Optimal Bit Rate for State

 Estimation of Switched Nonlinear SystemsHussein Sibai, Sayan Mitra
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Introduction

- More than 70 embedded computing units communicate over shared over 1 MBps CAN bus in some cars.

Setup

Coupling between State Estimation and Model Detection

- Switching signal is not known
- State estimation and model detection problems should be tackled simultaneously

Outline

- Introduction to state estimation
- Estimation entropy
- Upper-bound on estimation entropy
- Impossibility of estimating below entropy rates
- Estimation algorithm
- Correctness
- Bit Rate

Definitions and notations

- $\dot{x}=f_{\sigma}(x), \sigma:[0, \infty) \rightarrow P, x \in \mathbb{R}^{n}, x_{0} \in K$
- $|P|=N$
- f_{i} is Lipschitz continuous with Lipschitz constant L_{i} for each $i \in P$
- $L=\max _{i \in P} L_{i}$
- σ is unknown has a minimum dwell time T_{d}
- $\xi_{\sigma}\left(x_{0}, t\right): \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is the trajectory when the switching signal is σ and the initial state is x_{0}

Approximation Functions

- $z: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is an ($\left.\varepsilon, \alpha, \tau\right)$-approximating function for $\xi_{\sigma}\left(x_{0}, t\right)$ if:
- $\left\|z(t)-\xi_{\sigma}\left(x_{0}, t\right)\right\| \leq \varepsilon$ if $t \in\left[s_{j}, s_{j}+\tau\right)$
- $\left\|z(t)-\xi_{\sigma}\left(x_{0}, t\right)\right\| \leq \varepsilon e^{-\alpha\left(t-\left(s_{j}+\tau\right)\right)}$ if $t \in\left[s_{j}+\tau, s_{j+1}\right)$
where $s_{0}=0, s_{1}, \ldots$ are the switching times in σ
- Second part is similar to that of in Liberzon and Mitra HSCC'16 for nonlinear systems
- $\left\|z(t)-\xi_{\sigma}\left(x_{0}, t\right)\right\| \leq \varepsilon e^{-\alpha t}$ if $t \geq 0$

Approximation Functions (Continued)

Any function $z:[0, \infty) \rightarrow$
\mathbb{R}^{n} within
the blue intervals is (ε, α) approximating function for $\xi_{\sigma}\left(x_{0}, t\right)$

Approximation sets and Entropy

- $\hat{X}=\left\{\hat{x}_{1}, \hat{x}_{2}, \ldots \hat{x}_{M}\right\}$ is an $(T, \varepsilon, \alpha, \tau)$-approximating set if: for every $x_{0} \in K$ and $\sigma \in \Sigma\left(T_{d}\right)$, there exists $\hat{x}_{1} \in \hat{X}$ that is an $(\varepsilon, \alpha, \tau)$ approximating function for $\xi_{\sigma}\left(x_{0}, t\right)$ over $[0, T]$
- $S_{\text {est }}(T, \varepsilon, \alpha, \tau)$ is the minimum cardinality of such approximating set
- Estimation Entropy:
- $h_{e s t}(\varepsilon, \alpha, \tau)=\underset{T \rightarrow \infty}{\limsup } \frac{1}{\mathrm{~T}} \mathrm{~s}_{\mathrm{est}}(\mathrm{T}, \varepsilon, \alpha, \tau)$
- [Liberzon and Mitra, HSCC'16]: $h_{e s t}(\alpha)=\lim _{\varepsilon \rightarrow 0} \limsup _{T \rightarrow \infty} \frac{1}{\mathrm{~T}} \mathrm{~S}_{\mathrm{est}}(\mathrm{T}, \varepsilon, \alpha, \mathrm{K})$

Entropy Upper Bound

- Construct an approximating set by: designing an algorithm that constructs an approximating function for any given trajectory $\xi_{\sigma}\left(x_{0}, t\right)$
- Bound the number of functions that can be computed by the algorithm
- Substitute that number with $s_{\text {est }}$ in the definition of entropy to get:

$$
h_{e s t}(\varepsilon, \alpha, \tau) \leq \frac{(L+\alpha) n}{\ln 2}+\frac{\log N}{T_{e}}
$$

where T_{e} is the largest t that satisfies:

$$
d(t) \leq \varepsilon\left(1-e^{-\alpha\left(T_{d}-t\right)}\right)
$$

Impossibility of estimating below entropy rates

- Assume $\log Q$ bits are sent each T_{p} time units.
- Assume that the average bit rate $\left(\frac{\log Q}{T_{p}}\right)$ is less than $h_{e s t}(\varepsilon, \alpha, \tau)$, then there exists l large enough s.t. $\frac{\log Q}{T_{p}}<\frac{1}{l T_{p}} \log s_{e s t}\left(l T_{p}, \varepsilon, \alpha, \tau\right)$
- Thus, $\mathrm{Q}^{l}<s_{e s t}\left(l T_{p}, \varepsilon, \alpha, \tau\right)$, contradiction.
- Trajectories generated by the algorithm represents smaller approximation set.

Distance between two trajectories of the same mode after T_{p} time units

- Same system, different initial states
- Bellman-Gronwall Inequality

Distance between two trajectories of different modes after T_{p} time units

- Different systems, different initial states
- Bellman-Gronwell Inequality with triangular inequality

$$
\begin{aligned}
& d(t):=\max _{p, r \in P_{x \in R e a c h(K)}} \sup _{0}^{t}\left\|f_{p}\left(\xi_{p}(x, t)\right)-f_{r}\left(\xi_{r}(x, t)\right)\right\| d t \\
& \text { (assumed to exist for } t \leq \tau \text {) }
\end{aligned}
$$

Estimation Algorithm (sensor side) (Initialization)

Estimation Algorithm (correct mode ($m[r]=\sigma$), no switch)

Estimation Algorithm (wrong mode, no switch: case 1)

Estimation Algorithm (wrong mode, no switch: case 2)

Estimation Algorithm (switch: case 1)

Estimation Algorithm (switch: case 2)

Estimation Algorithm: escapes

Estimation Algorithm: escapes

Estimator side Algorithm

- Same algorithm
- It knows what modes are invalidated from the valid vector
- It knows the quantized state from the sensor

Number of Escapes between switches

- After $\left\lceil\frac{N}{\bar{N}}\right\rceil$ escapes all modes would have been considered
- The true mode will not be invalidated

Exponential Separation

- We need to make sure that wrong modes will escape
- Modes p and r are $\left(L_{S}, T_{S}\right)$-exponentially separated if:
$\exists \epsilon_{\min }>0$ such that for any $\varepsilon \leq \epsilon_{\text {min }}$, and for all x_{1}, x_{2} with $\left\|x_{1}-x_{2}\right\| \leq \varepsilon$,

$$
\left\|\xi_{p}\left(x_{1}, t\right)-\xi_{r}\left(x_{2}, t\right)\right\|>\varepsilon e^{L_{s} T_{s}}
$$

(definition from Liberzon and Mitra HSCC'16)

- All modes are assumed to be (L, T_{p})-exponentially separated, unless:
$\left\|\xi_{p}\left(x_{1}, t\right)-\xi_{r}\left(x_{2}, t\right)\right\| \leq \varepsilon e^{L T_{p}}$ for all x_{1} and x_{2} reached by the system

Number of Iterations to get the right mode

- Bounds the number of iteration to falsify a wrong mode to:

$$
i_{i n v}(\delta):=\max \left\{\left\lceil\frac{1}{\alpha T_{p}} \ln \frac{\delta}{\epsilon_{\min }}-\frac{L}{\alpha}\right\rceil, 1\right\}
$$

when δ is the radius of S

- Maximum value of δ will be:

$$
\delta_{\max }=\max _{i \in\{1,|N / \widehat{N}|\}} \delta_{0} e^{-i \alpha T_{p}}+d\left(T_{p}\right) \frac{1-e^{-i \alpha T_{p}}}{1-e^{-\alpha T_{p}}}
$$

which happens when the escapes follows each other in consecutive iterations after a switch.

- Number of iterations needed to invalidate all wrong modes:

$$
i_{\text {det }} \leq\left\lceil\frac{N}{\hat{N}}\right\rceil i_{i n v}\left(\delta_{\max }\right)+2
$$

(coarse upper-bound)

Estimation Theorem

- Number of iterations needed to decrease δ from $\epsilon_{\min }$ to δ_{0} is:

$$
i_{e s t}:=\max \left(\left\lceil\frac{1}{\alpha T_{p}} \ln \frac{\epsilon_{\min }}{\delta_{0}}\right\rceil, 0\right)
$$

- If minimum dwell time is greater than $\left(i_{\text {det }}+i_{e s t}+1\right) T_{p}$, then

$$
\left\|\xi_{\sigma}\left(x_{0}, t\right)-z(t)\right\| \leq\left\{\begin{array}{c}
\delta_{\max }+d\left(T_{p}\right), \forall t \in\left[s_{j}, s_{j}+i_{\text {det }} T_{p}\right) \\
\delta_{\max } e^{-\alpha\left(t-\left(s_{j}+i_{\text {det }} T_{p}\right)\right)}, \forall t \in\left[s_{j}+i_{\text {det }} T_{p}, s_{j+1}\right)
\end{array}\right.
$$

For any $j \in \mathbb{N}$.

- T_{p}, δ_{0} and \widehat{N} can be chosen so that $z(t)$ will be an approximating function for $\xi_{\sigma}\left(x_{0}, t\right)$

Algorithm Bit Rate

- At each iteration, it sends:
- Bit vector valid of size \widehat{N}
- Quantized version of the state with respect to a grid with $\left\lceil\frac{\delta}{\delta e^{(L+\alpha) T_{p}}}\right\rceil^{n}$ points
- So, the average bit rate is:

$$
\frac{(L+\alpha) n}{\ln 2}+\frac{\widehat{N}}{T_{p}}
$$

- Gap from the entropy upper bound:

$$
\frac{\tilde{N}}{T_{p}}-\frac{\log N}{T_{e}}
$$

- Remember $T_{e} \leq T_{p}$

