem for monitoring and
controlling systems. Engineering systems interconnect sens-
ing and computing devices over a shared bandwidth-limited
channels, and therefore, estimation algorithms should strive
to use bandwidth optimally. We present a notion of entropy
for state estimation of nonlinear switched dynamical systems,
an upper bound for it and a state estimation algorithm for
the case when the switching signal is unobservable. Our
approach relies on the notion of topological entropy and uses
techniques from the theory for control under limited informa-
tion. We show that the average bit rate used is optimal in
the sense that, the efficiency gap of the algorithm is within
an additive constant of the gap between estimation entropy
of the system and its known upper-bound. We apply the
algorithm to two system models and discuss the performance
implications of the number of tracked modes.
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1. INTRODUCTION
This paper deals with monitoring continuous time dynam-

ical systems with optimal usage of network resources. The
key problem is to compute approximations of the state of the
system from a small number of bits coming from quantized
sensor measurements. This is the state estimation prob-
lem. The related problem of model detection arises when the
plant dynamics itself is unknown or changing. Contemporary
engineering systems interconnect sensing and computing de-
vices over shared communication channel for monitoring and
control. For example, more than 70 embedded computing
units communicate over shared 1 MBps CAN bus in cars [1].
Large number of machines, conveyor belts, and robotic ma-
nipulators need to be monitored in warehouses and factory
floors—-again over a shared network backbone [13]. Such
bandwidth constraints call for optimal allocation of network
resources for estimation and detection.
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In the stochastic setting, Kalman and particle filtering are
used for solving these problems; in some cases using neural
networks (see, for example [15, 16, 14]). Our approach relies
on the theory of topological entropy for dynamical systems.
The measure-theoretic notion of entropy plays a central role
in information theory, estimation and detection. In the theory
of dynamical systems, the analogous topological notion of
entropy plays a fundamental role in describing the rate of
growth of uncertainty about system state ([6, 3, 11, 2, 10]).
It also relates to the rate at which information about the
system should be collected for state estimation. Drawing this
connection the notion of estimation entropy has been defined
in [8, 12] for nonlinear systems. For a dynamical system
of the form: ẋ(t) = f(x(t)), roughly, it is the minimum
bit rate needed to construct state estimates from quantized
measurements, that converge to the actual state of the system
at a desired exponential rate of α. Estimation entropy is in
general hard to compute exactly, but can be upper-bounded
by (C +α)n/ ln 2; where n is the dimension of system and C
is either the Lipschitz constant L of f [8] or an upper-bound
on the matrix measure of the Jacobian of f [9]. In [8] an
algorithm for state estimation is given which uses an average
bit rate of (L+ α)n/ ln 2. This is optimal in the sense that,
the efficiency gap of the algorithm is no more than the gap
between estimation entropy and its upper-bound.

In this paper, we study state estimation of switched non-
linear dynamical system ẋ = fσ(t)(x(t)) where the switches
between N modes or subsystems are brought about by an
unknown, exogenous, switching signal σ : R≥0 → [N ]. Each
mode ẋ = fp(x(t)), p ∈ [N ], , where [N ] is the set of integers
from 0 to N − 1, could capture, for example, uncertainties in
the plant, different operating regimes—nominal and failure
dynamics, and parameter values.

Since the mode information is not available to the esti-
mator, exponential convergence of state estimates may be
impossible immediately after a mode switch. We relax the
notion of estimation entropy of [8] by allowing a period of
time τ > 0 following a mode switch, during which the estima-
tion error is only bounded by a constant ε; and thereafter the
error decays exponentially as usual. We show that for a large
enough ε—determined by the minimum dwell time of σ and
the difference in the dynamics of the different modes—the

estimation entropy is bounded by (L+α)n
ln 2

+ logN
Te

. Here L is
the largest between the Lipschitz constants of all fp’s and
Te is a positive constant less than or equal to τ .

We present an algorithm for state estimation for switched
systems. The interdependence of the uncertainties in the
state and the mode requires this algorithm to simultaneously
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solve the estimation and model detection problems: Unless
a mode fp, p ∈ [N ] is detected, it may be impossible to
get exponentially converging estimates, and (b) unless an
accurate enough estimate for the state is known, it may not
be possible to distinguish between two candidate modes.

Our algorithm keeps track of N̂ possible modes of the
switched system, where N̂ is a parameter between 1 and N .
If the actual mode of the system is one of the tracked modes,
then, owing to a shrinking quantized measurement strategy,
the state estimate converges at the desired exponential rate.
If the actual mode is not tracked, then the actual state of the
system may escape the constructed state estimate bounds. In
this case, the algorithm expands the estimate and captures
the state. When a mode switch happens, there may be a
burst of escapes, but we prove that if the rate of switches is
slow enough and the modes are different enough, then the
correct mode is detected, and thereafter, the state estimates
converge exponentially.

We establish worst case estimation error bounds and time
bounds on mode detection. We also show that the average

bit rate used is within N̂
Tp
− logN

Te
from the upper bound on

the entropy, i.e. the upper bound on the optimal bit-rate;
where Tp is the sampling time of the algorithm. We present
preliminary experimental results, discuss the application of
the algorithm to linear and nonlinear switched systems, and
the implications of the choice of the key parameter N̂ .

2. SWITCHED SYSTEMS AND ENTROPY
A switched system is a standard way for describing control

systems with several different modes (see, for example, the
book [7]). Suppose we are given a family fp, p ∈ [N ], of
functions from Rn to Rn. Assuming that the functions fp
are sufficiently regular, for example, Lipschitz continuous
with Lipschitz constant Lp, the above gives rise to a family
of dynamical system modes:

ẋ = fp(x), p ∈ [N ] (1)

evolving on Rn. The modes could capture structured un-
certainty in the system, for example, different changing pa-
rameter values, failure conditions, and user inputs. If the
mode p ∈ [N ] is known, then the solution of the differential
equation is the function ξp : Rn × R≥0 → Rn. If in addition
the initial state x0 is known, then for any point in time
t the state ξp(x0, t) can be approximated using numerical
integration. However, for the state estimation problem we
are interested in, both the initial state and the mode are
unknown.

The time varying mode is modeled as a switching signal.
This is an (unknown and not observable) piecewise constant
function σ : [0,∞)→ [N ] which specifies at each time instant
t, the index σ(t) ∈ [N ] of the function from the family (1)
that is currently being followed. The points of discontinuity
in σ are called switching times. Thus, the switched system
with a time-dependent switching signal σ can be described
by the equation:

ẋ = fσ(t)(x). (2)

For a fixed switching signal σ the solution of the above
switched system is defined in the standard way and denoted
by the function ξσ : Rn×R≥0 → Rn. Moreover, it is Lipschitz
continuous on the vector field with Lipschitz constant L =
maxp∈[N ] Lp.

The switching signal σ models the adversary (or the envi-
ronment) changing the underlying mode of the system. In
general, it may have arbitrary discontinuities, however, to
prove stability or in our case correctness of state estimation,
typically one assumes bounds on switching speed [7, 5].

Covers, dwell-times, and reachable sets.
A switching signal σ has a minimum dwell time Td > 0 if

at least Td time elapses between consecutive switches. For
any point x ∈ Rn and δ > 0, B(x, δ) is a closed hypercube
of radius δ, in other words, δ-ball, centered at x. For a
hyperrectangle S ⊆ Rn and δ > 0, grid(S, δ), is a collection
of 2δ-separated points along axis parallel planes such that
the δ-balls around these points cover S. We denote Σ(Td)
the family of switching signals with minimum dwell-time
Td switching between the N modes. Moreover, we define
Reach(Σ,K) to be the set of reachable states by system (2)
with any σ ∈ Σ(Td) from the compact initial set K. More
formally, Reach(Σ,K) = {x ∈ Rn | ∃ σ ∈ Σ(Td), x0 ∈
K, t ∈ [0,∞) : ξσ(x0, t) = x}. Later in this paper, we will
have to bound the error in state estimates when the system
evolves according to two different dynamics but from the
same state. To this end we introduce the quantity:

d(t) := max
p,r∈[N ]

sup
x∈Reach(Σ,K)

∫ t

0

‖fp(ξp(x, s))−fr(ξr(x, s))‖ds.

We assume that the sup exists. A sufficient condition would
be the compactness of Reach(Σ,K).

2.1 State Estimation, bit-rate, and entropy
Let us fix a compact set K of possible initial states of

(2), the family of switching signals Σ(Td), two estimation
accuracy related constants ε, α > 0 and a time constant τ
(τ ≤ Td). Consider a setup in which a sensor has access
to the actual current state of the system ξσ(x0, t) (and not
the switching signal σ), and it needs to send bits across a
bandwidth-constrained channel such that: for any initial
state x0 ∈ K and for any (unknown) switching signal σ ∈
Σ(Td), the estimator would be able to construct a function
z : R≥0 → Rn, where ∀t ∈ [sj , sj+1),

|z(t)− ξσ(x0, t)| ≤

{
ε t ∈ [sj , sj + τ),

εe−α(t−(sj+τ)) otherwise,
(3)

where s0 = 0, s1, . . . are the switching times in σ. The norm
in inequality (3) can be arbitrary. We call such a function z(.)
an (ε, α, τ)-approximation of ξσ(x0, ·). The second bound
gives the ideal behavior in which the estimate converges to
the actual trajectory ξσ(x0, ·) exponentially at the rate α as
in [8] and [2]. Since this exponential convergence may be
unrealistic after a mode switch that may completely change
the dynamics, the first condition allows a “lenient” period
of duration τ , during which the error is bounded by some
positive constant ε.

We would like the number of bits sent over the channel
to be minimal and this is made precise by the notion of
estimation entropy defined next.

A finite set of functions X̂ = {x̂1, . . . , x̂M} from [0, T ]
to Rn is (T, ε, α, τ)-approximating if for every initial state
x ∈ K and every switching signal σ ∈ Σ(Td) there exists

some x̂i ∈ X̂ such that for all t ∈ [0, T ], x̂i is an (ε, α, τ)-

approximating function for ξσ(x0, t). Note that X̂ depends



on K, Td and the N modes but we are suppressing these
parameters for brevity.

Let sest(T, ε, α, τ) denote the minimal cardinality of such
a (T, ε, α, τ)-approximating set. The estimation entropy of
the system is defined as

hest(ε, α, τ) := lim sup
T→∞

1

T
log sest(T, ε, α, τ).

Intuitively, since sest corresponds to the minimal number
of functions needed to approximate the state with desired
accuracy, hest is the average number of bits needed to identify
these approximating functions. The lim sup extracts the base-
2 exponential growth rate of sest with time.

Then, sest corresponds to the number of different quantiza-
tion points needed to identify the trajectories, and hest gives
a measure of the long-term bit rate needed for communicating
sensor measurements to the estimator.

2.2 Entropy upper bound
In this section we will establish an upper-bound on the

estimation entropy hest for switched systems. First, we prove
an upper bound on the size of the smallest approximating
set sest using an inductive construction of approximating
functions.

Throughout the paper we will fix the convergence param-
eters ε, α > 0, and τ ≤ Td, the initial set K, and the time
horizon T > 0. Also, we have the following assumption:

Assumption 1 There exists Te ∈ (0, τ ] where (εe−αTe +

d(Te))e
−α(τ−Te) ≤ ε and εe−α(Td−τ) + d(Te) ≤ ε.

Let us fix a trajectory ξσ(x0, ·) of the switched system (2).
We define an inductive procedure that constructs a corre-
sponding approximating function z(·). It follows that the set
of all functions that can be computed by this procedure is a
(T, ε, α, τ)-approximating set . Then, the cardinality of the
set of all functions that can be computed by this procedure
gives us an upper bound.

Let s0 = 0, s1, . . . be the sequence of switching times in the
switching signal σ generating ξσ(x0, ·). The approximating
function z(·) is constructed in time steps of size Te (Te ≤ τ),
where Te is the largest one that satisfy Assumption 1. We
start by choosing an open cover C0 of K with balls of radii
εe−(L+α)Te . Let q0 be the center of a ball that contains x0.
We construct z(t) := ξσ(0)(q0, t) for t ∈ [0, Te]. Since σ(t) =
σ(0) for t ∈ [0, Te] (recall, Td ≥ τ), the estimation error over
that interval would be ‖z(t)− ξσ(x0, t)‖ ≤ eLt‖x0 − q0‖ ≤
eLtεe−(L+α)Te ≤ εe−αt (by Bellman-Grownall inequality).

Next, for each integer 1 ≤ i ≤ b T
Te
c, we compute an n-

dimensional ball over-approximating the reachable set of
states at t = iTe given the difference between the actual
state xi−1 and the quantized one qi−1 at t = (i− 1)Te, and
σ((i − 1)Te). Then, we construct a grid with a predefined
resolution over that ball. Next, we quantize the actual state
at t = iTe with respect to the grid to get qi. After that,
we compute the trajectory which results from running the
actual mode at t = iTe over the time interval (iTe, (i+ 1)Te]
starting from qi. Finally, we bound the difference between
the actual trajectory ξσ(x0, ·) and the constructed one z(·)
and we prove that the ball computed at the (i+1)th iteration
does contain the actual state at t = (i+ 1)Te.

Formally, let sj be the time of the last switch before iTe.

We construct Ci to be an open cover of B(z(iTe), Ri), where

Ri =

{
Ri−1e

−αTe + d(Te) if sj ∈ ((i− 1)Te, iTe),

Ri−1e
−αTe otherwise,

and R0 = ε, with balls of radii equal to ri = Rie
−(L+α)Te .

Then, we let qi to be any of the centers of the balls in Ci
that contain ξσ(x0, iTe). Note that ξσ(x0, Te) ∈ B(z(Te), R1).
Next, we construct z(t) := ξσ(iTe)(qi, t− iTe) for t ∈ (iTe, (i+
1)Te].

Lemma 1 z(·) is an (ε, α, τ)-approximating function of ξσ(x0, ·).

Proof. Based on where the next switching time sj+1 falls
with respect to the interval [iTe, (i + 1)Te], there are two
cases here: (a) sj+1 = iTe or sj+1 ≥ (i + 1)Te and (b)
sj+1 ∈ (iTe, (i+ 1)Te). For (a),

‖ξσ(x0, t)− z(t)‖ = ‖ξσ(x0, t)− ξσ(iτ)(qi, t− iτ)‖
= ‖ξσ(iTe)(ξσ(x0, iTe), t− iTe)− ξσ(iTe)(qi, t− iTe)‖

[since σ(t) = σ(iTe) for t ∈ [iTe, (i+ 1)Te)]

≤ eLσ(iTe)(t−iTe)‖ξσ(x0, iTe)− qi‖
[Bellman-Gronwall inequality]

≤ eL(t−iTe)ri

[Lσ(iTe) ≤ L; by the definition of qi ∈ Ci]

= eL(t−iTe)Rie
−(L+α)Te

[substituting ri]

≤ eL(t−iTe)Rie
−(L+α)(t−iTe)

[since t− iTe ≤ Te]

= Rie
−α(t−iTe).

For (b), we can repeat the same steps of part (a) for any

t ∈ (iTe, sj+1) to get ‖z(t)− ξσ(x0, t)‖ ≤ Rie−α(t−iTe). After
the switch at sj+1, that is, for any t ∈ [sj+1, (i+ 1)Te],

‖ξσ(x0, t)− z(t)‖ = ‖ξσ(x0, t)− ξσ(iTe)(qi, t− iTe)‖
= ‖ξσ(ξσ(x0, sj+1), t− sj+1)− ξσ(iTe)(qi, t− iτ)‖
≤ ‖ξσ(ξσ(x0, sj+1), t− sj+1)− ξσ(qi, t− iTe)‖

+ ‖ξσ(qi, t− iTe)− ξσ(iTe)(qi, t− iTe)‖
[by triangular inequality]

≤ eL(t−sj+1)‖ξσ(x0, sj+1)− ξσ(qi, sj+1 − iTe)‖

+ ‖
∫ t−iTe

0

(fσ(ξσ(qi, t
′))− fσ(iTe)(ξσ(iTe)(qi, t

′)))dt′‖

[by Bellman-Gronwall inequality]

≤ eL(t−sj+1)‖ξσ(x0, sj+1)− ξσ(qi, sj+1 − iτ)‖

+

∫ t−iTe

0

‖fσ(ξσ(qi, t
′))− fσ(iTe)(ξσ(iTe)(qi, t

′))‖dt′

≤ eL(t−sj+1)eL(sj+1−iTe)‖ξσ(x0, iTe)− qi‖+ d(t− iTe)
[using the definition of d(·)]

≤ eL(t−iTe)Rie
−(L+α)Te + d(t− iTe)

[substituting ‖ξσ(x0, iTe)− qi‖ with ri’s value]

≤ Rie−α(t−iTe) + d(Te)

[since d(t) is an increasing function].

In both cases, ξσ(x0, (i+ 1)Te) ∈ B(z((i+ 1)Te), Ri+1). Now
we want to prove that z(·) is an approximation function



to ξσ(x0, ·). First, we let i1 = ds1/Tee (the first iteration
after the first switch) and i2 = bτ/Tec (the last iteration

before τ). Note that Ri2 = εe−αi2Te ≤ εe−α(τ−Te) ≤ ε, by
Assumption 1. Thus, Ri will be less than ε before i2Te ≤ τ .
Moreover, R0 = ε and Ri ≤ R0 ≤ ε for all i before the
first switch s1. Hence, z(·) satisfies inequality (3) between
time 0 and s1. After that, we consider Ri1+i2 which is equal
to Ri1e

−αi2Te . But, we know from the previous argument
that Ri1 ≤ εe−αTd + d(Te). Thus, Ri1 ≤ ε by Assumption
1. Moreover, Ri is decreasing with an eαTp factor at each
iteration before the next switch s2. Therefore, Ri1+i2 ≤
(εe−αTd + d(Te))e

−αi2Te ≤ εe−α(τ−Te) ≤ ε. Then, Ri will
be less than or equal to ε before (i1 + i2)Te ≤ s1 + τ . For

t ∈ [(i1 + i2)Te], ‖z(t) − ξσ(x0, t)‖ ≤ εe−α(t−(i1+i2)Te) by
part (a) of the previous argument. At i = ds2/Tee, Ri will

be less than or equal εe−α(i−(i1+i2))Te + d(Te) which is less

than or equal to εe−α(Td−(i2)Te + d(Te) because of the dwell
time constraint. Thus, Ri ≤ ε by Assumption 1. Hence, z(·)
does satisfy (3) between s1 and s2. Finally, by induction on
all switches, z(·) satisfy the properties in (3). Therefore, z(·)
is an approximating function to ξσ(x0, ·).

Lemma 2 sest(T, ε, α, τ) is upper-bounded by (HN)b
T/Tec+1,

where H = de(L+α)Teen.

Proof. We count the number of functions that can be
computed by the above procedure. First, note that a function
z(.) is defined by the quantization points and the modes
chosen at multiples of Te. Moreover, the cardinality of C0

is #C0 = d diam(K)

2εe−(L+α)Te
en, where diam(K) is the diameter of

K. The upper bound on the cardinality of Ci, for i ≥ 1, is
#Ci = d Ri

Rie
−(L+α)Te

en = de(L+α)Teen, which is independent

of Ri. At each iteration 0 ≤ i ≤ bT/Tec, we are choosing one
from the N modes and a quantization point in the cover Ci.
We can conclude that the number of functions that can be
computed using the above procedure is upper bounded by
(#C0)(HN)b

T/Tec.

Theorem 1 If Assumption (1) is satisfied, then

hest(ε, α, τ) ≤ (L+ α)n/ ln 2 + (logN)/Te.

Proof. This proof follows along the lines of the proof of
Proposition 2 in [8].

lim sup
T→∞

1

T
log sest(T, ε, α, τ)

≤ lim sup
T→∞

1

T
log(#C0)(HN)

b T
Te
c+1

= lim sup
T→∞

1

T
log #C0

+ lim sup
T→∞

1 + Te/T

Te
(logde(L+α)Teen + logN)

≤ (L+ α)n

ln 2
+

logN

Te
.

The last step is follows from the fact that lim supT→∞
1
T

logd diam(K)

2εe−(L+α)Te
en = 0.

Note that, if N = 1, we get the previous bound on entropy
given in [8].

2.3 Relation between entropy and the bit rate
of estimation algorithms

In the following proposition we prove that no bit rate less
than hest can be achieved by any algorithm that constructs an
(ε, τ, α)-approximating function given any trajectory ξσ(x0, t)
while having a fixed bit rate. Assume that the sampling
time of the algorithm is Tp time units. The bit rate of the
algorithm is defined as

br(ε, τ, α) := lim sup
j→∞

1

jTp

j∑
i=0

logQi

where logQi is the number of bits sent at t = iTp. Hav-
ing a fixed bit rate means logQi = logQ for all i. Hence,
br(ε, τ, α) = 1/Tp logQ.

Proposition 1 Consider an algorithm with fixed bit rate at
each iteration i. If for each trajectory of the system ξσ(x, t),
the trajectory constructed by the algorithm satisfies the prop-
erties in (3) for any ε, τ and α > 0, then the algorithm’s bit
rate cannot be smaller than hest(ε, α, τ).

Proof. The proof is similar to the proof of Proposition 5
in [8]. Arguing for contradiction, assume that there exists
such an algorithm that satisfies the properties and has a
bit rate less than hest(ε, α, τ). Recall that hest(ε, α, τ) =
lim supT→∞ 1/T log sest(T, ε, α, τ). Then, there exists l large
enough where br(ε, τ, α) is less than 1/lTp log sest(lTp, ε, α, τ).
Substituting br(ε, τ, α) with 1/Tp logQ leads to the inequality
Ql < sest(lTp, ε, α, τ). Ql is the number of possible sequences
of quantized states qi’s of length l and the right hand side
is the minimal cardinality of an (lTp, ε, α, τ)-approximating
set. Then, the set of trajectories that can be constructed
by the algorithm defines an (lTp, ε, α, τ)-approximating set
which has a cardinality less than sest which contradicts the
assumption that sest has the minimum cardinality.

2.4 Separation of modes
In order for an algorithm to distinguish two modes p, q ∈

[N ], p 6= q, it is necessary for the solutions generated by
the two modes to be separable in some sense. The following
notion of exponential separation is proposed in [8]. For
Ls, Ts > 0 we say that the two modes p, q ∈ [N ] are (Ls, Ts)-
exponentially separated if there exists a constant εmin > 0
such that for any ε ≤ εmin, for any two nearby initial states
x1, x2 ∈ Rn with |x1 − x2| ≤ ε,

|ξp(x1, Ts)− ξq(x2, Ts)| > εeLsTs .

That is, trajectories separate out exponentially if they start
from a sufficiently small neighborhood. The exponential
separation holds if, for example, (1) the two vector fields
have a positive separation angle, and (2) at least one of
them has a positive velocity. It is believed that this property
is generic in the sense that it holds for almost all pairs of
systems. We assume that the modes are mutually (L, Tp)-
exponentially separated. Also, εmin is assumed to be global
for all pairs of modes.

3. STATE ESTIMATION
We consider a setup where there is a sensor sampling the

state of the switched system each Tp time units without being
able to sense the mode. The sensor sends a quantized version
of the state along with other few bits over a communication



Figure 1: Block diagram showing the flow of information from
the switched system to the sensor side algorithm to the estimator
algorithm.

channel to the estimator. In turn, the estimator needs to
compute (ε, α, τ)-approximating function of the trajectory of
the system using the measurements received from the sensor
(see Figure 1).

3.1 Estimation algorithm overview
First, we briefly discuss the basic principle of constant

bit-rate state estimation for a single dynamical system (see
for example [8]). In this case, the system evolves as ẋ(t) =
fp(x(t)), for a given p ∈ [N ], x0 ∈ K, and there is no
uncertainty about the mode. Suppose at a given time t
the estimator has somehow computed a certain estimate for
the state of the system, say represented by a hypercube S.
In the absence of any new measurement information, the
uncertainty in a state estimate or the size of S blows-up
exponentially with time as eLpt, where Lp is the Lipschitz
constant of fp. In order to obtain the required exponentially
shrinking state estimates, i.e., S shrinking as e−αt, the sensor
has to send new measurements to the estimator.

One strategy is for the sensor to send information every
Tp > 0 time units as follows: it partitions S, which has a
radius r, into a grid with cells of radii re−(Lp+α)Tp , makes
a quantized measurement of the state of the system ξ(x0, t)
according to this grid and sends a few bits to the estimator
so that the algorithm running at the estimator can identify
the correct cell in which state resides (see Figure 1). At this
point, the uncertainty in the state reduces by a factor of
e(Lp+α)Tp so that after Tp time units when the uncertainty
grows by a multiple of eLpTp there is still a net reduction in
uncertainty by a factor of eαTp . It can also be seen that the
number of bits the sensor needs to send (for identifying one

grid cell out of e(Lp+α)Tpn) is O(n(Lp +α)Tp) and this gives
the average bit rate of n(Lp+α)/ln 2.

Algorithm 1 which runs on the sensor side extends this
strategy to work with switched systems. The basic idea is
to track a number (1 ≤ N̂ ≤ N) of possible modes that
the system could be in, and run the above algorithm of
quantization-based estimation, for each of these N̂ modes.
The set of tracked modes is stored in the vector m. A mode
mi[r], r ∈ [N̂ ], is valid (validi [r] = 1) if the current state
ξσ(x0, iTp) is contained in the corresponding state estimate
Si[r] at line 9 and mi[r] 6= −1. However, it is possible that

none of the N̂ tracked modes are valid. In particular, the
mode may switch and the state may evolve to fall outside of
the estimates of the tracked modes or it may be that none of
the N̂ tracked modes in mi is the actual mode of the system
over [(i− 1)Tp, iTp]. This scenario where none of the modes
are valid, the state is said to have escaped (line 15). In the
case of an escape, the algorithm replaces all modes from the
vector m and considers a new set of modes from [N ]. If the
rate of actual mode switches is slow enough (Lemma 4) then
it is guaranteed to include the actual mode of the system
in m before the next switch. And once the actual mode is
tracked in m, then once again the state estimation converges
exponentially.

In the above description of the algorithm, we suggested that
each tracked mode mi[r] maintains its own corresponding
state estimate Si[r] and quantization grid Ci[r]. This not

only uses excessive memory, but also implies that N̂ different
quantized measurements of the state has to be sent by the
sensor. In Algorithm 1, at any iteration i ≥ 1, only a single
state estimate Si is maintained, a single grid Ci is computed
according to which a single measurement is sent by the sensor.
That is Si and Ci are actually Si[modei−1] and Ci[modei−1]

where modei−1 is some r ∈ [N̂ ] agreed on between the sensor
and the estimator. In our case we consider it the valid mode
with the minimum index in mi (line 11). In order to check
the validity of the other tracked modes in mi, the actual state
is shifted with vectors which are computed according to the
dynamics of these modes. That is, vi[r] represents the center
of hypercube Si[r] which is the state estimate of the system
corresponding to the dynamics ẋ = fm[r](x). To check if
xi ∈ Si[r], x is shifted with the vector vi[modei−1] − vi[r]
and then checked if it belongs to Si.

If there is an escape at a certain iteration, Si is constructed
as a hyperrectangle centered at zi(Tp) with radius δi plus
d(Tp). Recall, that δi is the radius used for computing Si
assuming that there is no escape (line 34) and d(Tp) is the
additional factor that capture maximum deviation between
two trajectories of two different modes in [N ] starting from
the same state in Reach(Σ,K), the reachable states by (2),
and running for Tp seconds. Next, qi will be the quantization
of xi with respect to the new Ci computed in line 19 (see
line 20).

The NextMode() function cycles through all the [N ] modes
in the following two-phase fashion. For a sequence of N calls
in phase I, it returns the modes in [N ] in some arbitrary

order. Then, it returns −1 for the next N̂ − 1 calls in Phase
II and then goes back to Phase I. Phase I is used by the
estimation algorithm to cycle through all the modes fairly
in discovering the actual mode after a switch. Phase II is
used to keep the actual mode as the only mode tracked in
mi while the rest of mi is equal to −1.

Estimator side algorithm.
On the estimator side, a similar algorithm to 1 is executed

with small changes: instead of taking xi as input (line 7),
qi, a quantized version of xi, and the validi vector are taken.
Hence, the estimator knows if xi ∈ Si[r] or not for a certain
r ∈ [N ] by examining the validi vector sent from the sensor.
In addition, line 14 is replaced by “true”. Finally, lines 8 to
10, line 20 and line 22 are omitted. These lines only compute
values which are sent by the sensor.

Reading the pseudocode.
B(xc, rc) defines an over approximation of the initial set

K as a hypercube of radius rc centered at xc. The input
xi (Line 7) executed at time t, reads the current state of
the system ξσ(x0, iTp) into the program variable xi. In
the next line xi ∈ Si[r] is assumed to be computed by
checking if xi + (vi[modei−1] − vi[r]) ∈ Si if i ≥ 1 and
xi + (vi[0]− vi[r]) ∈ Si if i = 0. In Line 11, the minimum
index of a valid mode is assigned to modei but this could be
any arbitrary choice. If there is no valid mode then modei is
set to ⊥.



Comparison with upper bound construction.
This algorithm is similar to the construction of an approx-

imating function used in the proof of the upper bound in
Section 2.2. However, the mode is known at the sampling
times in the upper bound while it is not in the Algorithm.
Thus, the construction used in the upper bound knows the
iterations where the switch happens. That makes us being
able to increase the size of the ball representing the state es-
timate in the iteration following a switch. However, because
it is assumed that the mode is not known, Algorithm 1 needs
to wait till the state xi leaves the state estimate Si to know
that a switch happened or that a mode considered in mi is
different from the actual mode. That required the additional
assumption that the modes are exponentially separated to
bound the number of iterations needed for the state to leave
a state estimate constructed based on a wrong mode. That
required us to sample faster (Tp ≤ Te) and track several
modes in parallel to figure out the actual mode and decrease
δi to less than ε before τ time units after a switch.

Algorithm 1 Procedure for estimating the state of a
switched system (sensor side).

1: input: Tp, α, ε, K ⊂ B(xc, rc), N̂

2: m0 ← 〈0, 1, . . . N̂ − 1〉; δ0 ← ε;
3: S0 ← B(xc, rc);

4: C0 ← grid(S0, δ0e
−(L+α)Tp);

5: mode0 ← 0; i← 0;
6: while true do {ith iteration}
7: input xi;
8: for r ∈ [N̂ ] do
9: validi [r]← [xi ∈ Si[r] and mi[r] 6= −1];

10: end for
11: modei ← min{r | validi [r]};
12: escape← modei 6= ⊥;
13: if not escape then {no escape}
14: qi ← quantize(xi, Ci[modei ]);
15: else {escape}
16: modei ← modei−1;
17: δi ← d(Tp) + δi;
18: Si ← B(zi(Tp), δi);

19: Ci ← grid(Si, δie
−(L+α)Tp);

20: qi ← quantize(xi, Ci[modei]);
21: end if
22: send 〈qi, validi〉;
23: i++; {parameters for next iteration}
24: mi ← mi−1;
25: for r ∈ [N̂ ] do
26: if escape or (not validi−1[r] and mi[r] 6= −1) then
27: mi[r]← NextMode();
28: end if
29: if mi[r] 6= −1 then
30: vi[r]← ξmi[r](qi−1, Tp);
31: end if
32: end for
33: δi ← e−αTpδi−1;
34: Si ← B(vi[modei−1], δi);

35: Ci ← grid(Si, δie
−(L+α)Tp);

36: zi(.)← ξmi [modei−1 ](qi−1, ·);
37: wait(Tp);
38: end while

4. ANALYSIS OF ESTIMATION ALGORITHM
In this section, we prove a sequence of error bounds on the

state estimate for different cases that arise from considering
a mode which is different from the actual mode over a time
interval of size Tp. Then in Section 4.2 we establish bounds on
the maximum number of possible escapes between switches.
The main Theorem in Section 4.3 uses these results together
with an upper bound on the speed of mode switches to give
detailed bounds on the state estimation error. Finally, in
Section 4.4 we analyze the average bit rate and compare it
to the upper bound on hest defined in Theorem 1.

Notations.
We fix all the parameters of the algorithm including the

sampling period Tp and the mode window size N̂ . We
also fix a particular (unknown) initial state x0 ∈ K and
a particular (unknown) switching signal σ for the system
described by Equation (2). This defines a particular solution
ξσ(x0, ·) of the switched system and the sequence of states
ξσ(x0, Tp), ξ(x0, 2Tp), . . . , sampled by Algorithm 1 which
runs on the sensor side. We abbreviate ξσ(x0, iTp) as xi and
the quantized measurement of xi that is sent by the sensor
as qi. Moreover, δi, Si, Ci, etc., denote the valuations of
the variables δ, S, C, etc. at line 22 in the ith iteration of
the algorithm. However, the modes in mi+1 are the modes
considered over the interval (iTp, (i+ 1)Tp]. The switching
times in σ are denoted by s0 = 0, s1, . . . For a given switching
time sj , we define last(j) := bsj/Tpc and next(j) := dsj/Tpe
as the last iterations of the algorithm before the jth switch
and the first iteration after the jth switch respectively.

Recall, that an escape occurs when the state of the system
ξ(x0, iTp) is not in any of the state estimates Si[r]’s at line 9.
In other words, it occurs when the algorithm takes the else
branch in Line 15 (mode = ⊥) after sj .

4.1 Error bounds across a single iteration
In this section, we establish how the error in state estima-

tion, ‖ξσ(x0, t)− z(t)‖∞, evolves over a single iteration of the
algorithm, that is, over t ∈ [iTp, (i+ 1)Tp]. The estimate z(t)
over [iTp, (i+1)Tp] is ξmi+1 [r](qi, ·) for some r, and therefore,
we track the error by bounding ‖ξσ(x0, t)− ξmi+1[r](qi, t)‖∞,

for all r ∈ [N̂ ] with mi+1[r] 6= −1.
There are several sub-cases to consider based on (a) whether

there is a switch, and (b) whether the tracked mode mi+1[r]
matches the actual mode at a given time, over the considered
interval between the iterations. For each of these cases, we
establish a bound on ‖ξσ(x0, t)− z(t)‖∞ using (a) Bellman-
Gronwall inequality to bound ‖ξu(x, t)− ξu(x′, t)‖∞, and (b)
triangular inequality to bound ‖ξu(x, t)− ξp(x′, t)‖∞, where

u 6= p ∈ [N̂ ] and x 6= x′ ∈ Rn. Recall that Tp ≤ τ ≤ Td,
so no more than one switch can happen between iTp and
(i+1)Tp.

Each of the following propositions covers one of the above
cases. Proposition 2 considers the case when there is a switch
between iTp and (i+ 1)Tp, the considered mode mi+1[r] is
the same as the actual mode σ(iTp) at t = iTp, and there
exists a state estimate Si[p] that contains the actual state
ξσ(x0, iTp) at t = iTp. It shows that the estimate converges
exponentially until the switch, and after that it accumulates
an additive factor of d(Tp).

Proposition 2 Fix an iteration i, a switching time sj ∈



(iTp, (i+ 1)Tp), and an index r ∈ [N̂ ]. If mi+1[r] = σ(iTp)

and xi ∈ Si[p] for some p ∈ [N̂ ], then for all t ∈ [iTp, (i +
1)Tp], ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{

δie
−α(t−iTp) if t < sj (4)

d(Tp) + δie
−α(t−iTp) otherwise. (5)

Proof. For (4), ‖xi − qi‖∞ ≤ δie
−(L+α)Tp since xi ∈

Si[p] for some p ∈ [N̂ ] and the boxes in Ci[p] are of radii

δie
−(L+α)Tp . Then, ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞

= ‖ξσ(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞
[since ξσ(x0, t) = ξσ(ξσ(x0, iTp), t− iTp)]

= ‖ξmi+1[r](xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞
[σ(iTp) = mi+1[r]]

≤ e
Lmi+1[r](t−iTp)‖xi − qi‖∞

[Bellman-Gronwall inequality]

≤ δie
Lmi+1[r](t−iTp)

e−(L+α)Tp

[qi is quantization of xi]

≤ δie
−α(t−iTp).

The last inequality follows because Lmi+1[r] ≤ L and t −
iTp ≤ Tp. For (5), we assume without loss of generality
that mi+1[r] = σ(t) = 1 for t ∈ [iTp, sj), σ(t) = 2 for
t ∈ [sj , (i+ 1)Tp]. Then, ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞

= ‖ξ2(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞
≤ ‖ξ2(ξ1(x0, sj), t− sj)− ξ1(ξ1(x0, sj), t− sj)‖∞

+ ‖ξ1(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞
[by triangle inequality]

≤ ‖
∫ t−sj

0

(f2(ξ2(ξ1(x0, sj), t
′))− f1(ξ1(ξ1(x0, sj), t

′)))dt′‖

+ ‖ξ1(ξ1(x0, sj), t− sj)− ξ1(ξ1(qi, sj − iTp), t− sj)‖∞
≤ d(t− sj) + eL1(t−iTp)‖xi − qi‖∞

[by Bellman-Gronwall inequality]

≤ d(Tp) + eL1(t−iTp)e−(L+α)Tpδi ≤ d(Tp) + δie
−α(t−iTp).

The next proposition holds under the same conditions
as Proposition 2 except that the considered mode mi+1[r]
matches the mode of the switched system σ((i + 1)Tp) at
t = (i+ 1)Tp iteration, but it is not the same as σ(iTp). The
proof of (6) is analogous to the proof of (5).

Proposition 3 Fix an iteration i, a switching time sj ∈
(iTp, (i+ 1)Tp), and an index r ∈ [N̂ ]. If mi+1[r] 6= σ(iTp),

mi+1[r] = σ((i+ 1)Tp) and xi ∈ Si[p] for some p ∈ [N̂ ], then,
for all t ∈ [iTp, (i+ 1)Tp],
‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{

d(Tp) + δie
−α(t−iTp) if t < sj (6)

2d(Tp) + δie
−α(t−iTp) otherwise. (7)

Proof. For (7), ‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞

≤ ‖ξσ(x0, t)− ξσ(iTp)(xi, t− iTp)‖∞
+ ‖ξσ(iTp)(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞

[by triangle inequality]

≤ ‖ξσ(ξσ(x0, sj), t− sj)− ξσ(iTp)(ξσ(x0, sj), t− sj)‖∞
+ ‖ξσ(iTp)(xi, t− iTp)− ξmi+1[r](qi, t− iTp)‖∞

≤ d(t− sj) + d(Tp) + δie
−α(t−iTp)

[by similar argument to (5)]

≤ 2d(Tp) + δie
−α(t−iTp).

Proposition 4 also holds under the same conditions as Propo-
sition 2 except that the considered mode mi+1[r], the actual
mode σ(iTp) at the ith iteration and σ((i + 1)Tp) at the
(i+ 1)st iteration are all distinct. Inequality (8) is the same
as (6). Also, the proof of (9) is analogous to the proof of (7).

Proposition 4 Fix an iteration i, a switching time sj ∈
(iTp, (i+ 1)Tp), and an index r ∈ [N̂ ]. If mi+1[r] 6= σ(iTp),
mi+1[r] 6= σ((i+ 1)Tp), mi+1 6= −1 and xi ∈ Si[p] for some

p ∈ [N̂ ], then, for all t ∈ [iTp, (i+ 1)Tp],
‖ξσ(x0, t)− ξmi+1[r](qi, t− iTp)‖∞ ≤{

d(Tp) + δie
−α(t−iTp) if t < sj (8)

2d(Tp) + δie
−α(t−iTp) otherwise. (9)

From the above Propositions, it follows immediately that if
there is no switch between the ith and the (i+ 1)st iteration,
then the bounds given by inequalities (4), (6) and (8) will
continue to hold for the entire period between the iterations.

The following assumption will be used to prove several
intermediate results about the estimation algorithm detecting
the right mode and estimation bounds. Then, in Lemma 4 in
Section 4.2, we will establish a lower bound on the dwell-time
Td which guarantees this assumption.

Assumption 2 For each switching time sj other than s0 =

0, let i = last(j). Then, there exists r ∈ [N̂ ] where mi+1[r]
is the actual mode of the system σ(iTp) and mi+1[p] = −1
for all p 6= r and δi ≤ min{ε, εmin}.

Proposition 5 Under Assumption 2, for each i there exists
r ∈ [N̂ ] with xi ∈ Si[r].

Proof. If there is an escape at iteration i, then the state
xi is not in any of the Si[r]’s at line 9, however, it is still
guaranteed to be in all the expanded (corrected) estimates
Si[r]’s computed at line 18 based on δi and d(Tp). That
is because, under Assumption 2, inequalities (7) and (9)
in Propositions 3 an 4, are not relevant (they are useful
for analyzing the error bounds for faster switching signals).
Therefore, line 17 takes care of the worst case scenario in the
estimation error over a single iteration.

4.2 Bounding escapes between switches
Proposition 6 upper bounds the number of escapes that

can happen between two consecutive switches to dN/N̂e.



Proposition 6 Under Assumption 2, the maximum number
of escapes between two consecutive switches is dN/N̂e.

Proof. First, note that at an escape, all the N̂ invalid
modes are dropped from the vector mi and new candidate
modes are added fairly by the NextMode() function. Hence,
all the N modes would have been considered after dN/N̂e
escapes. Thus, the correct mode σ(t) would have been in
m at some iteration i. Then, let mi+1[r] = σ(iTp). Second,

we know that xi ∈ Si[p] for some p ∈ [N̂ ] by Proposition 5.
Therefore, we can apply the estimation error bound given by
(4) in Proposition 2 to conclude that in the next iteration
validi[r] will be set to 1 and will remain thereafter until a
new switch occur. Thus, there will be no more escapes till
the next switch.

Remark 1 If ∃p, u ∈ [N̂ ], where ∀x ∈ Reach(Σ,K) and
∀t ∈ [0, Tp], ‖ξp(x1, t)− ξu(x2, t)‖∞ ≤ ‖x1 − x2‖∞eLt, then
they will not be exponentially separated. They will behave
the same as far as our algorithm is concerned. So, we can
remove one of them from the set of possible modes [N ] and
our algorithm will still have the same correctness guarantees.
This may arise, for example, if there are modes that are
exponentially stable with convergence exponent larger than
or equal to α and a common equilibrium point.

Because of the exponential separation property, we can
show that if the dwell time of the switching signal is large
enough, then after some maximum number of iterations after
a switch, the actual mode σ(t) still remains unchanged and
the size of the state estimate Si will be small enough to
the point that all incorrect modes in mi will be invalidated.
We define iinv(δ) to be an upper bound on the number of
iterations needed to invalidate a mode when the current
radius of the ball representing the state estimate S is δ. Let
us define: for any δ > 0,

iinv(δ) := max{d 1

αTp
ln(

δ

εmin
)− L

α
e, 1}.

Proposition 7 Under Assumption 2, if at a given iteration
i ≥ 0, −1 6= mi+1[r] 6= σ(t), then mi+1[r] will be replaced
with a different mode after a maximum of iinv(δi) iterations.

Proof. Let c = d 1
αTp

ln( δi
εmin

)− L+α
α
e. First, note that

until mi+1[r] is replaced, δi will be decreasing by a eαTp factor
in each iteration (because there is no escape if it is not re-

placed). Then, δi+ce
−(L+α)Tp = δie

−((i+c)−i)αTpe−(L+α)Tp <
εmin. Thus, by the exponential separation property:

‖ξσ(xi, (c+ 1)Tp)− ξmi+c+1[r](qi+c, Tp)‖∞
= ‖ξσ(xi+c, Tp)− ξmi+c+1[r](qi+c, Tp)‖∞ > δi+ce

−(L+α)TpeLTp

= δi+c+1. [computed at line 33]

Thus, the actual state will not belong to Si+c+1[r] computed
at line 34 and mi+c+2[r] 6= mi+c+1[r].

We upper bound the radius δi of the state estimate Si at
iteration i with,

δmax := max
i∈[1,dN/N̂e]

{εe−iαTp + d(Tp)
1− e−iαTp
1− e−αTp }.

Note that the first term decays geometrically with i and the
second term increases, and the max value could be attained
somewhere in the middle.

Proposition 8 Under Assumption 2, δi ≤ δmax for all i.

Proof. The radius δi of Si decreases between two escapes
and possibly increase at an escape. Therefore, the maximum
of δi would achieved if some number of escapes (less than or
equal to dN/N̂e) happened in consecutive iterations immedi-
ately after a switch. Assumption 2 is used to make sure that
δi ≤ ε at i = last(j).

The following definitions and two lemmas are used to compute
the minimum dwell-time that suffices for Assumption 2 to
be true. The following idet represents the maximum number
of iterations needed after a switch for the actual mode to be
detected, all other modes be invalidated and δi ≤ εmin.

idet := 2 +

dN/N̂e∑
i=1

iinv
(
εe−iαTp + d(Tp)

i−1∑
j=0

e−jαTp
)

≤ dN
N̂
eiinv(δmax) + 2

Lemma 3 Under Assumption 2, after a maximum of idet
iterations of any switch sj , mi+1[r] = σ(t), for some r ∈ [N̂ ],
mi+1[u] = −1 for all u 6= r and δi ≤ εmin.

Proof. (sketch) After a switch, the only mode considered
in mi will no longer be the correct mode. In the worst case,
σ(t) will be considered in the last set of modes mi+1. Each
set of modes mi+1 needs a maximum of iinv(δi) iterations
to be invalidated. Moreover, there is a maximum of dN/N̂e
escapes. The first escape will happen after a maximum of
2 iterations after the switch to invalidate mi+1[r] by the
exponential separation assumption since δi ≤ εmin before
the switch. Since iinv is monotonically increasing w.r.t δ,
we summed the values of iinv when evaluated on the dN/N̂e
maximum possible values of δi. The last iinv(δmax) in idet
is to invalidate all wrong modes (and replace them with -1)
and keep the actual one in mi. It will also make δi ≤ εmin
by the definition of iinv(δmax).

Finally, we define the following to upper bound the number
of iterations, with no escapes, needed to decrease δi from
εmin to less than ε:

iest := max(d 1

αTp
ln(

εmin
ε

)e, 0).

Lemma 4 If the minimum dwell-time of the switching signal
σ is greater than (idet + iest + 1)Tp, then Assumption 2 is
true.

Proof. Lemma 3 holds between s0 = 0 and s1 given the
minimum dwell time and the fact that εmin e

−αTp(iest) ≤ ε
without Assumption 2. Then, the argument holds inductively
for the rest of the intervals.

4.3 Estimation error
Combining the above we derive bounds on the estimation

error in Theorem 2. It shows that after a switch, the algo-
rithm will be in four possible “phases”. The estimation error
will increase in the first few iterations after a switch where
escapes occur, until the correct mode is found in m, and
thereafter, the estimate converges exponentially, provided
the dwell time is large enough.



Let the iterations of the algorithm when escapes occur
between two consecutive switches sj and sj+1 be numbered
w1, . . . wk. Fixing j we avoid indexing the w’s and k with j.

Theorem 2 If σ has dwell time Td ≥ (idet + iest + 1)Tp,
then for any t ∈ [sj , sj+1), the estimation error
‖ξσ(x0, t)− z(t)‖∞ ≤

d(Tp) + εe−α(t−last(j)Tp) if t ∈ [sj , w1Tp] (10)

d(Tp) + δwhe
−α(t−whTp) (11)

if ∃ h ∈ {1, . . . , k}, t ∈ [whTp, wh+1Tp]

d(Tp) + δwke
−α(t−wkTp) (12)

if t ∈ [wkTp, (wk + iinv(δwk ))Tp]

δwke
−α(t−wkTp) otherwise. (13)

Proof. We start by proving (10): By Lemma 4, δlast(j) ≤
εmin, δlast(j) ≤ ε and z(t) = ξσ(qlast(j), t − last(j)Tp) for
t ∈ [last(j)Tp, sj). Then, by inequality (5) in Proposition 2 ,
the inequality is satisfied for t ∈ [sj , next(j)Tp]. Moreover, if
w1, the first escape after sj , was not at next(j) then it will be
at next(j) + 1, since, by the exponential separation property,
‖z(t)− ξσ(x0, t)‖ ≥ εeLTp , so w1 = next(j) + 1. If that is the
case, then the inequality holds for t ∈ [next(j)Tp, (next(j) +
1)Tp] as a result of inequality (6) in Proposition 3 and the
fact that δnext(j) ≤ εe−αTp ≤ ε.

Inequalities (11) and (12) have similar proosf as (10) but
instead of ε we have δwh . Inequality (13) follows from the

fact that at t = (wk + iinv(δwk)Tp) there is r ∈ [N̂ ] with
m[r] = σ(sj) and m[p] = −1 for p 6= r, and the repeated
application of inequality (4) in proposition 2.

Corollary 1 summarizes the error bounds in terms of two
types of time intervals.

Corollary 1 Under the assumptions of Lemma 4, consider
the time between the two consecutive switches sj and sj+1.
Then, for all t ∈ [sj , sj+1), ‖ξσ(x0, t)− z(t)‖∞ ≤

{
δmax + d(Tp) t ∈ [sj , wkTp] (14)

δwke
−α(t−wkTp) otherwise. (15)

Thus, for a given ε, τ and α defined as for Theorem 1,
we can choose the parameters for the algorithm Tp and N̂
to control the variables idet, d(Tp) and δmax so as to achieve
inequalities in (3).

4.4 Optimal network usage
We show that the estimation algorithm uses network band-

width optimally in the following sense: An analysis similar
to that of Proposition 4 of [8] shows that the average bit
rate used by our algorithm is (L+α)n/ln 2 + N̂/Tp. The sensor
needs to send (a) qi: the quantization of xi with respect

to one of the N̂ Si[r]’s and (b) the validi bit vector: for

each r ∈ [N̂ ] one bit indicating whether or not xi belongs to

Si[r]. The quantized state q0 requires #C0 = d diam(K)

2εe−(L+α)Tp
en

bits to be sent. For i ≥ 1, the number of bits required to
represent qi is #Ci = d δi

δie
−(L+α)Tp

en = de(L+α)Tpen. Hence,

the average bit rate used by the algorithm is br(ε, α, Tp) =

limi→∞ 1/Tp log(#CiN̂) = (L+α)n
ln 2

+ N̂
Tp

.

Theorem 3 Average bit rate of Algorithm 1 is (L+α)
ln 2

+ N̂
Tp

.

Hence, it follows that the bit-rate used by the estimation
algorithm is larger than the upper bound on the estimation

entropy by at most N̂
Tp
− logN

Te
bits. Therefore, the efficiency

gap between the bit-rate used by our algorithm and the bit
rate (hest) used by the best possible algorithm, is at most
N̂
Tp
− logN

Te
bits more than the gap between hest and its upper-

bound. The unobservability of the switching signal and the
switching times contributes to the gap.

5. EXPERIMENTS

Switched affine systems.
In a switched affine system, the dynamics of all the modes

are of the form: ẋ = Apx+Bpu. We present estimation of
a five dimensional switched linear system with five modes.
For each p ∈ [5] = {0, . . . 4} the matrix Ap and the column
vector Bp are generated randomly, and the input u is also a
random constant. In the presented results, the settling time
for the first mode is 11.8914 and the others are unstable.
The maximum Lipschitz constant was L = 28.28. We work
with switching signals that satisfy Assumption 2. We chose
the following parameters α = 1, Tp = 0.1s, ε = 2 and

N̂ = 2. The first two dimension of the results obtained are
shown in Figure 2 (Left). Notice how the state estimate
(yellow and blue) is enlarged after an escape and how the
state and the mode converge to the true ones. d(Tp) was
approximated at each escape by computing the distance
between all possible pairs of modes starting from the state
at that escape. It was around 2. The bit rate used here is
(L+α)n/ ln 2+N̂/Tp = 231 bps. The maximum time needed
to detect the correct mode and start exponential convergence
was 2.2 seconds and the maximum δ was around 3. So, if
τ ≥ 2.2s and ε ≥ 5, the parameters of the algorithm in this
experiment satisfy the properties in (3).

Nonlinear glycemic index model.
Estimating the blood glucose level is an important prob-

lem for administering controlling insulin for diabetes patients
given [4]. We consider a polynomial switched system model
of plasma glucose concentration 1. The model has nine modes
representing different control inputs. The state consists of
three variables: G, I and X. In this model, the switching
between different modes are brought about by certain thresh-
old based rules depending on the state variables. In the span
of 150s of each execution, 6 switches happened. Although
Assumption 2 was not always satisfied, it was still able to
do state estimation. The Lipschitz constant of each of the
modes is estimated through sampling. The parameters of the
algorithm are chosen as α = 1 and Tp = 1s. For each value

of N̂ ∈ [1, 9], 100 initial states x0 are drawn randomly and
the algorithm is executed on the resulting solutions ξσ(x0, ·).
Two sample executions are shown in Figure 2 and the average
results are shown in the table below.

As the number of modes tracked N̂ increases, as expected,
the number of escapes decreases. In fact, beyond N̂ = 5, the
marginal benefit to sending more bits is small as far as the
worst case error estimate (δmax) is concerned. In practice,

1Switched system benchmark available from: https://ths.
rwth-aachen.de/research/projects/hypro/glycemic-control/

https://ths.rwth-aachen.de/research/projects/hypro/glycemic-control/ 
https://ths.rwth-aachen.de/research/projects/hypro/glycemic-control/ 


Figure 2: Execution of estimation algorithm. Actual mode (black), mode estimate (red), the values of the other variables are shown
by the continuous plots. The vertical cut lines show the error estimates (δ) on those variables. Linear five dimensional system (left),

Glycemic nonlinear control system, N̂ = 1 (center) and N̂ = 9 (right). Figure with N̂ = 9 has much less escapes than that with N̂ = 1.

the choice for N̂ and Tp should be chosen to satisfy the
convergence parameters specified.

N̂ δmax Escps.

1 14.17 25
2 12.97 12.92
3 12.3 8.95
4 10.16 6.95
5 9.67 6.38
6 10.12 6.5
7 9.67 6.06
8 9.66 6.0
9 9.59 5.81

6. CONCLUSION
We have presented an algorithm for state estimation of

switched nonlinear systems with finite number of modes
and unobservable switching signal using quantized measure-
ments with optimality guarantees on the number of bits
needed to be sent from the sensor to the estimator. These
results suggest several future research directions including
extensions to hybrid models with partially known switching
structure, models with input disturbances, and possibly de-
veloping lower-bounds on corresponding notions of estimation
entropy.
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