Optimal Bit Rate for State Estimation of Switched Nonlinear Systems

Hussein Sibai, Sayan Mitra
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Introduction

 More than 70 embedded computing units communicate over shared over 1 MBps CAN bus in some cars.

Setup

Coupling between State Estimation and Model Detection

- Switching signal is not known
- State estimation and model detection problems should be tackled simultaneously

Outline

- Introduction to state estimation
- Estimation entropy
- Upper-bound on estimation entropy
- Impossibility of estimating below entropy rates
- Estimation algorithm
 - Correctness
 - Bit Rate

Definitions and notations

- $\dot{x} = f_{\sigma}(x), \sigma: [0, \infty) \to P, x \in \mathbb{R}^n, x_0 \in K$
- $\bullet |P| = N$
- f_i is Lipschitz continuous with Lipschitz constant L_i for each $i \in P$
 - $L = \max_{i \in P} L_i$
- σ is unknown has a minimum dwell time T_d
- $\xi_{\sigma}(x_0,t): \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is the trajectory when the switching signal is σ and the initial state is x_0

Approximation Functions

- $z: \mathbb{R} \to \mathbb{R}^n$ is an $(\varepsilon, \alpha, \tau)$ -approximating function for $\xi_{\sigma}(x_0, t)$ if:
 - $||z(t) \xi_{\sigma}(x_0, t)|| \le \varepsilon \text{ if } t \in [s_i, s_i + \tau)$
 - $||z(t) \xi_{\sigma}(x_0, t)|| \le \varepsilon e^{-\alpha(t (s_j + \tau))}$ if $t \in [s_j + \tau, s_{j+1}]$
 - where $s_0=0,s_1,\dots$ are the switching times in σ
- Second part is similar to that of in Liberzon and Mitra HSCC'16 for nonlinear systems
 - $||z(t)| \xi_{\sigma}(x_0, t)|| \le \varepsilon e^{-\alpha t}$ if $t \ge 0$

Approximation Functions (Continued)

Any function $z: [0, \infty) \to \mathbb{R}^n$ within the blue intervals is (ε, α) -approximating function for $\xi_{\sigma}(x_0, t)$

Approximation sets and Entropy

- $\widehat{X} = \{\widehat{x}_1, \widehat{x}_2, ... \widehat{x}_M\}$ is an $(T, \varepsilon, \alpha, \tau)$ -approximating set if: for every $x_0 \in K$ and $\sigma \in \Sigma(T_d)$, there exists $\widehat{x}_1 \in \widehat{X}$ that is an $(\varepsilon, \alpha, \tau)$ -approximating function for $\xi_{\sigma}(x_0, t)$ over [0, T]
- $s_{est}(T, \varepsilon, \alpha, \tau)$ is the minimum cardinality of such approximating set
- Estimation Entropy:
 - $h_{est}(\varepsilon, \alpha, \tau) = \limsup_{T \to \infty} \frac{1}{T} s_{est}(T, \varepsilon, \alpha, \tau)$
 - [Liberzon and Mitra, HSCC'16]: $h_{est}(\alpha) = \lim_{\varepsilon \to 0} \limsup_{T \to \infty} \frac{1}{T} s_{est}(T, \varepsilon, \alpha, K)$

Entropy Upper Bound

- Construct an approximating set by: designing an algorithm that constructs an approximating function for any given trajectory $\xi_{\sigma}(x_0,t)$
- Bound the number of functions that can be computed by the algorithm
- Substitute that number with s_{est} in the definition of entropy to get:

$$h_{est}(\varepsilon, \alpha, \tau) \le \frac{(L + \alpha)n}{\ln 2} + \frac{\log N}{T_e}$$

where T_e is the largest t that satisfies:

$$d(t) \le \varepsilon (1 - e^{-\alpha(T_d - t)})$$

Impossibility of estimating below entropy rates

- Assume $\log Q$ bits are sent each T_p time units.
- Assume that the average bit rate $\left(\frac{\log Q}{T_p}\right)$ is less than $h_{est}(\varepsilon,\alpha,\tau)$, then there exists l large enough s.t. $\frac{\log Q}{T_p} < \frac{1}{lT_p} \log s_{est}(lT_p,\varepsilon,\alpha,\tau)$
- Thus, $Q^l < s_{est}(lT_p, \varepsilon, \alpha, \tau)$, contradiction.
 - Trajectories generated by the algorithm represents smaller approximation set.

Distance between two trajectories of the same mode after T_p time units

- Same system, different initial states
- Bellman-Gronwall Inequality

Distance between two trajectories of different modes after T_p time units

• Different systems, different initial states

(assumed to exist for $t \leq \tau$)

Bellman-Gronwell Inequality with triangular inequality

Estimation Algorithm (sensor side) (Initialization)

Estimation Algorithm (correct mode $(m[r] = \sigma)$, no switch)

Estimation Algorithm (wrong mode, no switch: case 1)

Estimation Algorithm (wrong mode, no switch: case 2)

Estimation Algorithm (switch: case 1)

Estimation Algorithm (switch: case 2)

Estimation Algorithm: escapes

Estimation Algorithm: escapes

Estimator side Algorithm

- Same algorithm
 - It knows what modes are invalidated from the valid vector
 - It knows the quantized state from the sensor

Number of Escapes between switches

- After $\lceil \frac{N}{\widehat{N}} \rceil$ escapes all modes would have been considered
- The true mode will not be invalidated

Exponential Separation

- We need to make sure that wrong modes will escape
- Modes p and r are (L_S, T_S) -exponentially separated if:

 $\exists \ \epsilon_{min} > 0 \ \text{such that for any} \ \varepsilon \leq \epsilon_{min}, \ \text{and for all} \ x_1, x_2 \ \text{with} \\ \|x_1 - x_2\| \leq \varepsilon, \\ \|\xi_p(x_1,t) - \xi_r(x_2,t)\| > \varepsilon e^{L_S T_S}$

(definition from Liberzon and Mitra HSCC'16)

• All modes are assumed to be (L, T_p) -exponentially separated, unless: $\|\xi_p(x_1, t) - \xi_r(x_2, t)\| \le \varepsilon e^{LT_p}$ for all x_1 and x_2 reached by the system

Number of Iterations to get the right mode

• Bounds the number of iteration to falsify a wrong mode to:

$$i_{inv}(\delta) \coloneqq \max\left\{\left[\frac{1}{\alpha T_p} \ln \frac{\delta}{\epsilon_{min}} - \frac{L}{\alpha}\right], 1\right\}$$

when δ is the radius of S

• Maximum value of δ will be:

$$\delta_{max} = \max_{i \in \{1, [N/\widehat{N}]\}} \delta_0 e^{-i\alpha T_p} + d(T_p) \frac{1 - e^{-i\alpha T_p}}{1 - e^{-\alpha T_p}}$$

which happens when the escapes follows each other in consecutive iterations after a switch.

• Number of iterations needed to invalidate all wrong modes:

$$i_{det} \le \left[\frac{N}{\widehat{N}}\right] i_{inv}(\delta_{max}) + 2$$

(coarse upper-bound)

Estimation Theorem

• Number of iterations needed to decrease δ from ϵ_{min} to δ_0 is:

$$i_{est} \coloneqq \max(\left[\frac{1}{\alpha T_p} \ln \frac{\epsilon_{min}}{\delta_0}\right], 0)$$

• If minimum dwell time is greater than $(i_{det} + i_{est} + 1)T_p$, then

$$\|\xi_{\sigma}(x_{0},t) - z(t)\| \leq \begin{cases} \delta_{max} + d(T_{p}), \forall t \in [s_{j}, s_{j} + i_{det}T_{p}) \\ \delta_{max}e^{-\alpha(t - (s_{j} + i_{det}T_{p}))}, \forall t \in [s_{j} + i_{det}T_{p}, s_{j+1}) \end{cases}$$

For any $j \in \mathbb{N}$.

• T_p , δ_0 and \widehat{N} can be chosen so that z(t) will be an approximating function for $\xi_\sigma(x_0,t)$

Algorithm Bit Rate

- At each iteration, it sends:
 - Bit vector valid of size \widehat{N}
 - Quantized version of the state with respect to a grid with $\left[\frac{\delta}{\delta e^{-(L+\alpha)T_p}}\right]^n$ points
- So, the average bit rate is:

$$\frac{(L+\alpha)n}{\ln 2} + \frac{\widehat{N}}{T_p}$$

Gap from the entropy upper bound:

$$\frac{\widehat{N}}{T_p} - \frac{\log N}{T_e}$$

• Remember $T_e \leq T_p$