
State Estimation of Dynamical Systems with Unknown Inputs:
Entropy and Bit Rates
Hussein Sibai and Sayan Mitra

{sibai2,mitras}@illinois.edu

University of Illinois at Urbana-Champaign

Coordinated Science Laboratory

Urbana, IL 61801

ABSTRACT
Finding the minimal bit rate needed for state estimation of a dy-

namical system is a fundamental problem in control theory. In this

paper, we present a notion of topological entropy, to lower bound

the bit rate needed to estimate the state of a nonlinear dynamical

system, with unknown bounded inputs, up to a constant error ε .
Since the actual value of this entropy is hard to compute in general,

we compute an upper bound. We show that as the bound on the in-

put decreases, we recover a previously known bound on estimation

entropy – a similar notion of entropy – for nonlinear systems with-

out inputs [10]. For the sake of computing the bound, we present an

algorithm that, given sampled and quantized measurements from a

trajectory and an input signal up to a time boundT > 0, constructs

a function that approximates the trajectory up to an ε error up

to time T . We show that this algorithm can also be used for state

estimation if the input signal can indeed be sensed in addition to

the state. Finally, we present an improved bound on entropy for

systems with linear inputs.
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1 INTRODUCTION
State estimation is a fundamental problem for controlling and moni-

toring dynamical systems. In most application scenarios, the estima-

tor has to work with plant state information sent by a sensor over
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a channel with finite bit rate. If a certain accuracy is required from

the estimator, then a natural question is to ask: what is the minimal
bit rate of the channel for the estimator to support this accuracy re-
quirement? This question has been investigated for both stochastic

and non-stochastic systems and channels. In the non-stochastic

setting, the point of view of topological entropy has proven to be a

fruitful line of investigation. In particular, it is useful for deriving

the minimal necessary bit-rates for systems without inputs (see, for

example [10, 11, 17]). This paper contributes in this line of inves-

tigation and proposes answers to the above question for systems

with bounded, piece-wise continuous input.

Several definitions for topological entropy of control systems

have been proposed and they have been related to minimal data

rates necessary for controlling the system over a communication

channel [9, 12, 13]. Nair et al. in [12] defined topological feedback

entropy for stabilization of discrete-time systems in terms of cardi-

nality of open covers in the state space. An alternative definition

in terms of spanning open-loop control functions was proposed

later by Colonius and Kawan in [2]. Equivalence between these two

notions was presented in [3] and the formulation was extended to

continuous-time dynamics in [2]. More in-depth discussion about

the different notions of entropy was presented in [9]. Recently,

Rungger and Zamani presented a notion of entropy [14] represent-

ing the needed state information by a feedback controller to keep

a nondeterministic discrete time system invariant in a subset of

the state space. In the context of switched systems, Yang and Liber-

zon [18, 19] proposed control design methodology for systems with

unknown disturbance and a limited bit rate feedback channel.

From the point of view of estimation, the topological entropy of a

dynamical system represents the rate at which the number of distin-

guishable trajectories with finite precision exponentially increase

over time. In [10, 11], Liberzon and Mitra introduced a notion of

estimation entropy for continuous-time nonlinear systems, defined

in terms of the number of system trajectories that approximate

all other trajectories up to an exponentially decaying error. They

also considered a second notion of estimation entropy which uses

approximating functions that are not necessarily trajectories of the

system, and they established the equivalence of these two notions.

They then showed that it is impossible to perform state estimation

with bit-rates lower than entropy. While computing entropy ex-

actly for a given system is generally hard, [10] showed that we can

upper-bound it by
n (Lx+α )

ln 2
. Here n is the dimension of the system

and Lx is the Lipschitz constant of the vector field. In [16], Schmidt

presented bounds on the topological entropy of switched linear sys-

tems with Lie structures. In our previous paper [17], we extended

the notion of estimation entropy to switched nonlinear systems

https://doi.org/10.1145/3178126.3178150
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while providing upper bounds and a state estimation algorithm.

None of these works consider models with inputs.

In this paper, we study the problem of estimating the state of

nonlinear dynamical systems with unknown, possibly discontin-

uous, inputs. This is a more challenging problem because even

if the uncertainty about the state can be made to decrease over

time using sensor measurements, the uncertainty about the input

may not decrease. The input can change arbitrarily with few con-

straints and the continuous effect of the uncertain input prevents

the uncertainty about the state from going to zero. We contend this

using a weaker notion of estimation, akin to that in [15], that only

requires the error to be bounded by a constant ε > 0, instead of

exponentially decaying down to zero.

We show that there is no state estimation algorithm with a bit

rate smaller than the entropy. For the purpose of computing an

upper bound, we use a corrected version of a previous result in [8]

to upper bound the sensitivity of a trajectory of a nonlinear system

to changes in the initial state and in the input signal. Then, we

present a procedure that, given sampled states of a trajectory and

corresponding sampled values of an input signal, constructs a func-

tion that estimates the trajectory. This procedure is of independent

interest, as it can also be used as an estimation algorithm provided

the unknown input signal can be sampled. We count the number of

trajectories that can be constructed by this procedure for different

initial states and input signals, up to a time bound T . The rate of
exponential growth of this number as T increases gives an upper

bound on entropy.

The upper bound is presented in terms of the state and the input

dimensions n andm, global bounds on the norm of the Jacobian

matrices of the vector field with respect to the state and the input,

Mx andMu , the upper bound on the norm of the input umax , and

two constants µ and η that represent how much the input signal

is allowed to vary over time. Roughly, η upper bounds the size of

the jumps in the input signal and µ constrains the number of large

jumps in a short amount of time. We show that if the upper bound

on the input norm goes to zero, the upper bound on estimation

entropy would be
n (nLx+1/2)

ln 2
, only aO (n) factor larger than the one

computed in [10] for α equal to zero. The entropy upper bound

increases logarithmically withumax and quadratically with η when

ε is small. It also increases asO (ε−2) as the allowed error ε decreases.
Finally, we compute an upper bound on entropy of systems

with linear inputs. We present a more precise way to compute the

sensitivity of the system with respect to changes in the initial state

and in the input signal. We show how our results can be used to

get sufficient bit rates for state estimation for two examples.

The paper is organized as follows: we start with a few prelim-

inaries in Section 2. We define the system along with its entropy

in Section 3. Then, we compute the upper bound on entropy for

general nonlinear systems in Section 4. After that, we compute a

new upper bound on entropy for systems where the input affects

the dynamics linearly in Section 5. Finally, we discuss the results

and suggest future directions in Section 6.

2 PRELIMINARIES
Vector norms and covers. For a real vector v ∈ Rn , we denote by

∥v ∥ the infinity norm of the vector and by vT the transpose of v .

B (v,δ ) is a δ -ball—closed hypercube of radius δ—centered at v . For
a hyperrectangle S ⊆ Rn and δ > 0, grid (S,δ ), is a collection of

2δ -separated points along axis parallel planes such that the δ -balls
around these points cover S . In that case, we say that the grid is of

size δ . For a compact set S ⊂ Rn , diam(S ) = maxx1,x2∈S ∥x1 − x2∥

denotes its diameter. We denote by [a;b], the set of integers in Z
that belong to the interval [a,b]. For a matrix A, λmax (A) denotes
the largest eigenvalue of A. Note that for any positive definite

matrix A, λmax (A) ≤ �A�, where � · � is any matrix norm. For

a finite set S , we denote by |S | the cardinality of S . We say that

a continuous function γ : R≥0 → R≥0 belongs to class-K if it is

strictly increasing and γ (0) = 0.

Definition 1. Let U be a compact set in Rm and umax > 0 be the
maximum infinity norm of a vector in U . Fix µ and η ≥ 0 and let
U (µ,η,umax ) be the set of all piecewise-right-continuous functions u
that map R≥0 toU and satisfy:

∥u (t + τ ) − u (t )∥ ≤ µτ + η, (1)

for all t and τ ≥ 0.

Geometrically, Definition 1means that for anyu ∈ U (µ,η,umax ),
and any t ∈ R≥0, and any τ ≥ 0, u (t + τ ) should belong to the

truncatedm-dimensional cone with radius η and rate of divergence

µ as shown in Figure 1.

Figure 1: Constraints on the variation of u

This constraint is similar to Assumption 1 in [6] which was

made on the variation of the system matrix of a time-varying linear

dynamical system to relate its stability conditions to those of a

switched linear dynamical system with slow switching. Also, it is

similar to the slow switching assumption made by Hesphana and

Morse in [7] to prove the stability of switched systems with stable

subsystems.

We will fix umax , µ and η throughout the paper. Let u be a func-

tion in U (µ,η,umax ). Then, for all t ∈ R≥0, define the right and

left hand limits of u at t as follows:

u (t+) = lim

s→t+
u (s ) and u (t−) = lim

s→t−
u (s ).

If t is a point of discontinuity, we define u (t ) = u (t+).
Note that for any umax > 0, and for any set of piecewise contin-

uous functions that map time to the correspondingU , there always

exists η and µ that satisfy inequality (1) for all functions u in the

set. For example, with η = 2umax , the bound is satisfied trivially for

any µ ≥ 0. In other words, for η = 2umax , u can have many points

of discontinuity (jumps), in a short interval, each with a difference
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between the before and after values being as large as having a norm

of 2umax . On the other hand, having η = 0, means that all the func-

tions inU (µ,η,umax ) are Lipschitz continuous with constant µ. In
general, knowing that u cannot vary much, i.e. having few points

of discontinuity or small gradient, can be expressed by setting µ
and η to smaller values. η restricts the maximum norm of a jump

and µ restricts the number of large jumps in a short interval.

3 NON-AUTONOMOUS DYNAMICAL
SYSTEMS AND ENTROPY

We consider a dynamical system of the form:

ẋ (t ) = f (x (t ),u (t )), (2)

where t ∈ R≥0, the initial state x0 is in a compact set K ⊂ Rn ,
u ∈ U (µ,η,umax ) and f : Rn × Rm → Rn . The function f is glob-

ally Lipschitz with constants Lx and Lu , and piecewise-continuous

Jacobian matrices Jx =
∂f (x,u )

∂x and Ju =
∂f (x,u )

∂u , with respect to

the first and second arguments, respectively.

Once an initial state x0 and an input function u ∈ U (µ,η,umax )
are fixed, the solution exists and is unique. We denote it by ξx0,u :

R≥0 → R
n
.

Given a time bound T > 0, initial state x0 ∈ K and an input

signal u ∈ U (µ,η,umax ), we say that a function z : [0,T ]→ Rn is

ε-approximating for the trajectory ξx0,u over the interval [0,T ], if

∥z (t ) − ξx0,u (t )∥ ≤ ε, (3)

for all t ∈ [0,T ]. We say that a set of functionsZ := {z | z : [0,T ]→

Rn } is (T , ε,K )-approximating for system (2), if for every x0 ∈ K
and u ∈ U (µ,η,umax ), there exists an ε-approximating function

z ∈ Z for the trajectory ξx0,u over [0,T ]. The minimal cardinality

of such a set is denoted by sest (T , ε,K ).
The entropy of system (2) is defined as follows:

hest (ε,K ) = lim sup

T→∞

1

T
log sest (T , ε,K ). (4)

It represents the exponential growth rate in the number of distin-

guishable trajectories of the system. Hence, it also represents the

bit rate need to be sent by the sensor so that the estimator can

construct a "good" estimate of the state.

Note that the upper bounds on entropywe derive in the following

sections approach infinity as ε approaches zero. This suggests that
the entropy may not stay finite as ε approaches zero. Hence, we do
not take the limit as ε goes to zero in the definition of entropy as is

common in the existing literature [10].

3.1 Relation between entropy and the bit rate
of estimation algorithms

In this section, we show that there is no state estimation algorithm

for system (2) that requires a fixed bit rate smaller than its entropy.

First, let us define state estimation algorithms which guarantee that

the estimation error is bounded ε > 0:

Definition 2. A state estimation algorithm for system (2) with a
fixed bit rate is a pair of functions (S, E), where S : Rn × Qs →

Γ × Qs , E : Γ × Qe → ([0,Tp ]→ Rn ) × Qe ,Tp is the sampling time,
Γ is an alphabet with N symbols, for some N ∈ N, andQs andQe are
the sets of internal states of the sensor S and estimator E, respectively.

Figure 2: Block diagram showing the flow of information from the
system to the sensor to the estimator.

S runs at the sensor side and E on the estimator one. S samples the
state of the system each Tp time units and sends to E a symbol from
Γ representing an estimate of the state at the corresponding sampling
time. Finally, E maps the received symbol to an ε-approximating
function of the trajectory for the next Tp time units (see Figure 2).

Now, let us define the bit rate of the algorithm:

br (ε,K ) := lim sup

T→∞

1

T

⌊T/Tp ⌋∑
i=0

logN =
logN

Tp
.

Proposition 1. There is no state estimation algorithm for system
(2) with a fixed bit rate smaller than its entropy.

Proof. The proof is similar to the proof of Proposition 2 in

[17]. For the sake of contradiction, assume that there exists such

an algorithm with a bit rate smaller than hest (ε,K ). Recall that
hest (ε,K ) = lim supT→∞ 1/T log sest (T , ε,K ). Then, for a sufficiently

large T ′, we should have
(l+1) logN

T ′ < 1

T ′ log sest (T
′, ε,K ), where

l = ⌊T ′/Tp⌋. Hence, we get the inequality N l+1 < sest (T
′, ε,K ).

However, N l+1
is the number of possible sequences of symbols of

length l + 1 that can be sent by the sensor over l + 1 iterations.

There are l + 1 instead of l iterations over the interval [0,T ′] since
the sensor starts sending the codewords at t = 0 s. Hence, the num-

ber of functions that can be constructed by the estimator is upper

bounded by N l+1
. Moreover, for any given trajectory of the system,

the output of the estimator is a corresponding ε-approximating

function over the interval [0,T ′]. This is true since the estimator

should be able to construct an ε-approximating function for the cor-

responding trajectory of the system over the interval [0, (l + 1)Tp )
given the codewords sent by the sensor in the first l + 1 iterations.

Hence, the set of functions that can be constructed by the estimator

defines a (K , ε,T ′)-approximating set. But, sest (T
′, ε,K ) is the mini-

mal cardinality of such a set. Therefore, the set of functions that can

be constructed by the algorithm is a (T ′, ε,K )-approximating set

with a cardinality smaller than sest, the supposed minimal one. □

4 ENTROPY UPPER BOUND AND
ALGORITHM

In this section, we derive an upper bound on the entropy of sys-

tem (2) in terms of its parameters and the required bound on the

estimation error, ε . We will need to first upper bound the distance

between any two trajectories of the system in terms of the distance

between the initial states and that between the input signals (Sec-

tion 4.1). Then, in Section 4.2, we will describe a procedure that,

given ε > 0, a time bound T > 0, an initial state x0 ∈ K and an

input u ∈ U (µ,η,umax ), constructs an ε-approximating function

for the trajectory ξx0,u over the interval [0,T ]. We will count the

number of functions that can be produced by this procedure for
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any fixed ε and T (and varying x0 ∈ K and u ∈ U (µ,η,umax )) to
upper bound the cardinality of the minimal approximating set. This

will be used to derive the upper bound on entropy in Section 4.3.

4.1 Local input-to-state discrepancy function
construction

We use a modified version of the definition of local input-to-state

discrepancy as introduced in [8] in order to upper bound the dis-

tance between any two trajectories. We relax the original definition

to include piece-wise continuous input signals and piece-wise con-

tinuous Jacobian matrices.

Definition 3. (Local IS Discrepancy). For system (2), a function
V : X2 → R≥0 is a local input-to-state discrepancy function over a
set X ⊂ Rn and a time interval [t0, t1] ⊂ R≥0 if:

(i) there exist class-K functions ᾱ ,
¯

α such that for any x ,x ′ ∈ K ,

¯

α (∥x − x ′∥) ≤ V (x ,x ′) ≤ ᾱ (∥x − x ′∥), and
(ii) there exist a class-K function in the first argument β : R≥0 ×

R≥0 → R≥0 and a class-K functionγ : R≥0 → R≥0 such that
for anyx0,x

′
0
∈ X andu,u ′ ∈ U (µ,η,umax ), if ξx0,u (t ), ξx ′

0
,u′ (t ) ∈

X for all t ∈ [t0, t1], then for any such t ,

V (ξx ′
0
,u′ (t ), ξx0,u (t )) ≤ β (∥x0−x

′
0
∥, t−t0)+

∫ t

t0

γ (∥u (s )−u ′(s )∥)ds .

(5)

The local discrepancy function V together with β and γ give the

sensitivity of the trajectories of the system to changes in the initial

state and the input. The functions ᾱ ,
¯

α , β ,γ are sometimes called

witnesses of the local IS discrepancy V . Techniques for computing

local discrepancy functions have been presented [4, 5, 8]. Here we

correct and use a result [8] (with proof in the Appendix) for the

sake of completeness.

The following is a correction and straight-forward generalization

of Lemma 15 of [8] to handle systems with piece-wise continuous

inputs (instead of continuous ones).

Lemma 1. The function V (x ,x ′) := ∥x − x ′∥2 is a local IS dis-
crepancy for system (2) over any compact set X ⊂ Rn and interval
[t0, t1] ⊆ R≥0, with

β (y, t − t0) := e2a (t−t0 )y2 and γ (y) := b2e2a (t1−t0 )y2,

where t ∈ [t0, t1],

a := sup

t ∈[t0,t1]

u ∈U (µ,η,umax ),x ∈X

λmax
( Jx + JTx

2

)
+

1

2

and

b := sup

t ∈[t0,t1]

u ∈U (µ,η,umax ),x ∈X

�Ju�.

(6)

Since f is globally Lipschitz continuous in both arguments, one

can infer that a and b are finite over all the input and state spaces.

Wewill denote a global upper bound on a byMx and onb byMu . An

example of such bounds is presented in the following proposition,

with the proof being in the Appendix.

Proposition 2. For any time interval [t0, t1] ⊂ R≥0 and compact
set X ⊂ Rn , a ≤ nL′x +

1

2
and b ≤ m

√
mL′u , where L

′
x and L′u are the

Lipschitz constants of f with respect to each coordinate of the state
and the input respectively.

Therefore, for any τ > 0, t ∈ [0,τ ], x0,x
′
0
∈ Rn , and u,u ′ ∈

U (µ,η,umax ), the squared distance between the trajectories of

ξx0,u and ξx ′
0
,u′ , ∥ξx0,u (t ) − ξx ′

0
,u′ (t )∥

2
, is upper bounded by:

e2Mx t ∥x0 − x
′
0
∥2 +M2

ue
2Mx τ

∫ t

0

∥u (s ) − u ′(s )∥2ds . (7)

Further if f has a continuous Jacobian, one can get tighter lo-

cal bounds on a and b that depend on the set of input functions

U (µ,η,umax ), the compact set X, and the interval [t0, t1] [4].

4.2 Approximating set construction
Let us fix ε > 0 throughout this section. We will describe a pro-

cedure (Algorithm 1) that, given a time bound T > 0, an initial

state x0 ∈ K and an input signal u ∈ U (µ,η,umax ), constructs
an ε-approximating function for the trajectory ξx,u over the time

interval [0,T ]. It follows that the set of functions that can pos-

sibly be constructed by that procedure for different x0 ∈ K and

u ∈ U (µ,η,umax ) is a (T , ε,K )-approximating set for system (2).

An upper bound on its cardinality will give an upper bound on

entropy in the next section.

Algorithm 1 Construction of ε-approximating function.

1: input: T ,Tp , δx , δu
2: S0 ← K ;
3: Cx,0 ← grid (S0,δx );
4: Cu ← grid (U ,δu );
5: i ← 0;

6: while i ≤ ⌊ TTp ⌋ do
7: xi ← ξx0,u (iTp );
8: qx,i ← quantize (xi ,Cx,i );
9: qu,i ← quantize (u (iTp ),Cu );
10: zi ← ξqx,i ,qu,i ;
11: i++; {parameters for next iteration}

12: Si ← B (zi−1 (Tp
−), ε );

13: Cx,i ← grid (Si ,δx );
14: wait(Tp );
15: end while
16: output: {zi : 0 ≤ i ≤ ⌊ TTp ⌋}

The procedure (Algorithm 1) is parameterized by a time horizon

T > 0, a sampling periodTp > 0, two quantization constants δx and

δu > 0. The procedure also uses the initial set K , the input set U ,

and a particular initial state x0 ∈ K and an input u ∈ U (µ,η,umax )
for system (2). The output is a piece-wise continuous function

z : [0,T ]→ Rn that is constructed over each [iTp , (i+1)Tp ) interval

for i ∈ [0; ⌊ TTp ⌋]. Later we will infer several constraints on the

parameters such that the output z is indeed an ε-approximating

function for the given trajectory ξx0,u .

Initially, S0 is set to be the initial set K . Cx,0 is a grid of size

δx over K and Cu is a grid of size δu over U . At the ith iteration,

i ∈ [0; ⌊ TTp ⌋], xi stores the value ξx0,u (iTp ). Then, qx,i is set to be

the quantization of xi with respect to Cx,i . Similarly, qu,i is set to
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be the quantization of u (iTp ) with respect to Cu . With slight abuse

of notation, we will also denote the function of time that maps

the interval [0,Tp ) to qu,i by qu,i , as in line 10, for example. The

variable zi stores the trajectory that results from running system (2)

starting from initial state qx,i , with input signal qu,i , and running

for Tp time units. After that, i is incremented by 1 and the next

iteration variables Si andCx,i are initialized. Finally, the procedure

outputs the concatenation of the zi ’s, for all i ∈ [0; ⌊ TTp ⌋] that is

denoted later by the function z : [0,T ]→ Rn .
In the following lemma, we show that if the parameters of the

procedure Tp , δx and δu , are small enough, then the output is an

ε-approximating function for ξx0,u .

Lemma 2. Fix a constant k ∈ (0, 1) and the parameters Tp ,δx , and
δu , such that:

(1) ε
√
k ≥ δxe

MxTp , and

(2) ε
√

1 − k ≥ Mue
MxTp

√
1

3
µ2Tp 3 + (δu + η)µTp 2 + (δu + η)2Tp .

Then, for any x0 ∈ K and u ∈ U (µ,η,umax ), for all i ∈ [0; ⌊ TTp ⌋],
and for all t ∈ [iTp , (i + 1)Tp ),

(i) xi ∈ Si ,
(ii) ∥zi (t − iTp ) − ξxi ,ui (t − iTp )∥ ≤ ε ,

where ui (t ) := u (iTp + t ), the ith piece of the input signal of size Tp .

Proof. First, fix t ∈ [0,T ] and let i = ⌊ tTp ⌋. Then,

∥ξxi ,ui (t − iTp ) − ξqx,i ,qu,i (t − iTp )∥
2

≤ ∥xi − qx,i ∥
2e2Mx (t−iTp ) +M2

ue
2MxTp

∫ t

iTp
∥u (s ) − qu,i ∥

2ds

[by (7)]

≤ ∥xi − qx,i ∥
2e2Mx (t−iTp )

+M2

ue
2MxTp

∫ t

iTp

(
∥ui (0) − qu,i ∥ + ∥u (s ) − ui (0)∥

)
2

ds

[by triangular inequality]

≤ δ2

xe
2Mx (t−iTp )

+M2

ue
2MxTp

∫ t

iTp

(
δ2

u + 2δu ∥u (s ) − ui (0)∥ + ∥u (s ) − ui (0)∥
2

)
ds,

(8)

where the last inequality follows from the fact that ∥u (iTp )−qu,i ∥ ≤
δu , ∥xi −qx,i ∥ ≤ δx . But, we know from (1) that there exist µ and η
such that for all u ∈ U (µ,η,umax ), ∥u (s )−u (iTp )∥ ≤ µ (s − iTp )+η.

Hence,

∫ t
iTp
∥u (s ) − ui (0)∥ds ≤

∫ t
iTp

(µ (s − iTp ) + η)ds =
µ
2
(t −

iTp )
2 + η(t − iTp ) ≤

µ
2
Tp

2 + ηTp , since t − iTp ≤ Tp . Similarly,∫ t
iTp
∥u (s ) −ui (0)∥

2ds ≤
∫ t
iTp

(µ2 (s − iTp )
2 + 2µη(s − iTp ) +η

2)ds ≤

1

3
µ2Tp

3 + µηTp
2 + η2Tp . Substituting this in (8) leads to:

∥ξxi ,ui (t − iTp ) − ξqx,i ,qu,i (t − iTp )∥
2

≤ δ2

xe
2MxTp +M2

ue
2MxTp 1

3

µ2Tp
3 + (δu + η)µTp

2 + (δu + η)
2Tp

≤ kε2 + (1 − k )ε2 = ε2,

where the last inequality follows by substituting δx , δu and Tp by

their upper bounds stated in the statement of the lemma. Hence, for

any t ∈ [0,T ], for i = ⌊ tTp ⌋, ∥zi (t − iTp ) − ξxi ,ui (t )∥ ≤ ε . Therefore,

for all i ∈ [1; ⌊ TTp ⌋] and t ∈ [0,T ], xi ∈ B (zi−1 (Tp ), ε ) = Si . □

Corollary 1. Under the same conditions of Lemma 2, for all t ∈
[0,T ],

∥z (t ) − ξx0,u (t )∥ ≤ ε . (9)

Now that we proved that, for a given trajectory ξx0,u , the output

of Algorithm 1 is an ε-approximating function, one can conclude

that the set of all functions that can be constructed by Algorithm 1

for any input trajectory ξx0,u , where x0 ∈ K and u ∈ U (µ,η,umax ),
is a (T , ε,K )-approximating set. Therefore, in the following lemma,

we will compute an upper bound on the number of these functions

to obtain upper bound on sest (T , ε,K ).
Before stating the lemma, note that whenever we choose k , we

fix δx = ε
√
ke−MxTp

from now on, to simplify the presentation.

Lemma 3. For fixed T ≥ 0, k ∈ (0, 1), and δu and Tp that satisfy
the conditions of Lemma 2, the number of functions that can be con-
structed by Algorithm 1 for all possible x0 ∈ K andu ∈ U (µ,η,umax ),
is upper bounded by:

|Cx,0 |( |Cx,1 | |Cu |)
⌊ TTp
⌋+1

≤ ⌈
diam(K )

2ε
√
ke−MxTp

⌉n
(
⌈

1

√
k
eMxTp ⌉n ⌈

umax
δu
⌉m

) ( ⌊ TTp ⌋+1

)
.

Proof. To construct an ε-approximating function for a given

trajectory ξx,u , at an iteration i ∈ [0; ⌊ tTp ⌋], Algorithm 1 picks one

point in Cx,i and picks one point in Cu for each of the ⌊T/Tp⌋ +

1 iterations. Hence, the number of different outputs that it can

produce is upper bounded by:

|Cu |
⌊T/Tp ⌋+1

⌊T/Tp ⌋∏
i=0

|Cx,i |. (10)

Now, note that K ⊆ B (vc , diam(K )), for some vc ∈ R
n
. Hence,

in each of the n dimensions in the state space, we should par-

tition a segment of length diam(K ) to smaller segments of size

2δx = 2

√
kεe−MxTp

to construct the grid Cx,0. Then, |Cx,0 | ≤

⌈
diam(K )

2

√
kεe−MxTp

⌉n . Similarly, for all i > 0, Si = B (zi−1 (Tp
−), ε ). Hence,

|Cx,i | ≤ ⌈
2ε

2

√
kεe−MxTp

⌉n = ⌈ 1√
k
eMxTp ⌉n , since diam(Si ) = 2ε . In

each of the m dimensions, u (t ) is bounded between −umax and

umax . Hence, diam(U ) = 2umax and |Cu | ≤ ⌈
umax
δu
⌉m . Substituting

these values in (10) leads to the upper bound in the lemma. □

4.3 Entropy upper bound
The following proposition gives an upper bound on the entropy

of system (2) in terms of k , Tp and δu . This form provides an an

intermediate level bound where the parameters of Algorithm 1

directly appear in its expression, before providing the more complex

upper bound that depends directly on the system parameters. It

shows the effect of our choice of the parameters of Algorithm 1.

It will also help us recover the bound on estimation entropy of

systems with no inputs in [10] in Corollary 2. Moreover, it provides
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insights about the choices of the parameters that simplify the bound.

Proposition 3. For a fixed k ∈ (0, 1), Tp and δu that satisfy the
conditions in Lemma 2, the entropy hest (ε,K ) of system (2) is upper
bounded by:

nMx
√
k ln 2

+
n

Tp
log(1 +

√
ke−MxTp ) +

m

Tp
log⌈

umax
δu
⌉ .

Proof. We substitute the upper bound on the cardinality of

the minimal approximating set obtained in the previous section in

definition (4) to get:

hest (ε,K ) = lim sup

T→∞

1

T
log sest (T , ε )

≤ lim sup

T→∞

1

T
log |Cx,0 |( |Cx,1 | |Cu |)

⌊ TTp
⌋+1

[by Lemma 3]

≤ lim sup

T→∞

1

T
log(⌈

1

√
k
eMxTp ⌉n ⌈

umax
δu
⌉m )

( ⌊ TTp ⌋+1)

[|Cx,0 | is constant]

= lim sup

T→∞

1 + Tp/T

Tp
n log⌈

1

√
k
eMxTp ⌉

+ lim sup

T→∞

1 + Tp/T

Tp
m log⌈

umax
δu
⌉

≤
n

Tp
log⌈

1

√
k
eMxTp ⌉ +

m

Tp
log⌈

umax
δu
⌉

≤
nMx
√
k ln 2

+
n

Tp
log(1 +

√
ke−MxTp ) +

m

Tp
log⌈

umax
δu
⌉ .

□

We show that if the bound on the input norm is negligible, we

recover the upper bound on estimation entropy of
nLx
ln 2

derived in

[10] with the only difference being the replacement of Lx by Mx
(which is upper bounded by nLx + 1/2).

Corollary 2. Given any ε > 0, lim

umax→0

h(ε,K ) ≤ nMx
ln 2

.

Proof. (Sketch) First, we will fix η to 2umax and µ to zero. Re-

call that setting them to these values satisfies inequality (1). Let

k be approximately equal to 1. Moreover, fix δu to be equal to

umax . Doing this will set the last term (log⌈
umax
δu
⌉) in the bound in

Proposition 3 to zero. Recall that we also fixed δx to be equal to

ε
√
ke−MxTp

. Now, observe that there exists aTp > 0 that would sat-

isfy the conditions in Lemma 2. Hence, by Proposition 3,hest (ε,K ) ≤
nMx√
k ln 2

+ n
Tp log(1 +

√
ke−MxTp ). Moreover, as umax decreases to

zero, η and δu go to zero. Hence, the conditions of Lemma 2 become

satisfied with larger values of Tp . This would result in a negligible

second term in the bound which in turn results in an upper bound

of
nMx√
k ln 2

which is almost
nMx
ln 2

. □

The following proposition presents an upper bound on the en-

tropy of system (2). We assume, without loss of generality, that µ
and η > 0. That is not a restrictive choice since, for a given µ and η
that satisfy (1), any larger values would still satisfy it.

Proposition 4. Fix ε > 0, k ∈ (0, 1) and δu ∈ (0,umax] and let

ρ (k,δu ) =
(δu + η

µ

) (
− 1 + 3

√
1 +

( ε

Mue

)
2 3µ (1 − k )

(δu + η)3

)
. (11)

Then, the entropy of system (2) is upper bounded by:

nMx
√
k ln 2

+
1

min{ρ (k,δu ), 1/Mx }

(
n log(1 +

√
k ) +m log⌈

umax
δu
⌉
)
.

For example, k and δu can be 1/2 and η, respectively.

Proof. To prove this result, it is sufficient to show that assigning

Tp =



ρ (k,δu ), if ρ (k,δu ) ≤ 1/Mx and

1/Mx , otherwise,

satisfies condition (2) in Lemma 2. Then, the result will follow from

plugging in this value in Proposition 3. First, assume that Tp is less

than or equal to 1/Mx . Then, eMxTp
in condition (2) in Lemma 2 can

be upper bounded by e . Thus, condition (2) is satisfied if the value

of Tp satisfies the following 3
rd

order polynomial inequality:

Tp
3 + 3

(δu + η
µ

)
Tp

2 + 3

(δu + η
µ

)
2

Tp − 3(1 − k )
( ε

µMue

)
2

≤ 0.

(12)

The only real root of the polynomial on the LHS is:

(δu + η
µ

) (
− 1 + 3

√
1 +

( ε

Mue

)
2 3µ (1 − k )

(δu + η)3

)
= ρ (k,δu ). (13)

Thus, we set Tp to ρ (k,δu ), as it is the largest value that satisfies

the needed condition. If ρ (k,δu ) >
1

Mx
, assigning Tp to

1

Mx
would

still satisfy the conditions of Lemma 2, hence the bound. □

The following corollary gives a more concise upper bound if ε is
small enough with respect to the other parameters.

Corollary 3. Let ν1 :=
(

ε
Mue

)
2 3µ (1−k )
(δu+η)3

. If ν1 ≤ 1, then the entropy

of system (2) is upper bounded by: nMx√
k ln 2

+

1

min

{( δu+η
µ

) ν1

3
(1 − ν1

3
), 1

Mx

}
(
n log(1 +

√
k ) +m log⌈

umax
δu
⌉
)
.

(14)

Proof. Since ν1 ≤ 1,
3

√
1 + ν1 > 1 +

ν1

3
−

ν 2

1

9
. Then, ρ (k,δu ) is

lower bounded by:(δu + η
µ

) (
− 1 + 1 +

ν1

3

−
ν2

1

9

)
≥

(δu + η
µ

) ν1

3

(1 −
ν1

3

). (15)

Thus, if we set Tp to min{
4ν1

3
(1 − ν1

3
), 1

Mx
}, we get eMxTp ≤ e .

Moreover, one can easily check that this assignment satisfies the

conditions of Lemma 2. If we substitute this value in Proposition 3,

we get the corollary. □

Remember that so far we are assuming that u ∈ U (µ,η,umax ),
which means it is piecewise-continuous with bounded variation.

Now, if we restrict the input signal furthermore to be Lipschitz

continuous with Lipschitz constant Lv , then for all t ≥ 0 and τ > 0,

∥u (t + τ ) − u (t )∥ ≤ Lvτ . This leads to the following corollary.
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Corollary 4. If the input signal u is Lipschitz continuous with Lip-
schitz constant Lv , the entropy of system (2) has the same upper
bounds as in Proposition 4 and Corollary 3 with µ replaced by Lv and
η by zero.

An example: Harrier jet
We study the Harrier “jump jet” model from [1]. The dynamics of

the system is given by:

ẋ1 = x2; ẋ2 = −д sinθ1 −
c

m′
x2 +

u1

m′
cosθ1 −

u2

m′
sinθ1

ẏ1 = y2; ẏ2 = д(cosθ1 − 1) −
c

m′
y2 +

u1

m′
sinθ1 +

u2

m′
cosθ1

˙θ1 = θ2;
˙θ2 =

r

J
u1,

where (x1,y1,θ1) are the position and the orientation of the center

of mass of the aircraft in the vertical plane, and (x2,y2,θ2) are
the corresponding time derivatives. The mass of the aircraft ism′,
the moment of inertia is J , the gravitational constant is д, and the

damping coefficient is c . The Harrier uses maneuvering thrusters

for vertical take-off and landing. The inputs u1 and u2 are the

force vectors generated by the main downward thruster and the

maneuvering thrusters.

To compute the upper bound on entropy, we need to find the

parametersMx ,Mu ,umax , µ, and η for the system. To computeMx ,

we compute the Lipschitz constant of f with respect to each of the

coordinates in the state vector. Then, we use Proposition 2, to get

Mx = nL
′
x +

1

2
. To compute the Lipschitz constant, we compute the

partial derivative of f with respect to each coordinate and use an

upper bound on the infinity norm of each of the resulting vectors.

We get L′x = д+2
umax
m′ to be the maximum of these norms, and thus

Mx = 6д + 12
umax
m′ +

1

2
. We getMu = 2

√
2L′u in a similar manner.

Fixing umax = 50, m′ = 100, д = 9.81, r = 5, and J = 50, we

get Mx = 83.36 and Mu = 0.2828. Now, suppose that µ = 10 and

η = 20 and the needed estimation accuracy ε = 0.5. Therefore,

if we choose k to be equal to
1

2
and δu to be equal to η (i.e. 20),

then ν1 = 9.915 × 10
−5
,

( δu+η
µ

) ν1

3
(1 − ν1

3
) = 1.32 × 10

−4 ≤ 1

Mx
=

0.012 ≤ 1. Then, using Corollary 3, we get hest (0.5,K ) ≤ 60017. We

get the same upper bound if we instead use Proposition 4. However,

if µ = 0.1 and η = 45, and letting again δu = η, ν1 will be equal to

8.7047 × 10
−8

and the bound will be equal to 254879. Hence, the

bound increased significantly as the the bounds on the variation

of the input signal were relaxed. Suppose now that we take the

other extreme, where we restrict the allowed size of jumps in the

input signal by decreasing η to 0.1 while allowing large continuous

variations by increasing µ to 20. In that case, the input signals are

almost continuous. ν1 will be equal to 1586.44 so Corollary 3 can not

be used and we should resort to Proposition 4 to get a bound. One

can compute ρ (k,δu ) to get 0.1067 which is larger than
1

Mx
= 0.012.

Hence, the entropy is bounded by 2515 which is much less than the

two previous bounds. The effect of the different parameters on the

entropy upper bound will be discussed formally in the next section.

4.4 Entropy upper bound discussion
In this section we discuss how the bounds in Proposition 4 and

Corollary 3 vary while varying the different system parameters.

Remember that µ and η bound the variation of the input signal and

umax bounds its norm at any instant in time.

(1) The upper bounds in Proposition 4 and Corollary 3 increase

quadratically with η. That is expected as larger jumps in

the input signal would lead to a higher uncertainty in the

system’s state.

(2) As µ increases, the bound in Corollary 3 will increase in

the order of
1

1−O (µ ) while the bound in Proposition 4 will

increase as O (µ2/3).
(3) The bounds in both the proposition and the corollary in-

crease logarithmically in umax . This means that the growth

in the uncertainty in the state estimate because of the in-

crease in the bound on the input is at least exponentially

slower than the growth caused by its faster variation.

(4) Finally, as ε goes to zero, the upper bound in Proposition 4

grows as Ω(ε−2/3) and that of Corollary 3 as Ω(ε−2).

5 SYSTEMS WITH LINEAR INPUTS
In this section, we provide tighter bounds on entropy than that

of Proposition 4 for systems where the input affects the dynamics

linearly. Formally, we consider dynamical systems of the form:

ẋ (t ) = f (x (t )) + u (t ), (16)

where the initial state x0 ∈ K and u ∈ U (µ,η,umax ), as before.
We will show in the next section a new IS discrepancy function

designed to utilize the linear relation between the input and the

state dynamics of the system. Then, in the following section, we

will use Algorithm 1 to construct ε-approximating functions for the

trajectories of this system using the new IS discrepancy function.

After that, we will show that the number of functions that can

be constructed by the modified algorithm is the same as that of

Lemma 3 in terms of its parameters δx , δu and Tp . However, larger
values of these parameters would suffice to get ε-approximating

function. Finally, we will compute the new upper bound and present

an example to show the difference between the two bounds.

5.1 Input-to-state discrepancy function
construction for systems with linear inputs

In this section, we will show that we can get a tighter upper bound

on the distance between two different trajectories than that of (7).

Basically, for any two initial states x0,x
′
0
∈ K , two input signals

u,u ′ ∈ U (µ,η,umax ), and for all t ∈ R≥0,

∥ξx0,u (t ) − ξx ′
0
,u′ (t )∥

= ∥x0 +

∫ t

0

(
f (ξx0,u (s )) + u (s )

)
ds

− x ′
0
−

∫ t

0

(
f (ξx ′

0
,u′ (s )) + u

′(s )
)
ds ∥

≤ ∥x0 − x
′
0
∥ +

∫ t

0

∥ f (ξx0,u (s )) − f (ξx ′
0
,u′ (s ))∥ds

+

∫ t

0

∥u (s ) − u ′(s )∥ds

[by triangular inequality]
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≤ ∥x0 − x
′
0
∥ +

∫ t

0

Lx ∥ξx0,u (s ) − ξx ′
0
,u′ (s )∥ds

+

∫ t

0

∥u (s ) − u ′(s )∥ds

[by the Lipschitz continuity of f ]

≤
(
∥x0 − x

′
0
∥ +

∫ t

0

∥u (s ) − u ′(s )∥ds
)
eLx t , (17)

where the last inequality follows from the Bellman-Gronwall in-

equality. Notice that we have a linear discrepancy function instead

of the quadratic one we got in (7). This means that the sensitivity

of this system with respect to changes in the input is smaller than

that of nonlinear systems in general.

5.2 Approximating set construction
Let us fix ε > 0 for this section. To construct an ε-approximating

function for a given trajectory, we use Algorithm 1 again. The

following lemma is similar to Lemma 2 as it specifies the conditions

that the values of δx ,δu , and Tp should satisfy for the output of

Algorithm 1, z, to be an ε-approximating for the system trajectory.

Lemma 4. Fix a constant k ∈ (0, 1) and the parameters Tp ,δx , and
δu , such that:

(1) εk ≥ δxe
LxTp , and

(2) ε (1 − k ) ≥ Tp (
µTp

2
+ η + δu )e

LxTp .

Then, for any x0 ∈ K and u ∈ U (µ,η,umax ), for all i ∈ [0; ⌊ TTp ⌋],
and for all t ∈ [iTp , (i + 1)Tp ),

(i) xi ∈ Si ,
(ii) ∥zi (t − iTp ) − ξxi ,ui (t − iTp )∥ ≤ ε ,

where ui (t ) := u (iTp + t ), the ith piece of the input signal of size Tp .

Proof. Fix x0 ∈ K and u ∈ U (µ,η,umax ) and let t ′ = t − iTp .
Then, by (17),

∥zi (t ) − ξxi ,ui (t )∥

≤
(
∥xi − qx,i ∥ +

∫ t ′

0

∥ui (s ) − qu,i ∥ds
)
eLx t

′

[by (17)]

≤
(
∥xi − qx,i ∥ +

∫ t ′

0

(
∥ui (s ) − ui (0)∥ + ∥ui (0) − qu,i ∥

)
ds

)
eLx t

′

[by triangular inequality]

≤
(
δx +

∫ t ′

0

∥ui (s ) − ui (0)∥ds + t
′δu

)
eLx t

′

,

[since ∥xi − qx,i ∥ ≤ δx , ∥ui (0) − qu,i ∥ ≤ δu ]

≤
(
δx +

∫ t ′

0

(µs + η)ds + t ′δu
)
eLx t

′

[by (1)]

≤
(
δx +Tpδu +Tp (

µTp

2

+ η)
)
eLxTp

[since t ′ ≤ Tp ]

≤ kε + (1 − k )ε = ε, (18)

where the last inequality follows from the assumption in the Lemma

onTp , δx and δu . Hence, for all i ∈ [0, ⌊ TTp ⌋] and t ∈ [iTp , (i+1)Tp ],

xi ∈ Si and ∥ξxi ,ui (t ) − ξqx,i ,qu,i (t )∥ ≤ ε . □

Corollary 5. Under the same conditions of Lemma 4, the output z
of Algorithm 1 is an ε-approximating function of the corresponding
trajectory of system (16). Moreover, since we are still using Algorithm 1
to construct the approximating function, we have the same upper
bound on entropy of system (16) as in Proposition 3 in terms of the
new values k , δu and Tp that satisfy the new constraints.

5.3 Entropy upper bound on systems with
linear inputs

It follows from the last corollary in the previous section that we

can substitute the upper bounds on the parameters δu , δx and Tp
assumed in Lemma 4 to get the new upper bound. This is shown in

the following proposition.

Proposition 5. Fix ε > 0, k ∈ (0, 1) and δu ∈ (0,umax ] and let

ρ (k,δu ) =
(η + δu

µ

) (
− 1 +

√
1 +

2µ (1 − k )ε

(η + δu )2

)
. (19)

Then, the entropy of system (16) is upper bounded by:

nMx
k ln 2

+
1

min{ρ (k,δu ), 1/Lx }

(
n log(1 + k ) +m log⌈

umax
δu
⌉
)
. (20)

For example, k and δu can be 1/2 and η, respectively.

Proof. This proof is almost the same as that of that of Propo-

sition 4. Let us assume first that Tp ≤ 1/Lx , then eLxTp is upper

bounded by e . In that case, to get a value ofTp that satisfies the con-

dition of Lemma 4, we solve the following polynomial inequality:

µTp
2

2

+Tp (η + δu ) − (1 − k )ε ≤ 0, (21)

which has the following roots:

(η + δu
µ

) (
− 1 ±

√
1 +

2µ (1 − k )ε

(η + δu )2

)
. (22)

First, note that the smaller root is negative. Thus, assigning Tp to

any value between zero and the larger root, ρ (k,δu ) would satisfy

the conditions of Lemma 4. Hence, if ρ (k,δu ) ≤ 1/Lx , and we assign

Tp to it, we get the first bound in the proposition. If ρ (k,δu ) > 1/Lx ,

assigning Tp to 1/Lx would still satisfy the conditions of Lemma 4.

Hence, we get the second part of the bound. □

As before, we can get a more concise bound if ε is small enough

with respect to the other parameters. This is shown in the following

corollary.

Corollary 6. Let ν2 =
2µ (1−k )ε
(η+δu )2

. If ν2 ≤ 1, then the entropy of

system (16) is upper bounded by: nMx
k ln 2
+

1

min

{( δu+η
µ

) ν2

2
(1 − ν2

4
), 1

Lx

}
(
n log(1 + k ) +m log⌈

umax
δu
⌉
)
.

(23)
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Proof. Since

√
1 + ν2 ≥ 1 +

ν2

2
−

ν 2

2

8
if ν ≤ 1, the larger root is

lower bounded by:(η + δu
µ

) (
− 1 + 1 +

ν2

2

−
ν2

2

8

)
=

(η + δu
µ

ν2

2

) (
1 −

ν2

4

)
. (24)

Setting Tp to this value in the conditions of Lemma 4 shows that

they are satisfied. Moreover, substituting these values instead of

ρ (k,δu ) in the bound of Proposition 5 results in the bound. □

In the following, we show how to compute the derived upper

bound for a standard example in the dynamical systems literature

and compare the values of the two upper bounds that we can get

for the same example.

A second example: Pendulum
Consider a pendulum system:

ẋ1 = x2; ẋ2 = −
Mдl

I
sinx1 +

u

I
,

where I is the moment of inertia of the pendulum around the pivot

point, u is its input from a DC motor, x1 is the angular position

(with respect to y-axis), x2 is the angular speed, and l is the length,
andM is the mass.

Consider the case when
Mдl
I = 0.98, I = 1, umax = 2, µ = 0.1

and η = 1. Jacobians of f are:

Jx =


0 1

−
Mдl
I cosx1 0


Ju =

[
0 0

0 1/I

]
.

Hence, �Jx�∞ = 1 and thus Mx =
3

2
, �Ju� = λmax (J

T
u Ju ) = I2 =

0.96, and Mu = 0.96. We shall compute the entropy bounds for

estimation accuracy ε = 0.01.

Hence, if we use the bound of Proposition 4 or Corollary 3, we

get ν1 = 2.75× 10
−7

and

( δu+η
µ

) ν1

3
(1− ν1

3
) = 1.836× 10

−6 ≤ 1

Mx
=

0.667, which means hest (0.01,K ) ≤ 1385442 bps. Since the input

linearly affects the dynamics, we can also use Proposition 5, which

gives ν2 = 2.5 × 10
−4

and

( δu+η
µ

) ν2

2
(1 − ν2

4
) = 5 × 10

−3
and hence

hest (0.01,K ) ≤ 515 bps. As we can see from this example, the new

bound can be much tighter than that in Proposition 4.

6 CONCLUSION AND FUTURE DIRECTIONS
We presented a notion of topological entropy as a lower bound on

the needed bit rate to estimate the state of a nonlinear dynamical

system with inputs. We computed an upper bound on entropy and

discussed how the different systems parameters, namely µ, η, umax
and ε , affect it. We showed that we recover (within a O (n) factor)
the upper bound on estimation entropy of autonomous systems in

[10] as the bound on the input decreases to zero. We applied these

results to compute the bit-rate needed to estimate the states of two

example systems. We also showed how the bit-rate estimates can be

improved when the inputs enter linearly. In the future, we plan to

apply this theory to get bounds on the entropy of switched systems

with bounded and average dwell times and to apply it to a network

of dynamical systems.
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Proposition 6. For any differentiable f : Rn × Rm → Rn , for any
x ,x ′ ∈ Rn , any u,u ′ ∈ Rm :

f (x ′,u ′) − f (x ,u) =

( ∫
1

0

Jx (x + (x ′ − x )s,u ′)ds

)
(x ′ − x )

+

( ∫
1

0

Ju (x ,u + (u ′ − u)τ )dτ

)
(u ′ − u).

Lemma 1. The function V (x ,x ′) := ∥x − x ′∥2 is a local IS dis-
crepancy for system (2) over any compact set X ⊂ Rn and interval
[t0, t1] ⊆ R≥0, with

β (y, t − t0) := e2a (t−t0 )y2 and γ (y) := b2e2a (t1−t0 )y2,

where t ∈ [t0, t1],

a := sup

t ∈[t0,t1]

u ∈U (µ,η,umax ),x ∈X

λmax
( Jx + JTx

2

)
+

1

2

and

b := sup

t ∈[t0,t1]

u ∈U (µ,η,umax ),x ∈X

�Ju�.

(6)

Proof. Let x and x ′ ∈ K , and u and u ′ ∈ U . Define y (t ) =
ξx ′,u′ (t ) − ξx,u (t ) and v (t ) = u ′(t ) − u (t ). For a t ∈ R≥0, using

proposition (6), we have

ẏ (t ) = f (ξx ′,u′ (t ),u
′(t )) − f (ξx,u (t ),u (t )),

=

( ∫
1

0

Jx (ξx,u (t ) + sy (t ),u
′(t ))ds

)
y (t )

+

( ∫
1

0

Ju (ξx,u (t ),u (t ) +v (t )τ )dτ

)
v (t ). (25)

We write Jx (ξx,u (t )+sy (t ),u
′(t )) as Jx (t , s ) or simply Jx when the

dependence on t and s is clear from context. Similarly, Ju (ξx,u (t ),u (t )+
v (t )τ ) is written as Ju (t ,τ ) or Ju . Then, differentiating ∥y (t )∥

2
with

respect to t leads to:

d

dt
∥y (t )∥2 =

d

dt
(y (t )Ty (t )) = ẏ (t )Ty (t ) + y (t )T ẏ (t )

= y (t )T
( ∫ 1

0

(JTx + Jx )ds
)
y (t ) +v (t )T

( ∫ 1

0

JTu dτ
)
y (t )

+ y (t )T
( ∫ 1

0

Judτ
)
v (t )

[substituting ẏ (t ) with (25)]

≤ y (t )T
( ∫ 1

0

(JTx + Jx )ds
)
y (t ) + y (t )Ty (t )

+
(( ∫ 1

0

Judτ
)
v (t )

)T (( ∫ 1

0

Judτ
)
v (t )

)
,

(26)

where the inequality follows from the fact that for all w, z ∈ Rn ,
wT z + zTw ≤ wTw + zT z, since 0 ≤ (z − w )T (z − w ) = zT z −

wT z − zTw + wTw . Let λ J (X) = supx ∈X λmax (
Jx+JTx

2
) be the

upper bound of the eigenvalues of the symmetric part of Jx over

X, so Jx + JTx ⪯ 2λ J (K )I . Thus, (26) becomes:

d

dt
∥y (t )∥2 ≤ (2λ J (X) + 1)∥y (t )∥2 + ∥

( ∫ 1

0

Judτ
)
v (t )∥2

≤ 2a∥y (t )∥2 + (b∥v (t )∥)2,

for t ∈ [t0, t1]. Finally, by integrating both sides of the above in-

equality from t0 to t and using Bellman-Gronwall inequality, we

get: ∥y (t )∥2 ≤ e2a (t1−t0 )
(
∥y (0)∥2 +

∫ t
t0

(b∥v (τ )∥)2dτ
)
. □

Proposition 2. For any time interval [t0, t1] ⊂ R≥0 and compact
set X ⊂ Rn , a ≤ nL′x +

1

2
and b ≤ m

√
mL′u , where L

′
x and L′u are the

Lipschitz constants of f with respect to each coordinate of the state
and the input respectively.

Proof. First, Ju and Jx exist since f is differentiable in both

arguments. Second, note that �Ju� ≤
√
m�Ju�∞, where �Ju�∞ =

maxi ∈[n]

∑m
j=1
|(Jx )i, j |, and (Ju )i, j is the entry in the ith row and

jth column of Ju . Moreover, since for all i ∈ [n], j ∈ [m], |(Ju )i, j | ≤
L′u , by Lipschitz continuity of f with respect to u, then �Ju�∞ ≤
mL′u . Hence, �Ju� ≤ m

√
mL′u . Similarly, one can prove that �Jx�∞ ≤

nL′x , since the number of columns is n instead ofm. Therefore,

a ≤ � Jx + JTx
2

�∞ + 1

2

≤
�Jx�∞ + �JTx �∞

2

+
1

2

≤ nL′x +
1

2

, and,

b ≤ m
√
mL′u .

□
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