
c© 2019 Chuchu Fan

FORMAL METHODS FOR SAFE AUTONOMY: DATA-DRIVEN
VERIFICATION, SYNTHESIS, AND APPLICATIONS

BY

CHUCHU FAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Sayan Mitra, Chair
Professor Daniel Liberzon
Professor Richard Murray, California Institute of Technology
Professor William Sanders
Professor Mahesh Viswanathan

Abstract

Autonomous systems are often safety-critical and are expected to work in un-

certain environments. Ensuring design correctness and safety of autonomous

systems has significant financial and legal implications. Existing design and

test methodologies are inadequate for providing the needed level of safety

assurances. Can formal methods provide certifiable trust or assurance for

products with the vagaries of real-world autonomous systems? In this disser-

tation, we try to answer this question in the affirmative by developing new

verification and synthesis algorithms, implementing them in software tools,

and studying their performance on realistic applications.

Verification and synthesis for typical models of real-world autonomous sys-

tems are well known to be theoretically undecidable, and approximate solu-

tions are challenging due to their high dimensionality, nonlinearities, and

their nondeterministic and hybrid nature. In addressing these challenges, we

present (a) data-driven algorithmic verification via reachability analysis of

nonlinear hybrid systems and (b) controller synthesis for high-dimensional

linear systems under disturbances. The key technical developments within

this theme include: (1) The first algorithm for over-approximating reach

sets of general nonlinear models with locally optimal tightness guarantees.

(2) A novel verification framework that can tackle systems with incomplete

models, by treating them as combinations of a “white-box” control graph

and “black-box” simulators. We also provide a learning-based verification

algorithm to provide probabilistic guarantees. (3) An approximate partial

order reduction method to exponentially reduce the number of executions

to be explored for reachability analysis of nondeterministic models of dis-

tributed systems. (4) An algorithm to find a combined open-loop controller

and tracking controller for high-dimensional linear systems to meet reach-

avoid specifications. On the theoretical front, the techniques are armed with

soundness, precision, and relative completeness guarantees. On the exper-

ii

imental side, we show that the techniques can be successfully applied on a

sequence of challenging problems, including a suite of Toyota engine control

models verified for the first time, satellite control systems, and autonomous

driving and ADAS-based maneuvers.

iii

To my son Jayden for brightening up my days with his smile.

iv

Acknowledgments

In retrospect, I had never expected my six-year Ph.D. life to be such a won-

derful experience. I am grateful for receiving a lot of help from my colleagues,

friends, and family. First of all, I am truly lucky to have had Prof. Sayan

Mitra as my advisor. His enthusiasm, dedication, creativity, and perfec-

tionism about research have shaped my personality as a researcher. Sayan

not only gives me a lot of guidance and inspiration as an advisor, but also

understands and supports me as a friend. None of my achievements dur-

ing graduate school, including this dissertation, would be possible without

Sayan’s help.

I am grateful to have the rest of my doctoral committee: Prof. Ma-

hesh Viswanathan, Prof. Richard Murray, Prof. Daniel Liberzon, and Prof.

William Sanders. They have provided invaluable insights, feedback, and sug-

gestions for my dissertation. More importantly, through collaboration and

communication with my doctoral committee, I got to learn how extraordinary

researchers think and solve problems.

This dissertation benefited a lot from my research collaborations with Dr.

Zhenqi Huang, Dr. Xiaoqing Jin, Dr. James Kapinski, Dr. Parasara Sridhar

Duggirala, Mr. Bolun Qi, Mr. Yangge Li, and Mr. Umang Mathur, who will

become a doctor soon. I would also like to thank my other reach collaborators

during my Ph.D., including Prof. Marta Kwiatkowska, Prof. Ulrich Schmid,

Prof. Ezio Bartocci, Prof. Scott Smolka, Prof. Jyotirmoy Deshmukh, and

Mr. Yu Meng, who will also become a doctor in the near future.

Many thanks to Ritwika Ghosh and Hussein Sibaie, for being awesome

labmates who share with me numerous research ideas, give me constant feed-

back and encourage me whenever I lose confidence. I am also very honored to

spend a great time with my colleagues in the Coordinate Science Laboratory

(CSL): Chiao Hsieh, Tianqi Liu, Dawei Sun, Navid Mokhlesi, Kristina Miller,

Rongzhou Li, Sheng Shen, Nirupam Roy, Kaiqing Zhang, just to name a few.

v

I am very thankful to my close research friends, who are also alumni of

UIUC: Dr. Stanley Bak, Prof. Taylor Johnson, and Dr. Yu Wang. These

research friends gave me continuous instructions on moving forward on my

research road. I am grateful to the ECE Editorial Services, particularly

James Hutchinson, for carefully proofreading this dissertation. I would also

like to express my appreciation to the National Science Foundation and Siebel

Energy Institute for funding my position as a graduate research assistant.

I would like to take this opportunity to thank my long-time friends: Yichi

Zhang, Zhenming Xiong, Fumeng Wang, and Nan Sun. They knew me back

in the day when I had nothing but dreams. We lived on different continents

and barely saw each other over the past six years. But I knew when I wanted

to talk, especially in hard times, they were always there.

I am greatly indebted to my husband Qiang. Qiang can become anyone

he wants to be, but he chooses to be a great husband and always gives up a

lot to support my dreams. I am particularly grateful to my parents for their

unconditional love. My parents have literally taken care of every aspect of

my and my son’s life during the past few years, and especially when I was

working on my dissertation. Thanks to my son Jayden for being a constant

source of happiness. The world is full of uncertainties, and that is why I

work on verification. Luckily, I know your love to me is beyond verification.

vi

Table of Contents

List of Abbreviations and Math Notations ix

Chapter 1 Introduction . 1
1.1 Locally Optimal Guaranteed Reachability for Nonlinear

Dynamics . 4
1.2 Verification of Black-box Components with Probabilistic

Guarantees . 5
1.3 Approximate Partial Order Reduction for Distributed Au-

tonomous Systems . 6
1.4 Control Synthesis of Large-dimensional Systems 7
1.5 Summary of Contributions . 8
1.6 Dissertation Structure . 9

Chapter 2 Mathematical Preliminaries 10
2.1 Vectors and Matrices . 10
2.2 Sets . 14
2.3 Functions . 15

Chapter 3 Models of Autonomous Systems 16
3.1 Discrete-time Transition Systems 16
3.2 Trajectories and Closures . 20
3.3 Dynamical Systems . 21
3.4 Hybrid Systems . 23

Chapter 4 Data-driven Verification 28
4.1 Introduction . 28
4.2 Related Work on Verification 30
4.3 Simulation and Reachtube . 35
4.4 Discrepancy Function . 36
4.5 Verification Algorithm . 38
4.6 Summary . 42

Chapter 5 Computing Discrepancy 43
5.1 Introduction . 43
5.2 Linear Models . 44

vii

5.3 Nonlinear Models: Optimization-based Approaches 45
5.4 Nonlinear Models: Local Discrepancy 47
5.5 Reachtube Computation for Hybrid System 61
5.6 Summary . 70

Chapter 6 Verification of Models with Black-box Components 71
6.1 Introduction . 72
6.2 Hybrid Systems with Black-box Modules 74
6.3 Learning Discrepancy from Simulations 75
6.4 Example: ADAS and Autonomous Driving Control 80
6.5 Example: Analyzing Risk in Automatic Emergency Brak-

ing Systems . 83
6.6 Other Examples: Powertrain, Spacecraft, and Gear Trans-

mission . 90
6.7 Formal Reasonings on Hybrid Systems with Black-box Modules 92
6.8 Experiments on Behavior Containment Reasoning 98
6.9 Summary . 100

Chapter 7 Approximate Partial Order Reduction 101
7.1 Introduction . 101
7.2 Background . 104
7.3 Independent Actions and Neighboring Executions 106
7.4 Effect of ε-Independent Traces 108
7.5 Reachability with Approximate Partial Order Reduction . . . 112
7.6 Experimental Evaluation of Approximate POR 119
7.7 Summary . 125

Chapter 8 Controller Synthesis for Linear Systems with Reach-
avoid Specification . 126
8.1 Introduction . 126
8.2 Related Work on Synthesis . 129
8.3 Bounded Controller Synthesis Problem on Discrete-time

Linear Control Systems . 133
8.4 Synthesis Algorithm . 135
8.5 RealSyn Implementation and Evaluation 150
8.6 Summary . 152

Chapter 9 Conclusions . 153

References . 156

viii

List of Abbreviations and Math Notations

ADAS Advanced Driving Assist System

AEB Automatic Emergency Brake

ASIL Automotive Safety Integrity Level

CPS Cyber-physical System

DAG Directed Acyclic Graph (DAG)

LP Linear Programming

LQR Linear Quadratic Regulator

MILP Mixed Integer Linear Programming

ML Machine Learning

MPC Model Predictive Control

ODE Ordinary Differential Equation

PAC Probably Approximately Correct

POR Partial Order Reduction

QP Quadratic Programming

SDP Semi-definite Programming

SMT Satisfiability Modulo Theory

B The set of Boolean values

N The set of natural numbers

R The set of all real numbers

R≥0 The set of all nonnegative real numbers

ix

‖x‖p The norm of a vector x

‖A‖p The induced p-norm of a matrix A

λmax(A) The maximum eigenvalue of a symmetric matrix A

λmin(A) The minimum eigenvalue of a symmetric matrix A

µ(A) The matrix measure of a matrix A

ρ(A) The spectral radius of a matrix A

A An interval matrix A

VT(A) Vertex matrices of an interval matrix A

S1 ⊕ S2 The Minkowski sum of two sets S1 and S2

M ⊗ S The coordinate transformation of a set S using a matrix M

hull(S1, S2) The convex hull of two sets S1 and S2

S d k Restrict a set S to the kth component of each element

A Automaton

H Hybrid system

x

Chapter 1

Introduction

Safe autonomous systems are entering many aspect of our lives: robots and

drones are helping with rescuing and delivering; medical devices are being

implanted for health monitoring and drug delivery; self-driving cars are ex-

pected to improve road safety and efficiency. Designers of these complex sys-

tems cannot foresee all corner-cases that may arise in the field, and a single

design defect can wreak havoc across thousands of deployed instances. Ex-

isting design and test methodologies are inadequate for providing the needed

level of safety assurances.

Current approaches to ensure safety mainly rely on large-scale simulations

and field tests, in an iterative bug-fixing process. There are two problems

with that brute-force methodology: cost and coverage. Both the environment

and the autonomous systems have many uncertainties. Simply sampling from

those uncertainties will result in a set of combinatorial choices and simulating

every scenario in the set is expensive; field tests are even more so. For

example, it is estimated that billions of miles of test-driving is necessary in

order to reduce the catastrophic failure rates to less than one per hour [1].

This figure is prohibitive even for large corporations. Second, it is inevitable

that certain scenarios will remain untested, particularly those outside the

so-called operational design domains [2]. Such uncertainties grow as systems

get equipped with machine learning (ML) algorithms, and the test coverage

problem gets exacerbated.

Rigorous approaches based on formal methods and control theory, deployed

properly, can in principle be the first line of defense against design bugs mak-

ing their way into unsafe products [3]. They could transform the conventional

trial-and-error paradigm and improve safety in autonomous systems. Rigor-

ous approaches can, in principle, generate provably correct decision systems,

provide safety guarantees, and perform root-cause analyses. The common

claim that formal techniques do not scale beyond academic problems has

1

been countered by recent results [4, 5, 6], including works [4, 7] that are part

of this dissertation. In this dissertation, we present several computationally

effective formal techniques that can provide useful coverage at an acceptable

cost for designing and analyzing complex real-world autonomous systems.

Terminology The notion of autonomous systems is used in two different

ways in this dissertation. Mathematically, an autonomous system is defined

as a general (possibly nonlinear) dynamical system system with no external

inputs [8]. Alternatively, an autonomous system is a system without human

assistance, such as an autonomous car or robot where hardware and software

work together to solve problems by performing actions. It should be clear

from the context which one is referred to. The integration of computation

with physical processes can also be captured by cyber-physical systems (CPS),

which tightly couple physical processes with software, networks, and sensing.

Requirements, also called specifications or properties of an autonomous sys-

tem, say something about the desired behaviors or performance of the system.

The mathematical model for autonomous systems may be a dynamical [8],

switched [9], or a hybrid system [10]. The former one, dynamical systems,

are defined as a system of ordinary differential equations (ODE) without ex-

plicit independent variable [11]. The later ones, switched systems and hybrid

systems, exhibit both the continuous evolution of the states that describe the

dynamics of physical processes and the discrete changes of the states that

describe the possible states of a computation [12, 13, 14]. The requirement

of an autonomous system may be a safety property, a stability property, or

a temporal logic property [15, 9].

Within the broad area of safe autonomy and CPS, the techniques pre-

sented in this dissertation span two high-level themes: formal verification

and control synthesis.

Verification. A formal verification algorithm takes as input an autonomous

system’s model and a requirement, and decides whether or not all the behav-

iors of the system meet the requirement. If decision is ‘yes’, the algorithm

provides a supporting proof of this fact, which can then be used for cer-

tification, documentation, and for future testing and maintenance. If the

decision is ‘no’, the algorithm produces a supporting counter-example or a

‘bug trace’. This is a particular behavior of the systems resulting from spe-

2

cific initial states and inputs, that violates the requirement.

Synthesis. The controller synthesis question asks whether an input can be

generated for a given system (or a plant) so that it achieves a given specifica-

tion. Algorithms for answering this question hold the promise of automating

controller design. They have the potential to yield high-assurance systems

that are correct-by-construction, and even negative answers to the question

can convey insights about unrealizability of specifications.

Challenges. Verification and synthesis problems are challenging and known

to be theoretically undecidable for typical real-world models [16, 17]. Sig-

nificant progress has been made in the last decade and many powerful tools

have been developed to solve approximate versions of these problems for

specific model classes [18, 19, 20, 21, 22, 23]. However, these existing tech-

niques do not scale to nonlinear and hybrid models that arise in practice

due to intractable peculiarities of CPS, including nonlinear dynamics, net-

worked structures, the non-deterministic and hybrid nature of models, and

sometimes even the absence of complete models.

Dissertation theme. Unlike testing that cannot prove absence of bugs,

verification provides a mathematical proof of the safety of all possible (often

infinitely many) behaviors of a system. However, purely model-based ver-

ification techniques cannot directly handle real-world autonomous systems

that have nonlinear and hybrid models, or systems for which we lack com-

plete or precise models. In this dissertation, we aim to address the above

challenges using a data-driven verification method. Data-driven algorithms

use executions (or numerical simulations) of the model in addition to stat-

ically analyzing the model itself. Thus the verification algorithm can use

powerful numerical simulators as subroutines, which is particularly relevant

for nonlinear models that do not permit a closed form analytical solution.

This also opens the door to verifying autonomous systems without complete

and precise models.

The basic approach of data-driven verification is to combine executions

of the model with model-based reachability analysis, by performing effective

sensitivity analysis for the complex or unknown components of the system.

Such a sensitivity analysis gives probabilistic or worst-case bounds on how

3

much the states or outputs of a module will change, with small changes in the

input. In data-driven verification, we will use sensitivity analysis to general-

ize an individual execution to a set of reachable states, and then verify the

requirement on this generalized set. Sensitivity analysis is the key principle

underlying the rigorous soundness (i.e., the result returned by the algorithm

is correct) and completeness (i.e., the algorithm always terminates and re-

turns the correct result) guarantees of the data-driven verification approach.

In this dissertation, we introduce sensitivity analysis techniques that can

advance the verification or synthesis of

(1) autonomous systems with nonlinear dynamics [24] (Chapter 5),

(2) hybrid systems with incomplete models [25] (Chapter 6),

(3) distributed autonomous systems whose components take actions concur-

rently [26] (Chapter 7), and

(4) correct-by-construction controllers for high-dimensional linear dynamical

systems to meet reach-avoid specifications [27] (Chapter 8).

Next, we give a more detailed introduction of each of the four parts, fol-

lowed by a summary of contributions and impacts.

1.1 Locally Optimal Guaranteed Reachability for

Nonlinear Dynamics

Obtaining an exact solution for autonomous systems with nonlinear dynamics

is often impossible. Nevertheless, approximate solutions for such dynamics

may be too conservative or computationally expensive to be useful. There-

fore, it is crucial for verification methods to perform tight yet computationally

efficient over-approximations of the set of reachable states.

In this dissertation, we show that the sensitivity of a nonlinear dynamical

system can be bounded by matrix measures of the ODEs. Such sensitivity can

then be used to generalize finite simulation executions of the system to get

the over-approximations of the set of reachable states. Moreover, we prove

that using matrix measures we can compute over-approximations whose sizes

change over time with the minimum exponential rate on local compact sets.

4

Based on this, we introduce the first algorithm that can provide locally op-

timal guarantees for computing tight reachable sets over-approximations for

nonlinear models. Furthermore, we show that the matrix measures of a non-

linear system can be computed via semi-definite programming (SDP). This

allows us to develop effective algorithms for automatic construction of the

tightest reachable sets.

In the first technical part of this dissertation, we develop sensitivity anal-

ysis algorithms for nonlinear and hybrid systems with known models. These

techniques are implemented in the C2E2 tool [28], which has been effectively

used to verify an engine control system [4], a NASA-developed collision alert-

ing protocol [29], and satellite controllers [30, 31]. The approach can also be

extended to conduct compositional analysis for large-scale autonomous sys-

tems in which multiple components communicate with each other. Using

the compositional analysis, we can compute the reachable sets of a suite

of challenging pacemaker-heart models that have as many as 20 continuous

variables and 295 discrete modes [32]. The compositional analysis is beyond

the scope of this dissertation and we refer the interested readers to [33].

1.2 Verification of Black-box Components with

Probabilistic Guarantees

Many autonomous systems are a heterogeneous mix of simulation code, dif-

ferential equations, block diagrams, and handcrafted look-up tables, with the

increasing presence of machine learning modules. It is sometimes impossible

even to model a system completely and precisely in the first place. Therefore,

a barrier for applicability of verification tools is the unavailability of precise

and complete models.

To overcome this issue, in this dissertation, we introduce a novel verifica-

tion framework DryVR [25, 34] that treats the system as a combination of

a “white-box” control graph and “black-box” simulators. For systems with

unknown models, the deterministic sensitivity analysis algorithms have to be

replaced with methods that only rely on execution data. Using the probably

approximately correct (PAC) learning principle [35], we show that sensitivity

analysis could be formulated as the well-known problem of learning a linear

separator, and could thus be solved with probabilistic correctness guaran-

5

tees. To achieve an error of ε with probability 1− δ, the number of samples

the algorithm needs from the black-box simulator is only 1
ε

log 1
δ
. That ap-

proach can achieve the same level of probabilistic guarantees as testing, in

significantly less time.

We have used DryVR to verify a wide range of applications, including

autonomous driving maneuvers, powetrain control systems, and automatic

transmission control systems [25]. We also use it to conduct risk analysis

of an ADAS system to determine its ASIL [36]. Moreover, DryVR has

been incorporated to enhance other research works, for example, to verify

spacecraft rendezvous [37] and perform on-line monitoring on autonomous

vehicles.

1.3 Approximate Partial Order Reduction for

Distributed Autonomous Systems

In distributed autonomous systems, components take actions concurrently.

Therefore, in considering all possible behaviors of a system, there is a com-

binatorial explosion in the total number of action sequences due to the in-

terleavings of each individual system’s concurrent actions. Partial order re-

duction (POR) methods tackle this combinatorial explosion by eliminating

executions that are equivalent , i.e., do not provide new information about

reachable states. This equivalence is based on independence of actions: a

pair of actions are independent if they commute, i.e., applying them in any

order results in the same state. Thus, of all execution branches that start

and end at the same state, but perform commuting actions in different order,

only one has to be explored.

Existing (POR) methods are limited when it comes to computations with

numerical data and physical quantities since reduction is allowed only when

actions can commute exactly. In this dissertation, we develop an approxi-

mate POR method that allows actions to be nearly commutative. That is,

we allow the reachable states resulting from applying action sequences in dif-

ferent orders to have some distance with each other. The resulting algorithm

computes the reachable sets for such systems where nondeterminism arises

from both the choice of the initial state and the choice of actions. It reduces

the number of action sequences that must be explored in safety analysis by

6

a factor of O(t!) with t being the time steps [26].

We have implemented the approximate POR method and used it to analyze

a set of benchmark models including an iterative consensus protocol, a simple

multi-car platoon, and a distributed room heating system. Results show

that the proposed reachability algorithm using approximate POR can achieve

the O(t!) reduction on the number of explored executions, compared with

exhaustive enumeration. These preliminary results have shown promise for

exponentially expediting the safety analysis of distributed systems.

1.4 Control Synthesis of Large-dimensional Systems

In the last technical part of this dissertation, we study the synthesis problem

for linear time-varying plant models with bounded disturbance—a standard

view of control systems [38, 39]. We will consider reach-avoid specifications

which require that starting from any initial state Θ, the controller has to

drive the system to a target set G, while avoiding certain unsafe states or

obstacles O. Reach-avoid specifications arise naturally in many domains such

as autonomous and assisted driving, multi-robot coordination, and spacecraft

autonomy, and have been studied for linear, nonlinear, as well as stochastic

models [40, 41, 42, 43].

Current control synthesis approaches for the above problem suffer from

poor scalability: They normally end up solving a nonlinear or mixed-integer

optimization problem, or facing the curse of dimensionality. In this disser-

tation, we will study a novel approach that finds a state feedback controller

for time-varying linear systems under disturbances [27]. The instrumental

idea is to use a combination of an open-loop controller and a tracking con-

troller to reformulate the overall synthesis problem as a satisfiability problem

over quantifier-free linear real arithmetic, which can be efficiently solved by

off-the-shelf SMT solvers. The number of constraints for the satisfiability

problem is only linear to the total number of surfaces in the obstacles as

polytopes. Moreover, we prove that the proposed approach is sound and

complete—a theoretical guarantee that is beyond most conventional synthe-

sis methods.

We have implemented this synthesis approach tool in a tool RealSyn and

used it to analyze a suite of case studies including multi-robot and multi-car

7

motion planning and platooning. RealSyn shows encouraging results: it

finds controllers within seconds for systems with up to 20 state variables to

satisfy reach-avoid specification with more than 7 static or dynamic obstacles.

1.5 Summary of Contributions

Scalable verification and synthesis techniques are of fundamental importance

to ensuring autonomous systems’ safety. The objective of this dissertation

is to push the theoretical limits of verification and synthesis techniques for

complex autonomous systems and CPS, and develop algorithms and tools

with theoretical guarantees like soundness, precision, and completeness. We

give a brief overview of the key contributions of this dissertation below.

1. Advancement of the state-of-the-art on verification of CPS by devel-

oping a data-driven safety verification algorithm through reachability

analysis for nonlinear hybrid systems and infinite transitions systems.

This data-driven algorithm is locally optimal in data usage [24] for

nonlinear systems, and exponentially reduces the number of executions

that need to be explored for infinite transition systems. Therefore, it

allows us to verify large models that were previously intractable [26, 44]

(Chapter 5 and Chapter 7).

2. Development of the first framework for verifying real-world CPS for

which certain parts may not have precise mathematical models [25].

The key idea is to see such systems as a white-box automaton with

embedded black-box simulators. With this new view, our verification

approach can bring together worst-case formal reasoning on the au-

tomaton with probabilistic reasoning on the black-boxes (Chapter 6).

3. Development of an algorithm that significantly improves the practi-

cal efficiency of control synthesis for large linear systems with distur-

bances [27]. The algorithm achieves scalability by reducing the synthe-

sis problem to satisfiability over quantifier-free linear arithmetic and

leveraging modern SMT solvers (Chapter 8).

On the practical side, we have developed software tools for these tech-

niques: C2E2 [28] (for verification of hybrid systems), DryVR [34] (for

8

verification of systems with black-box components), and RealSyn [27] (for

synthesis). These tools have shown their ability to handle complex real-

world systems. For instance, C2E2 was the first tool to successfully verify

the Toyota powertrain control system and a spacecraft rendezvous problem

(Section 5.5.1 and Section 6.6); currently, it is also the only tool that can

handle highly nonlinear models such as mixed-signal circuits [7]. DryVR

has been successfully used in verifying autonomous driving maneuvers (Sec-

tion 6.4) and determining automotive safety integrity levels (ASIL) based on

risk analysis of an advanced driver-assistance system (ADAS) feature (Sec-

tion 6.5). Other successful applications of the tools range across medical

devices [45, 46], air-traffic management [29], and energy systems [47].

1.6 Dissertation Structure

We introduce mathematical notations and preliminary results in Chapter 2.

In Chapter 3, we discuss three different mathematical models for autonomous

systems and CPS. We present a broad and unified overview of the data-driven

verification approach and the related sub-problem of sensitivity analysis in

Chapter 4. The existing techniques for sensitivity analysis are described

in the context of dynamical systems and hybrid systems in Chapter 5. In

Chapter 6, we discuss the black-box verification as in DryVR. In Chapter 7,

we discuss the approximate partial order reduction method for distributed

systems. In Chapter 8, we present details of the controller synthesis approach.

Finally, in Chapter 9, we conclude with a short summary.

9

Chapter 2

Mathematical Preliminaries

In this chapter, we introduce definitions, notations, operations, and back-

ground results on vectors, matrices, sets, and functions, which will be used

throughout the dissertation.

2.1 Vectors and Matrices

2.1.1 Vectors and Vector Norms

Let us denote the set of all real numbers by R, the set of non-negative real

numbers by R≥0, the set of Boolean values by B, and the set of natural

numbers by N.

The n-dimensional Euclidean space, denoted by Rn, is defined by the set

of all n-dimensional vectors x = [x(1), · · · , x(n)]>, where x(1), · · · , x(n) ∈ R, >
means transpose, and x(i) is the ith entry of x.

The norm ‖x‖ of a vector x is a nonnegative-valued scalar function satis-

fying the following properties [8]:

1. Positive definite: ‖x‖ ≥ 0,∀x ∈ Rn, ‖x‖ = 0 if and only if x = 0.

2. Absolutely scalable: ‖αx‖ = |α|‖x‖,∀c ∈ R and x ∈ Rn, where | · |
means the absolute value.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ Rn.

The p-norm of a vector is defined as

‖x‖p =
(
|x(1)|p + · · · |x(n)|p

) 1
p , 1 ≤ p <∞,

and ‖x‖∞ = maxi |x(i)|.

10

Frequently used norms are 1, 2 and ∞ norms. They are equivalent up to

a constant scaling in the sense they satisfy the following inequalities [48]:

‖x‖∞ ≤ ‖x‖2 ≤ |x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞.

A linear transformed norm of a vector x is defined as: ‖x‖M = ‖Mx‖,
where M ∈ Rn×n is a nonsingular matrix which defines the linear coordinate

transformation. We call it the M-norm of the vector x. The norm of the

vector x would be different under different coordinates. Hereafter, if not

specifically stated otherwise, ‖x‖M refers to the linear transformed 2-norm:

‖x‖M =
√
x>M>Mx.

2.1.2 Matrices and Matrix Norms

For any matrix A ∈ Rn×m, A> is its transpose; A(i) is the ith row of A and

A(i,j) denotes the entry in the ith row and jth column.

For a square matrix A ∈ Rn×n, the spectral radius ρ(A) is the largest

absolute value of its eigenvalues. A square matrix A is stable if its spectral

radius ρ(A) < 1.

We call a real square matrix A ∈ Rn×n symmetric if A = A>. A real

symmetric matrix A’s eigenvalues are all real numbers, and we use λmax(A)

and λmin(A) to denote its maximum and minimum eigenvalues respectively.

A symmetric matrix A ∈ Rn×n is said to be positive (negative) semi-definite

if the scalar x>Ax is nonnegative (nonpositive) for every non-zero column

vector x ∈ Rn. For symmetric matrices A and B, the inequality A � B (A �
B) means that B−A is positive (negative) semi-definite and A ≺ B (A � B)

means B − A is positive (negative) definite.

The induced p-norm of the matrix A is defined as

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

For p = 1, 2,∞, the p-norm is given by

‖A‖1 = maxj
∑m

i=1 |A(i,j)|, ‖A‖2 =
√
λmax(A>A), ‖A‖∞ = maxi

∑n
j=1 |A(i,j)|.

11

In the rest of the dissertation, if not specifically claimed otherwise, ‖A‖
also refers to the 2-norm of A. The matrix norm also obeys some inequalities.

If matrices A ∈ Rm×n and B ∈ Rn×l are real valued matrices, then

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞,

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1,

‖A‖2 ≤
√
‖A‖1‖A‖∞, ‖AB‖p ≤ ‖A‖p‖B‖p.

2.1.3 Interval Matrices

Given any two real numbers a < b, [a, b] is is defined as the interval {x ∈
R | a ≤ x ≤ b}. When each entry is an interval instead of a constant scalar

value, we call the matrix an interval matrix. The interval matrices are used

to locally approximate a nonlinear model’s behaviors.

Given two matrices B,C ∈ Rn×m, if B(i,j) ≤ C(i,j) for all 1 ≤ i ≤ n, 1 ≤
j ≤ m, we call [B,C] a matrix pair. For a matrix pair [B,C], we define the

matrix interval,

IntV([B,C]) , {A ∈ Rn×n|B(i,j) ≤ A(i,j) ≤ C(i,j), 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

We call A = IntV([B,C]) an interval matrix. When a constant matrix V ’s

entries are either the upper bound or the lower bound of the corresponding

entries of an inverval matrix A, V is called a vertex matrix of A. Formally,

we define the set of vertex matrices of an interval matrix A = IntV[B,C] as

VT(IntV([B,C])) =

{V ∈ Rn×n|V (i,j) = B(i,j), or, V (i,j) = C(i,j), 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The cardinality of VT(IntV([B,C])) is 2nm.

Given a sequence of matrices Ai ∈ Rn×m, i = 1, 2, . . . , N , the convex hull

of all Ais is defined as:

hull({A1, . . . , AN}) , {A ∈ Rn×m|∃α1, . . . , αN ≥ 0, and
N∑
i=1

αi = 1, s.t. A =
N∑
i=1

αiAi}.

12

It can be shown that the convex hull of the vertex matrices for an interval

matrix A is the interval matrix itself.

Proposition 2.1. For any interval matrix A, hull(VT(A)) = A.

Proof. This proposition can be proved by constructing a bijection that maps

an n × n square interval matrix to an n2-dimensional hyper-rectangle. Vec-

torizing, or flattening, the vertex matrices in A to n2-dimensional vectors,

we obtain the vertices of this hyper-rectangle. Since the convex hull of the

vertices of a rectangle is the rectangle itself, we have hull(VT(A)) = A.

2.1.4 Matrix Measures

The matrix measure, also known as the logarithmic norm, is a real-valued

function on square matrices. Matrix measure has been used to bound the

growth rate of the solutions to differential equations. Letting A ∈ Rn×n be

a square matrix and ‖ · ‖ be any matrix induced norm, the matrix measure

µ(A) can be seen as the one-sided derivative of ‖ · ‖ at the identity matrix

I ∈ Rn×n in the direction of A:

µp(A) = lim
t→0+

‖I + tA‖p − ‖I‖p
t

. (2.1)

Some commonly seen induced matrix measures are [49]:

µ1(A) = maxj

(
A(j,j) +

∑
i 6=j |A(i,j)|

)
,

µ2(A) = maxj
1
2

(
λj(A+ AT)

)
,

µ∞(A) = maxi

(
A(i,i) +

∑
j 6=i |A(i,j)|

)
.

In the rest of the dissertation, if not specifically claimed otherwise, µ(·)
means the matrix measure can be correspond to any induced matrix norm.

Some useful results about matrix measures that will be used in this disserta-

tion are summarized in Lemma 2.1 and Lemma 2.2, which are results proved

in [50] and [51].

Lemma 2.1. For any A ∈ Rn×n, µ(A) is well defined.

Lemma 2.2. Let A ∈ Rn×n; then

13

1. −‖A‖ ≤ −µ(−A) ≤ µ(A) ≤ ‖A‖.

2. µ(cA) = cµ(A), ∀c ≥ 0.

3. If M ∈ Rn×n is nonsingular, then the measure µM of the norm ‖x‖M =

‖Mx‖ is given in terms of µ by µM(A) = µ(MAM−1).

2.2 Sets

A subset S ⊂ R is said to be bounded if there exists a constant c > 0

such that for all x ∈ S, we have ‖x‖ ≤ c. A subset S ⊂ R is said to

be open if for ∀x ∈ S, we can find an arbitrary small neighborhood of x,

Bε(x) = {y ∈ Rn | ‖y − x‖ < ε} such that Bε ⊂ S. A set S is said to

be closed if its complement in Rn is open. A set S is said to be compact

if it is closed and bounded. The radius of a compact set S is defined as

Rad(S) = supx,y∈S ‖x− y‖/2. |S| denotes the cardinality of S.

We will use the following sets to represent the set of initial states, reachable

states, bounded inputs, and disturbances in the later part of the dissertation.

• Ball: Given a r ≥ 0, an r-ball around x ∈ Rn is defined as Br(x) =

{x′ ∈ Rn | ||x′ − x||2 ≤ r}. We call r the radius of the ball.

• Ellipsoid: Given an invertible matrix M ∈ Rn×n and r ≥ 0, a (M, r)-

ellipsoid around x ∈ Rn is defined as Er(x,M) = {x′ ∈ Rn | ||x′ −
x||M ≤ r}. We call M the shape of the ellipsoid and r the radius of the

ellipsoid. When M = I, Er(x,M) = Br(x).

• Rectangle: Given two vectors x, y ∈ Rn with x(i) ≤ y(i),∀i = 1, · · · , n,

a (x, y)-rectangle is defined as R(x, y) = {x′ ∈ Rn | x(i) ≤ x′(i) ≤
y(i),∀i = 1, · · · , n}. The vectors x and y define the lower and upper

bounds of the rectangle in each dimension. When x and y are clear

from the context, we will drop x, y and denote the rectangle by R.

• Polytope: Given a matrix A ∈ Rk×n and a vector b ∈ Rk, an (A, b)-

polytope is defined as P (A, b) = {x | Ax ≤ b}. A rectangle is also a

convex polytope.

Next, we will introduce several operations on sets.

14

• Minkowski sum: The Minkowski sum of two sets S1 and S2 is defined to

be the addition of each element in S1 and each element in S2. We use

⊕ to denote the Minkowski sum, so S1⊕S2 = {x+ y | x ∈ S1, y ∈ S2}.

• Coordinate transformation: For a set S ⊆ Rn and a matrix M ∈ Rn×n,

we define M ⊗ S ∆
= {Mx | x ∈ S}.

• Convex hull: For sets S1, S2 ⊂ Rn, the convex hull of S1 and S2 is

the smallest convex set that contains S1 and S2, and we denote it by

hull(S1, S2).

• Bloating: For a set S ⊆ Rn, the set S bloated by r is defined as

Br(S) = ∪x∈SBr(x). It is easy to see that Br(S) is the Minkowski sum

of S and the ball Br(0), so Br(S) = S ⊕Br(0).

• Restrict: For a set of tuples S = {〈si1, . . . , sin〉i}, S d k denotes the set

{sik} which is the set obtained by taking the kth component of each

tuple in S.

2.3 Functions

Let f : S1 → S2 denote a function f which maps a set S1 to a set S2. S1 is

called the domain of f and is denoted by dom(f). S2 is called the range of f

and is denoted by range(f).

Given two functions f, g such that range(g) ⊆ dom(f), the composition

of f and g is f ◦ g : dom(g) → range(f) such that f ◦ g(x) = f(g(x)). For

any functions f such that range(f) ⊆ dom(f), for any n ∈ N, we define the

nested form fn as fn = f ◦ fn−1, with f 0 being the identity mapping.

A function f is uniformly continuous if ∀ε > 0,∃δ > 0 such that ∀‖x −
y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε. The δ here is independent of x, but only

depends on ε. A continuous function f : Rn → R is smooth if all its higher

derivatives and partial derivatives exist and are also continuous. For example,

any polynomial function is smooth.

A function is called Lipschitz continuous if it has a Lipschitz constant L ≥ 0

for which every x, y ∈ Rn, ‖f(x)− f(y)‖ ≤ L‖x− y‖.

15

Chapter 3

Models of Autonomous Systems

When modeling autonomous systems, we need to consider joint dynamics of

physical processes and cyber elements such as computers. In this dissertation,

we will study different mathematical models with emphasis on different veri-

fication and synthesis techniques that can be exploited. In Chapter 4, Chap-

ter 5, and Chapter 8, we study dynamical systems, where the states evolve

continuously over time and follow ordinary differential equations (ODE), dif-

ferential algebraic equations (DAE), or inclusions. In Chapter 7, we work

on transition systems or discrete-time automata, where the states change

according to discrete transitions instantaneously. In Section 5.5 and Chap-

ter 6, we study models of hybrid systems, where we unify the continuous

evolution of the states that describe the dynamics of physical processes and

the discrete changes of the states that describe the possible states of a com-

putation. A hybrid system is one of the most well-known formalisms for de-

scribing the interactions between physical plants and computing and control

units [52, 53, 54, 55, 12, 56]. A more detailed literature review on different

sub-classes and alternatives of hybrid systems is provided in Section 4.2.

In this chapter, we introduce the above three mathematical models used

in dissertation for modeling different systems. For each model, we will define

syntax, semantics—executions and reachable states—and give examples.

3.1 Discrete-time Transition Systems

The mathematical object we will use to model computation is a discrete-

time transition system (also called an automaton or a state machine). The

following notions are important elements that we will need to define such a

transition system [57].

16

State Variables and Valuations State represents information that will

be used to predict the future behaviors of a system, and it is modeled using

state variables and valuations.

A variable is a name and an associated type over which it takes values. For

a variable v, the type is denoted by type(v). In general a variable can have

types used in mathematics and programming languages, such as Booleans,

natural numbers, integers, real numbers, floats, doubles, and enumerated

sets. Type constructors like arrays, lists, and tuples can be used to construct

user-defined types from the basic types. Variables that remain constant

along trajectories are called discrete variables; all other variables are called

continuous variables, which will be introduced in Section 3.2.

A valuation for a set of variables V maps each variable v ∈ V to a value

in type(v). Given a set of variables V , val(V) denotes the set of all possible

valuations of the variables in V . This is also called the state space of the

model. In this dissertation, we will abuse the notation and use variables’

names to denote their valuations as well.

Predicates and Transitions A predicate over val(V) is a computable

function φ : val(V)→ B that maps each state in Rn to either True (true) or

False (false).

Transitions specify the rules for state change relations. A transition rela-

tion over a set of variables V is a relation R ⊆ val(V)× val(V), and it relates

a pair of states: a prestate, which is the state just before the change occurs,

and a poststate, the state after the change.

Transition relations are specified as predicates on the pre- and post-states.

The predicate following the precondition defines the set of states in which this

transition rule can be applied. The precondition is also known as the guard

condition or the enabling condition of the action. The effect specifies how the

state changes when the action does occur, and the (possibly nondetermin-

istic) command following the effect relates the prestate and the poststate.

The variables that are not mentioned in the effect statements are assumed

to remain unchanged by the transition.

With all these elements, we can define a discrete-time transition system as

follows:

Definition 3.1. A discrete-time transition system A is a tuple 〈V,Θ, A,D〉,

17

where

1. V is a set of variables called the state variables. The set val(V) of

valuations of V is the set of states.

2. Θ ⊆ val(V) is a nonempty set of start states.

3. A is a set of actions or transition labels.

4. D ∈ val(V)× A× val(V) is called the set of transitions.

1 automaton Consensus(n ∈ N, N ∈ N)
variables

3 x : Rn

d : BN

5 initially

x(i) ∈ [−4, 4] for each i ∈ {0, · · · , N − 1}
7 d(i) := false for each i ∈ {0, · · · , N − 1}

1transitions
ai for each i ∈ {0, · · · , N − 1}

3pre d(i) = false

eff x := Aix ∧ d(i) := true
5a⊥

pre ∧i∈{0,··· ,N−1}]d(i)

7eff d(i) := false for each
i ∈ {0, · · · , N − 1}

Figure 3.1: Discrete-time transition system model of iterative consensus.

Example 3.1 (Iterative consensus). Consider an n-dimensional iterative

consensus protocol with N processes as shown in Figure 3.1. The state

space consists of two types of variables, which are represented using two vec-

tors: the real-valued part of state x ∈ Rn and the Boolean-valued part of

the state d ∈ BN . Each process i changes the real-valued part of state by

the linear transformation x ← Aix. The system evolves in rounds: in each

round, each process i updates the state x exactly once but in arbitrary order.

The Boolean vector d marks the processes that have acted in a round.

The set of actions is A = {ai}i∈{0,··· ,N−1}∪{a⊥}. The guard and transition

function of each action are defined by the precondition (pre) and effect (eff)

statements. For each i ∈ {0, · · · , N − 1}, the action ai is enabled when d(i)

is false and when it occurs x is updated as Aix, where Ai is an n×n matrix,

and d(i) is updated to be true. The action a⊥ can occur only when all d(i)’s

are set to true and it resets all the d(i)’s to false.

It can be seen that the linear transformations can be applied in any order

and one application of each constitutes a “round”. This can be viewed as

an abstraction of iterative consensus [58, 59], where N processes perform

computations on a shared state.

18

Deterministic Labeled Transition System. We call a transition system

a labeled transition system if the state v ∈ V is a valuation of the real-valued

and finite-valued variables. We denote by v.X and v.L, respectively, the

real-valued and discrete (finite-valued) parts of the state v. We will view the

continuous part v.X as a vector in R|X| by fixing an arbitrary ordering of X.

For δ ≥ 0, the δ-ball of v is denoted by Bδ(v)
∆
= {v′ ∈ V : v′.L = v.L ∧

‖v′.X − v.X‖ ≤ δ}. For any (v, a, v′) ∈ D, we write q
a→ q′. For any action

a ∈ A, its guard is the set guard(a) = {v ∈ V | ∃v′ ∈ V, v a→ v′}. We assume

that guards are closed sets.

An action a is deterministic if for any state v ∈ V , if there exists v1, v2 ∈ V
with v

a→ v1 and v
a→ v2, then v1 = v2. In this dissertation, we only

consider deterministic labeled transition system satisfies the following the

below assumption:

Assumption 3.1. (i) Actions are deterministic. For notational convenience,

the name of an action a is identified with its transition function, i.e., for each

v ∈ guard(a), v
a→ a(v). We extend this notation to all states, i.e., even

those outside guard(a). (ii) For any state pair v, v′, if v.L = v′.L then

a(v).L = a(v′).L.

Executions and Traces. For a deterministic transition system, a state

v0 ∈ V and a finite action sequence (also called a trace) τ = a0a1 . . . an−1

uniquely specifies a potential execution ξ(v0, τ) = v0, a0, v1, a1, . . . , an−1, vn

where for each i ∈ {0, · · · , n− 1}, ai(vi) = vi+1.

A valid execution (also called execution for brevity) is a potential execution

with (i) v0 ∈ Θ and (ii) for each i ∈ {0, · · · , n− 1}, vi ∈ guard(ai). That is,

a valid execution is a potential execution starting from the initial set with

each action ai enabled at state vi. For any potential execution ξv0,τ , its trace

is the action sequence τ , i.e., trace(ξ(q0, τ)) = τ ∈ A∗. We denote by len(τ)

the length of τ . For any i ∈ {0, · · · , len(τ) − 1}, τ(i) is the i-th action

in τ . The length of ξ(v0, τ) is the length of its trace, and it is denoted by

len(ξ(v0, τ)). When v0 and τ are clear from the context, we write ξ(v0, τ) as ξ

for brevity and let ξ(i) = vi denote the state visited after the i-th transition.

The first and last states of an execution ξ are denoted as ξ.fstate = ξ(0) and

ξ.lstate = ξ(len(ξ)).

For any t ≥ 0, Execs(Θ, t) is the set of length t executions starting from

19

the initial set Θ. We denote the set of reachable states at time t by

Reach(Θ, t)
∆
= {ξ.lstate | ξ ∈ Execs(S, t)}.

Similarly, for a time bound T ≥ 0, the set of all reachable states from the

initial set Θ during time interval [0, T] is denoted by

Reach(Θ, [0, T])
∆
=

T⋃
t=0

Reach(Θ, t).

In Example 3.1, if N = 3, a valid execution could have the trace τ =

a0a2a1a⊥a1a0a2a⊥. It can be checked that Assumption 3.1 holds. In fact, the

assumption will continue to hold if Aix is replaced by a nonlinear transition

function ai : Rn → Rn.

3.2 Trajectories and Closures

A trajectory for a set of continuous variables V defines how the valuations

evolve over time. To be concrete, a trajectory ξ is defined as a function

ξ : dom → val(V), where dom is the time domain of evolution, and it is

either [0, T] for some T > 0, or it is [0,∞). The domain of ξ is referred to as

ξ.dom.

The state of the system along the trajectory at time t ∈ ξ.dom is ξ(t).

For a bounded trajectory with ξ.dom = [0, T], the duration ξ.dur = T . For

unbounded trajectories, ξ.dur is defined as∞. The first state ξ(0) is denoted

by ξ.fstate, and for a bounded trajectory the last state ξ.lstate = ξ(T) and

ξ.ltime = T .

The t-prefix of ξ, for any t ∈ ξ.dom, is the trajectory ξ′ : [0, t] → val(V),

such that for all t′ ∈ [0, t], ξ′(t′) = ξ(t′). A set of trajectories Ξ is prefix-closed

if for any ξ ∈ Ξ, any prefix of ξ is also in Ξ. A set Ξ is deterministic if for

any pair ξ1, ξ2 ∈ Ξ, if ξ1(0) = ξ2(0) then one is a prefix of the other.

The t-suffix of ξ, for any t ∈ ξ.dom, is the trajectory ξ′ : [0, ξ.ltime− t]→
val(V), such that for all t′ ∈ [0, t], ξ′(t′) = ξ(t′+t). So ξ′ is a shorter trajectory

that is identical to ξ from t onwards. A set of trajectories Ξ is suffix-closed

if for any ξ ∈ Ξ, any suffix of ξ is also in Ξ.

Given a trajectory ξ : [0, T] → val(V) for a set of variables V and a time

20

t > 0, the time shift (ξ + t) : [t; t + T] → val(V) is defined as ∀t′ ∈ [t, t +

T], (ξ+ t)(t′) = ξ(t′− t). Strictly speaking, for t > 0, ξ+ t is not a trajectory.

The concatenation of two trajectories ξ1
_ ξ2 is a new trajectory ξ in which

ξ1 is followed by ξ2. That is, (ξ1
_ ξ2).dom = ξ1.dom ∪ (ξ2 + ξ1.ltime).dom,

and for each t ∈ (ξ1
_ ξ2).dom,

(ξ1
_ ξ2)(t) =

{
ξ1(t) t ≤ ξ1.ltime

ξ2(t− ξ1.ltime) t > ξ1.ltime.

A set of trajectories Ξ is concatenation-closed if for any ξ1, ξ2 ∈ Ξ with

ξ1.lstate = ξ2.fstate, ξ1
_ ξ2 ∈ Ξ. See [60] for detailed explanation of trajec-

tories closed under prefix, suffix and concatenation.

3.3 Dynamical Systems

The continuous evolution of an autonomous system or cyber-physical system

can be mathematically modeled as a dynamical system. Consider an n-

dimensional dynamical system defined as an ordinary differential equation

(ODE):

ẋ(t) = f(x(t)), (3.1)

where t ∈ R is the time, x is the state with type(x) = Rn, and f : val(x) →
val(x) is a locally Lipschitz continuous function describing the continuous

evolution of the physical variables of the autonomous system.

For any initial valuation x0 ∈ val(x), a trajectory ξ : [0, T] → val(x)

is a solution or execution of (3.1) if ξ(0) = x0, and ∀t ∈ ξ.dom, d
dt
ξ(t) =

f(ξ(t)). The existence and uniqueness of the solution can be guaranteed by

the Lipschitz continuity of f . With an initial state and a time bound, an

ODE that locally Lipschitz continuous defines a unique trajectory. Therefore,

we will abuse the notation and let ξ(x0, t) denote the solution ξ(t) starting

from ξ(0) = x0 for dynamical systems.

Given an initial set Θ, we say a state x is reachable from Θ if there exist a

state θ ∈ Θ and a time t ≥ 0 such that ξ(θ, t) = x. We call the set of states

that are reachable from the initial set Θ during time [0, T] the reach set, and

21

denote it as Reach(Θ, [0, T]). Formally,

Reach(Θ, [0, T]) = {x | ∃θ ∈ Θ,∃t ∈ [0, T], ξ(θ, t) = x}.

Similarly, we denote the set of reachable states at time t from initial set Θ

as Reach(Θ, t).

Assume that the function f is also continuously differentiable. The Jaco-

bian of f , Jf : Rn → Rn×n, is a matrix-valued function of all the first-order

partial derivatives of f with respect to x, that is

J
(i,j)
f (x) =

∂f (i)(x)

∂x(j)
.

The following lemma states a relationship between f and its Jacobian Jf

which can be proved using the generalized mean value theorem [61].

Lemma 3.1. For any continuously differentiable vector-valued function f :

Rn → Rn, and x, r ∈ Rn,

f(x+ r)− f(x) =

(∫ 1

0

Jf (x+ sr)ds

)
· r, (3.2)

where the integral is component-wise.

Example 3.2 (Jet engine control system). The Moore-Greitzer model of a jet

engine compression system is studied in [62] to understand and prevent two

types of instabilities: rotating stall and surge. With a stabilizing feedback

controller operating in the no-stall mode, it has the following dynamics:{
u̇ = −v − 3

2
u2 − 1

2
u3

v̇ = 3u− v.
(3.3)

The Jacobian of the system is:

Jf (x) =

[
−3u− 3

2
u2 −1

3 −1

]
. (3.4)

Figure 3.2 shows the trajectories of the engine system starting from an

initial state [0.2, 0.2]> and the set of reachable states starting from an initial

set B0.05([0.2, 0.2]>).

22

(a) Trajectory of t vs. u (b) Trajectory of t vs. v

(c) Trajectory of u vs. v (d) Reachable states of u vs. v

Figure 3.2: (a)-(c): Trajectories of Example 3.2 starting from the initial
state u0 = 0.2, v0 = 0.2. (d): The set of reachable states of Example 3.2
starting from an initial set B0.05([0.2, 0.2]>).

3.4 Hybrid Systems

Hybrid systems or hybrid automata unify the discrete-time transition system

of Section 3.1 and dynamical systems of Section 3.3. They are natural and

popular models for representing cyber-physical systems [14, 13, 53, 57]. The

state of a hybrid system can change through instantaneous transitions and

over time intervals through trajectories. One can view a hybrid system as a

collection of ODEs—one for each mode–and a set of discrete transition rules

for switching between the ODEs or modes. Thus, the continuous behavior of

a hybrid system is described by differential equations, and discrete behavior

is described by a set of transition rules that can be defined in terms of a

labeled transition system or automaton.

Definition 3.2. A hybrid systemH is a tuple 〈V = (X∪L),Θ, Linit, A,D,TL〉,
where

1. V = (X ∪ L) is a set of variables called the state variables, where X

is the set of real-valued variables and L is the finite-valued variables.

We will use L to denote val(L), which is a finite set of modes (a.k.a.

locations or discrete states). We will use a subset of the Euclidean space

23

X ⊆ Rn to denote val(X), which is the space for continuous states. The

combined hybrid state space is val(V) = X× L.

2. Θ ⊆ X is a compact set of initial states for the continuous variables X,

and Linit ⊆ L is the set of initial modes for the discrete variables L.

3. A is a set of actions or transition labels.

4. D ⊆ val(V)× A× val(V) is called the set of transitions.

5. TL is a set of deterministic trajectories for the variables in V that is

closed under prefix, suffix, and concatenation,

Each state of the hybrid system H is a pair 〈x, `〉, where x ∈ X and ` ∈ L

represent the continuous and discrete states, respectively. The evolution of

the systems continuous state variables X is formally described by the contin-

uous functions of initial states and time called trajectories (see Section 3.2).

For a hybrid system with L modes, each trajectory is labeled by a mode in

L. A trajectory labeled by L is a pair 〈ξ(x0, t), `〉 where ξ(x0, t) is a trajectory

starting from x0 ∈ X, and ` ∈ L. A deterministic, prefix-closed set of labeled

trajectories TL describes the behavior of the continuous variables in modes

L.

The set of trajectories TL is not necessarily specified by ODEs. Indeed, in

Chapter 6 we will see that it can be provided by any simulators. For now,

let us assume that for each ` ∈ L, a set of trajectories TL` is specified by

ODEs f` : Rn → Rn and an invariant I` ⊆ Rn, where invariant is a predicate

involving the state variables. For any trajectory 〈ξ, `〉 ∈ TL`, ξ is a valid

trajectory if it evolves according to d
dt
ξ = f`(ξ) at each time in the domain

of ξ, and ξ satisfies the invariant I`.

A transition (v, a, v′) ∈ D is written in short as v
a→ v′, and it is defined

similarly as in the care of discrete transitions systems (Section 3.1). For any

action a ∈ A, its guard is the set guard(a) = {v ∈ V | ∃v′ ∈ V, v
a→ v′}.

This is also the set of states that satisfy the preconditions of the action a in

the specification. We still assume that guards are closed sets.

Semantics of H are given in terms of executions. Formally, an execution is

an alternating sequence of trajectories and actions that are consistent with

the modes transitions defined in the hybrid system. A finite execution of H
starting from x0 ∈ Θ and `init ∈ Linit is a sequence of labeled trajectories and

actions, exec(x0, `init) = 〈ξ`0 , `0〉, a0, 〈ξ`1 , `1〉, a1, · · · , ak−1, 〈ξ`k , `k〉 such that

24

1. ξ`0 .fstate = x0 ∈ Θ and `0 = `init ∈ Linit.

2.
∑k

j=0 ξ`j .dur = T , which is also called the duration or time horizon of the

execution.

3. For each i = 0, · · · , k − 1, 〈ξ`i .lstate, `i〉
ai→ 〈ξ`i+1

.fstate, `i+1〉. That is, the

last state of 〈ξ`i , `i〉 is in guard(ai).

The set of all executions of H is denoted by Execs(Θ, Linit). A state 〈x, `〉 is

called to be reachable if there exists an execution 〈ξ`0 , `0〉, a0, · · · , ak−1, 〈ξ`k ,
`k〉 ∈ Execs(Θ, Linit), i ∈ {0, . . . k}, and t′ ∈ ξi.dom such that ` = `i, x =

ξ`i(t
′). The set of reachable states is defined as

ReachH(〈Θ, Linit〉, [0, T]) = {〈x, `〉 | 〈x, `〉 is reachable}.

We also write the reachable set as Reach(〈Θ, Linit〉, [0, T]) if H is clear from

the context.

Example 3.3 (Cardiac pacemaker). A hybrid automaton that models the

behavior of a cardiac pacemaker system (also discussed in [63]) is given in

Figure 3.3. The hybrid system has two modes, namely, Stim on and Stim off.

The continuous variables u and v model the voltage and the current on the

tissue membrane and the timer t measures the time spent in each location.

The system stays in Stim on location when the pacemaker gives a stimulus to

the cell and is in Stim off when the stimulus is absent. The discrete transition

from Stim on to Stim off is enabled when t = 5; and t is reset to 0 after a

transition; u and v are left unchanged. Transition from Stim off to Stim on

is enabled when t = 20; and both these transitions are urgent. Thus, the

pacemaker gives a stimulus every 25 time units for a duration of 5 time units.

Figure 3.4 also describes the cardiac pacemaker hybrid system in a way

that is similar to MATLAB Stateflow. Each rounded rectangle represents a

mode, including the mode name on the first line and the corresponding ODEs

that specify the evolutions of trajectories for the continuous variables. The

arrowed lines that connect the modes present transitions, where [·] encodes

preconditions and {·} encodes effects of the transitions.

The behavior of the continuous variables t, u, v within a time period is

given in Figure 3.5.

25

1 automaton Cardiac
actions

3 On; Off
variables

5 [t, u, v]> : R3

` : enumeration [{Stim on}, {Stim off}]
7 initially

[t, u, v]> := [0, 0.1, 0.1>]
9 ` := On

transitions
11 On

pre t = 20 ∧ ` = Stim off
13 eff t := 0 ∧ ` := Stim on

Off
15 pre t = 5 ∧ ` = Stim on

eff t := 0 ∧ ` := Stim off
17 trajectories

1Stim on
evolve

3ṫ = 1
u̇ = −u(0.9(u + 1) + u2)− v + 1

5v̇ = u− 2v
invariant ` = Stim on ∧ t ≤ 5

7

Stim off
9evolve

ṫ = 1
11u̇ = −u(0.9(u + 1) + u2)− v

v̇ = u− 2v
13invariant ` = Stim off ∧ t ≤ 20

Figure 3.3: Hybrid automaton model of cardiac pacemaker system.

Stim on
ṫ = 1

u̇ = −u(0.9(u + 1) + u2)− v + 1
v̇ = u− 2v

Stim off
ṫ = 1

u̇ = −u(0.9(u + 1) + u2)− v
v̇ = u− 2v

[t = 5]{t′ = 0}

[t = 20]{t′ = 0}

Figure 3.4: Hybrid system model of a cardiac cell with a pacemaker.

26

(a) Trajectory of time vs. t.

(b) Trajectory of time vs. u. (c) Trajectory of time vs. v.

(d) Reachable states of time vs.
u.

(e) Reachable states of time vs. v.

Figure 3.5: (a)-(c): Sample trajectories of the continuous variables of the
cardiac cell-pacemaker system from the initial state [0, 0.1, 0.1]. Black and
gray trajectories correspond to the Stim on and Sim off modes respectively.
(d)-(e): The set of reachable states of the variables u and v starting from
an initial set t = 0, u ∈ [0, 0.2], v ∈ [0, 0.2]. Black and gray regions
correspond to the Stim on and Sim off modes respectively.

27

Chapter 4

Data-driven Verification

4.1 Introduction

A verification problem asks the question whether a system A meets the re-

quirementQ. In this dissertation, we will mainly focus on bounded safety ver-

ification problems, which require an algorithm to decide whether any reach-

able state of the system violates some safety requirement within bounded

time. In Chapter 3, we have introduced models for autonomous systems,

including discrete-time transition systems, dynamical systems, and hybrid

systems. We have also introduced the set of all behaviors of the system from

a set of initial conditions, which is the set of reachable states Reach(Θ, [0, T])

from the initial set Θ within a time bound T > 0 (or for hybrid systems, the

reachable sets are denoted by Reach(〈Θ, Linit〉, [0, T]) from the initial states Θ

and initial modes Linit. The violation of the safety requirements is abstracted

as an unsafe or forbidden set F . Given a system A and the unsafe set F , the

safety verification problem (also called the bounded invariant verification) is

to decide whether

Reach(Θ, [0, T]) ∩ F = ∅ (4.1)

for discrete transition systems or dynamical systems, or

Reach(〈Θ, Linit〉, [0, T]) ∩ F = ∅

for hybrid systems.

A verification algorithm takes as input a system model A and the require-

ments Q, and returns either a mathematical proof that all possible behaviors

of A meet the requirement Q (safe) or a single counterexample behavior of A
that violates Q (unsafe). A verification algorithm for checking the safety of

the system is said to be sound if the answers of safety/unsafety of the system

28

given by the algorithm are correct. The algorithm is said to be complete if

the algorithm is guaranteed to terminate when the system is either safe or

unsafe.

Safety verification of autonomous systems and cyber-physical systems is a

hard problem. There are several theoretical undecidability results that show

there is no algorithm that can perform that check automatically, even for rel-

atively simple models. For example, it has been shown that the unbounded-

time safety verification of rectangular hybrid systems is undecidable [16]. Re-

laxing the verification question by asking the bounded-time horizon version

of the question (e.g. solving (4.1)), and by tolerating some false positives,

can lead to decidable problems. However, computing exact reachable sets

for general nonlinear dynamical systems is also undecidable [64, 65]. Recent

focus has been on methods to over-approximate the reachable set of the sys-

tem over bounded time. Existing methods like Taylor models [66] use interval

arithmetic [67] to bound the integration value. However, this method suffers

from complexity that increases exponentially with both the dimension of the

system and order of the Taylor model. One of the major contributions of

this dissertation is the introduction of a method to compute reachable set

over-approximations that are less conservative and less time consuming. The

method is applicable to all of the systems in Chapter 3.

In this chapter, we give the background of a promising approach called

data-driven verification that answers the safety verification problem for a

broad class of nonlinear dynamical and hybrid systems. The basic principle

of this approach is to combine numerical simulations with sensitivity analysis

of the complex or unknown parts of the system. Sensitivity analysis gives

bounds on how much the states or outputs of a module can change, with small

changes in the input parameters. The data-driven verification approach uses

sensitivity analysis to generalize an individual execution (or test) to a set

of reachable states, and then verifies the property on this generalized set.

The success of this approach hinges on good generalizations that can lead to

coverage of all possible behaviors from only finitely many executions. The

notion of sensitivity is formalized as discrepancy functions , which we will

formally define in Section 4.4. In Chapter 5, Chapter 6, and Chapter 7,

we will introduce methods that compute discrepancy functions for discrete

transitions systems, dynamical systems, and even black-box systems with

unknown models.

29

In the rest of the chapter, we discuss in detail the data-driven verification

approach for dynamical systems. With appropriate sensitivity and reach-

ability analysis, the same approach can be utilized for the verification of

discrete-time transitions systems, hybrid systems, and systems with unknown

models.

Consider a dynamical system described by the differential equation ẋ(t) =

f(x(t)), where f : Rn → Rn is a Lipschitz continuous function. The initial set

Θ ⊂ Rn is a compact set in Rn. Recall, the goal is to have an algorithm that

answers bounded safety queries correctly: given system as in Equation (3.1),

a compact initial set Θ ⊂ Rn, an unsafe set F ⊆ Rn, and a time bound T > 0,

it answers whether Reach(Θ, [0, T])∩F = ∅. Getting the closed-form solution

of general nonlinear ODEs is still an open problem, not to say getting the

set of reachable states which contains infinite many solutions. Therefore, we

start by defining simulation and reachtube, which are over-approximations

of a single execution and reachable sets, respectively.

4.2 Related Work on Verification

Verification of CPS and autonomous systems has been studied for more than

three decades. Every year, the proceedings of conferences like Computer

Aided Verification, Hybrid Systems: Computation and Control, and Tools

and Algorithms for the Construction and Analysis of Systems contain several

papers with results advancing the state of the art in verification of CPS.

In this section, we briefly review the related work on formal verification on

CPS and hybrid systems, including modeling, verification tools, and different

approaches.

Modeling CPS and Autonomous Systems. The popular models for de-

scribing the interactions between physical plants and computing and control

units are hybrid automata [52, 53, 54], hybrid input/output automata [55,

57], and hybrid programs [68, 69, 70, 12]. The major differences among

these models are their syntax and the expressiveness of physical environ-

ment. Timed automata [14], which are finite automata extended with a

finite set of real-valued clocks, were proposed as a sub-class of hybrid au-

tomata to model the timing behavior of real-time systems and networks. It

30

has been shown that the verification and reachability problem for timed au-

tomata is decidable [14]. The continuous variables of a time automaton are

clocks which increase always at rate 1. If we extend the definition of timed

automata to allow the continuous variables to increase with different constant

speeds, the resulting type of hybrid automaton is called a rectangular hybrid

automaton. The reachability problem for a rectangular hybrid automaton is

undecidable [16]. In fact, the class of initialized rectangular hybrid automata

is a maximal class for which the reachability problem is decidable [71].

Hybrid automata provide a more expressive way to describe the behav-

iors of continuous variables. Compared with timed automata, in a hybrid

automaton, the value of the continuous variables can be described by a set

of general ordinary differential equations [13]. In this dissertation, we adopt

the hybrid input/output automata framework proposed in [55, 57], which

has been extensively used in modeling many CPS such as biological sys-

tems [72], robotic cars [73], helicopters [74], spacecraft [75], and mixed-signal

circuits [76].

A switched system is another way of modeling CPS [9]. It generalizes

ODEs by allowing the system to be described by a set of ODEs for each

mode and a piecewise constant switching signal that defines the operating

mode. A switched system model can be seen as a hybrid system in which

the switching signal defines the transitions.

Verification Tools. Tools like HyTech [77], PHAVer [19], Coho [78], Check-

mate [79], Hylaa [80], HyPro [81], SpaceEx [18], d/dt [82], and ET [83] have

targeted and successfully verified linear dynamical and hybrid models. More

recently, verification tools such as Flow* [22], NLTOOLBOX [84], iSAT [85],

dReach [21], Isabelle/HOL-ODE-Numerics [86] and CORA [23], have demon-

strated the feasibility of verifying nonlinear dynamic and hybrid models.

These tools are still limited in terms of the complexity of the models and the

type of external inputs they can handle, and they require quite often manual

tuning of algorithmic parameters. Some of these tools’ approaches for reach

set estimation operate directly on the vector field involving higher-order Tay-

lor expansions [22, 21]. However, this method suffers from complexity that

increases exponentially with both the dimension of the system and the order

of the model. In the following, we give a brief overview of several verification

tools that are still under active development at time of the writing of this

31

dissertation.

• C2E2: The tool Compare-Execute-Check-Engine (C2E2) [87, 88] is a

simulation and verification tool for nonlinear hybrid systems models. It

takes as input the model of a hybrid system and a safety property and

verifies whether the safety property is satisfied or violated by the model.

If satisfied, C2E2 can return reachable sets over-approximations. If vi-

olated, C2E2 also presents the counterexample that violates the safety

property. The first version of C2E2 as developed in [87, 88] requires

that sensitivity (i.e. discrepancy functions) for each mode of the hybrid

systems are given by the user as model annotations. One of the contri-

butions of this dissertation is the elimination of this manual step as we

present algorithms for automatically computing discrepancy for a broad

class of nonlinear models. We will discuss the details in Section 5.5.1.

• CORA: The tool COntinuous Reachability Analyzer (CORA) [23] is a

MATLAB-based verification tool using zonotopes for reachability anal-

ysis. It can handle hybrid systems with nonlinear continuous dynamics

and/or nonlinear differential-algebraic equations. Moreover, it can han-

dle the analysis of uncertain parameters and system inputs.

• dReach: The tool dReach [21] is an SMT-based δ-reachability analysis

tool for nonlinear hybrid systems. It checks whether a hybrid system

can run into an unsafe region of its state space. dReach picks a single

start state in the initial set and attempts to finds a counterexample

that reaches the unsafe set. If it succeeds, a (spurious or real) counter-

example has been found and the tool finishes. Otherwise, it picks a

suitable starting state for the next execution to be processed.

• Flow*: The tool Flow* [22, 89] is a verification tool that computes Tay-

lor model (TM) flowpipes as over-approximations for continuous and

hybrid system reachable sets. It can handle nonlinear hybrid systems

with uncertainties from the initial set and nondeterministic discrete

transitions. It can also decompose large dimensional systems to a net-

work of smaller dimensional system to make the reachability analysis

more scalable.

• HyDRA: The tool Hybrid systems Dynamic Reachability Analysis (Hy-

DRA) implements flow-pipe construction based reachability analysis for

32

linear hybrid automata. The tool is built on top of HyPro [81], a C++

library for reachability analysis. HyPro provides different implemen-

tations of set representations tailored for reachability analysis such as

boxes, convex polyhedra, support functions, or zonotopes.

• Hylaa: The tool Hylaa [80, 90] is a verification tool that computes the

simulation-equivalent reachable set of states for a hybrid system with

linear ODEs. For a given model, Hylaa can compute all the states

reached by any fixed-step simulation. However, it does not reason

between time steps. Furthermore, time-varying inputs are considered

to be constant between time steps [91].

• Isabelle/HOL-ODE-Numerics: The tool Isabelle/HOL-ODE-Numerics [86]

is a collection of rigorous numerical algorithms for continuous systems.

It is based on Runge-Kutta methods implemented with affine arith-

metic. All algorithms of Isabelle are formally verified in the interactive

theorem prover Isabelle/HOL: from single roundoff errors to the global

approximation scheme is proved correct with respect to a formalization

of ODEs in Isabelle/HOL.

• JuliaReach: The tool JuliaReach is a software framework for reach-

ability computations of dynamical systems. It is written in Julia, a

high-level language for scientific computing. JuliaReach can handle

continuous affine systems using a block decomposition technique pre-

sented in [92].

• KeYmaera X: The tool KeYmaera X is a theorem prover and verifica-

tion tool for differential dynamic logic [68], a logic for specifying and

verifying properties of hybrid systems with mixed discrete and con-

tinuous dynamics. KeYmaera X allows users to specify custom proof

search techniques as tactics, execute tactics in parallel, and interface

with partial proofs via an extensible user interface.

• SpaceEx: The tool SpaceEx is a C++ tool for computing reachabil-

ity of linear hybrid systems whose continuous and jump dynamics are

piecewise affine with nondeterministic inputs [18, 93]. SpaceEx comes

with a web-based graphical user interface and a graphical model editor.

Its input language facilitates the construction of complex models from

33

automata components that can be combined to networks and parame-

terized to construct new components.

• XSpeed: The tool XSpeed [94] implements algorithms for reachabil-

ity analysis for continuous and hybrid systems with linear dynamics.

The focus of the tool is to exploit the modern multicore architectures

and enhance the performance of reachability analysis through parallel

computations.

Sensitivity Analysis. Several approaches have been proposed to obtain

proofs about (bounded time) invariant or safety properties from simulations

[95, 96]. A similar idea to discrepancy functions is the sensitivity matrix,

a matrix that captures the sensitivity of the system to its initial condition

x0. This is then used to give an upper bound on the distance between two

system trajectories. The sensitivity matrix approach was implemented in

a falsification tool Breach, which can generate counter-examples that vio-

late requirements given as signal temporal logic (STL) formulas. In [97],

the authors provided sound simulation-driven methods to over-approximate

the distance between trajectories, but these methods are mainly limited to

affine and polynomial systems. For general nonlinear models, this approach

may not be sound, as higher-order error terms are ignored when computing

this upper bound. Analysis of sensitivity and the related notion of robust-

ness analysis functions, automata, and executions also received significant

attention [98, 99]. In [100] the authors presented an algorithm to compute

the output deviation with bounded disturbance combining symbolic execu-

tion and optimization. In [98] and [99], the authors presented algorithms for

robustness analysis of programs and networked systems.

The idea of computing the reach sets from trajectories is similar to the

notion of incremental Lyapunov function [101], which describes the conver-

gence of trajectories with respect to themselves, rather than with respect

to an equilibrium point. Similar ideas have also been considered for control

synthesis in [102]. Incremental Lyapunov function can also be used for the

discrepancy computation [88]. However, we do not require systems to be

incrementally stable.

The work closest to the discrepancy computation discussed in this disser-

tation involves reachability analysis using matrix measures [49], where the

34

authors use the fact that the matrix measure of the Jacobian matrix can

bound the distance between neighboring trajectories [103, 51]. Unlike the

approach in this dissertation which automatically computes the bounds on

matrix measures, the technique there relies on user-provided closed-form ma-

trix measure functions, which are in general difficult to compute.

Simulation-driven Falsification. A noteworthy related approach is

simulation-driven falsification, which addresses the problem of finding bugs,

but does not aim to prove their absence [104]. The search for bugs is formu-

lated as an optimization problem, and since this typically works out to be

a nonlinear and non-convex problem, stochastic optimization tools are em-

ployed to guide the search. The preeminent tool implementing this approach

is S-TaLiRo [105]; it has been effectively used to search for bugs in several

practical applications [106, 107].

4.3 Simulation and Reachtube

Although it is generally difficult to get the closed-form solution of dynamic

systems, validated simulation libraries, such as VNODE-LP [108] and CAPD

[109], use numerical integration to generate a sequence of states with guar-

anteed error bounds. First we give the following definition of simulation as

a sequence of time-stamped hyper-rectangles.

Definition 4.1. (Simulation) For any x0 ∈ R, τ > 0, ε > 0, T > 0, a

(x0, τ, ε, T)-simulation of the system described in Equation (3.1) is a sequence

of time-stamped sets {(Ri, ti)
n
i=0} satisfying the following:

1. Ri is a compact set in Rn with a diameter smaller than ε, for i =

0, 1, . . . , n.

2. Let ξ(x0, t) be the trajectory of the system starting from x0 along

time. Then ξ(x0, ti) ∈ Ri, i = 0, 1, . . . , n, and ∀t ∈ (ti−1, ti), ξ(x0, t) ∈
hull(Ri−1, Ri), for i = 1, . . . , n.

3. τ is called the maximum sampling period , which means that for each

i = 1, . . . , n, 0 < ti − ti−1 ≤ τ . Note t0 = 0 and tn = T .

35

Next, we introduce the definition of reachtubes, which is also a sequence of

time-stamped hyper-rectangles. However, instead of a single initial state, it

contains all the trajectories starting from the initial set Θ.

Definition 4.2. (Reachtube) For any Θ ⊆ Rn, T > 0, a (Θ, T)-reachtube

is a sequence of time-stamped compact sets {(Oi, ti)
n
i=0}, such that each

Reach(Θ, [ti−1, ti]) ⊆ Oi.

Data-driven verification algorithms generalize single simulations to reach-

tubes using sensitivity analysis. The most crucial and difficult step is to

decide how to conduct such generalizations using sensitivity analysis. In

next section, we introduce discrepancy function, which formalizes the idea

of sensitivity. On the one hand, the discrepancy function should be large

enough to give a strict over-approximation of the reachable set; on the other

hand, it should be small enough so that the over-approximation is not too

pessimistic. Moreover, the value of the function should converge to 0 as the

initial set converges to a single point to have completeness guarantees.

4.4 Discrepancy Function

A discrepancy function bounds the distance between two neighboring tra-

jectories as a function of the initial distance between states and the time

[61, 87]. That is, given any two trajectories ξ(x1, t) and ξ(x2, t) of the system

(3.1) starting from states x1 and x2 respectively, the discrepancy function β

is a function of initial distance between x1 and x2, and time t. At any time

t, the distance between ξ(x1, t) and ξ(x2, t) should be no greater than the

value of discrepancy function at t. The distance between any two states can

be measured using any norm defined in Section 2.1.1.

Definition 4.3. A continuous function β : R≥0×R≥0 → R≥0 is a discrepancy

function of the system in Equation (3.1) if

(1) for any pair of states x1, x2 ∈ Rn, and any time t ≥ 0,

‖ξ(x1, t)− ξ(x2, t)‖ ≤ β(‖x1 − x2‖, t), and (4.2)

(2) for any t, lim‖x1−x2‖→0+ β(‖x1 − x2‖, t) = 0.

36

The general properties needed for soundness and completeness of verifica-

tion based on discrepancy functions were identified in [87], though the key

step of computing discrepancy functions automatically for general nonlinear

systems remained an open problem. A straightforward discrepancy function

can be obtained using the Lipschitz constant of f :

Proposition 4.1 (Proposition 1 in [88]). Consider a dynamical system as in

Equation (3.1), and suppose L > 0 is the Lipschitz constant for f(x). Then

β(‖x1 − x2‖, t) = eLt‖x1 − x2‖ is a discrepancy function.

In Definition 4.3 and Proposition 4.1, the norm can be any norm. We will

make specific choices for designing algorithms. For Example 3.2, L = 2 is a

Lipschitz constant with 2-norm, and therefore, e2t‖x1 − x2‖2 can be used as

a discrepancy function for the jet engine system. However, since Lipschitz

constants are always positive, Proposition 4.1 will always produce a discrep-

ancy function with a positive exponent, which could be very conservative for

the over-approximation of the reachable sets.

According to the definition of discrepancy function, for system (3.1), at any

time t, the ball centered at ξ(x0, t) with radius β(δ, t) contains the reachable

set of (3.1) starting from Bδ(x0). Therefore, by bloating the simulation tra-

jectories using the corresponding discrepancy function, we can obtain the

over-approximating reachtube. Similar ideas have been considered based on

abstraction techniques to synthesize controllers [102]. Definition 4.3 corre-

sponds to the definition of discrepancy function (Definition 2) in [87], except

that we allow an arbitrary M -norm as a metric. We also remark that this

definition of discrepancy function is similar to the incremental Lyapunov

functions [101]; however, here we do not require that trajectories converge to

each other.

As noted in [87, 49], several techniques (contraction metric [110], incremen-

tal stability [101], matrix measure [49], Lyapunov functions [9], Lyapunov

exponents [111], etc.) can be used to find discrepancy functions; however,

those techniques either restrict the class of nonlinear systems (e.g., polyno-

mial systems, as in [97]) or require crucial user-supplied inputs (e.g., the

closed-form expression of matrix measure function, as in [49]).

The matrix measure has long been used to provide estimates on solutions

of systems of ordinary differential equations. Unlike the Lipschitz constants,

the matrix measures can be negative. The next proposition is the key that

37

provides a bound on the distance between trajectories in terms of their initial

distance and the rate of expansion of the system given by the matrix measure

of the Jacobian matrix J(x) with respect to x.

Proposition 4.2. [51]. Consider a dynamical system as in Equation (3.1).

Let S ⊆ Rn and let the Jacobian J(x) = ∂f
∂x

(x) satisfy µ(J(x)) ≤ c for all

x ∈ S. If every trajectory of Equation (3.1) with initial conditions in the line

segment {hx1 + (1 − h)x2 | h ∈ [0, 1]} remains in S until time T , then the

solutions ξ(x1, t) and ξ(x2, t) satisfy

‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖ect (4.3)

for all t ∈ [0, T].

Proposition 4.2 provides a bound on the global divergence between tra-

jectories of dynamical system (3.1) using only information about the sys-

tem’s Jacobian at each point. It provides a new way to compute discrep-

ancy function. If there exists c < 0 such that for all (t, x) ∈ [0,∞) × S

we have µ(J(x)) ≤ c, then system (3.1) or the vector field f(x) is said to

be contracting with respect to ‖ · ‖. But here we do not assume the sign

of c. For dynamical systems (3.1), the norm of the Jacobian ‖J(x)‖ can

be used as a Lipschitz constant for f(x). From Lemma 2.2, we know that

µ(J(x)) ≤ ‖J(x)‖. Therefore, theoretically, the discrepancy function we get

using matrix measures (Proposition 4.2) gives less conservative bounds on the

distance between any pair of trajectories than the one we get using Lipschitz

constant (Proposition 4.1). Later, in Chapter 5, we will see that using matrix

measures, we can get locally optimal exponential rates for the discrepancy

function.

4.5 Verification Algorithm

We are now ready to present the verification algorithm (Algorithm 1). The

basic idea appeared earlier in [87, 112] at different levels of generality. Recall

that a verification algorithm is said to be sound if it answers the safety

question correctly and it is said to be complete if it is guaranteed to terminate

on any input. We know that for general nonlinear and hybrid models, the

unbounded time verification problem is undecidable, that is, no algorithm

38

exists that is both sound and complete. Even bounded time versions of this

problem are known to be undecidable [113]. Algorithm 1 is sound and is

guaranteed to terminate under a mild assumption on the inputs.

If there exists some ε > 0 such that Bε(Reach(Θ, [0, T])) ∩ F = ∅, we

say the system is robustly safe. That is, all states in some envelope around

the system behaviors are safe. If there exists some ε, x ∈ Θ, such that

Bε(ξ(x, t)) ⊆ F over some interval [t1, t2], 0 ≤ t1 < t2 ≤ T , we say the system

is robustly unsafe. An algorithm is said to be relatively complete if it is

guaranteed to terminate when the system is either robustly safe or robustly

unsafe. Algorithm 1 is relatively complete. Another way of saying this is

that Algorithm 1 is a semi-decision procedure for robust safety verification.

The algorithm consists of the following five main steps:

1. Compute a δ-cover C = {θi}ki=1 of the initial set Θ, i.e., Θ ⊆ ∪iBδ(θi),

where Bδ(θi) is a δ-ball around xi.

2. For each xi ∈ C, simulation ξ(θi, t) from θi is computed.

3. For every initial state x ∈ Bδ(θi), at any time t, we have ||ξ(θi, t) −
ξ(x, t)|| ≤ β(δ, t). Therefore, Bβ(δ,t)(ξ(θi, t)) over-approximates all the

states reachable from Bδ(θi) at time t. Taking an union of such sets

over intervals of time up to T we compute a reachtube R, which is an

over-approximation of Reach(Bδ(θi), [0, T]).

4. If R∩ F = ∅ then θi is removed from the cover C. Else if any interval

of the simulation ξ(θi, t) is contained in F then output Unsafe and

the simulation of ξ(θi, t) serves as a counter-example. Otherwise, θi is

replaced in C by a finer cover of Bδ(θi) and steps 2-4 are repeated.

5. If the cover C becomes empty, then output Safe and the union of reach-

tubes Rall that contains the over-approximation of Reach(Θ, [0, T]).

There are several functions referred to in Algorithm 1.

1. Function Rad(S) returns the radius of a set S.

2. Function Simulate() returns a (θ, T, ε, τ)-simulation of the system.

3. Function Generalize() takes as the inputs the simulation ψ starting

from θ, the size of the initial cover δ and the simulation precision ε, and

39

Algorithm 1: Data-driven verification algorithm for dynamical sys-
tems.

input: Θ, T, F, ε0, τ0

1 δ ← Rad(Θ); ε← ε0; τ ← τ0;Rall ← ∅;
2 C ← Cover(Θ, δ, ε);
3 while C 6= ∅ do
4 for 〈θ, δ, ε〉 ∈ C do
5 ψ = {(Ri, ti)

k
i=0} ← Simulate(θ, T, ε, τ);

6 R ← Generalize(ψ, δ, ε);
7 if R∩ F = ∅ then
8 C ← C\{〈θ, δ, ε〉}; Rall ← Rall ∪R ;

9 else if ∃j, Rj ⊆ F then
10 return (Unsafe, ψ)
11 else
12 C ← C ∪ Cover(Bδ(θ),

δ
2
, ε

2
)\{〈θ, δ, ε〉};

13 τ ← τ
2

;

14 end

15 end

16 end
17 return (Safe,Rall);

returns a reachtube that contains all the trajectories starting from the

initial cover Bδ(θ). This can be done by bloating the simulation using

a discrepancy function as described in Section 4.4, which is an over-

approximation of the distance between any neighboring trajectories

starting from Bδ(θ).

4. Function Cover() returns a set of triples {〈θ, δ, ε〉}, where θ’s are sample

states, the union of Bδ(θ) covers Θ, and ε is the precision of simulation.

Algorithm 1 proceeds as follows. Initially, C contains a singleton 〈θ0, δ0 =

Rad(Θ), ε0〉, where Θ ⊆ Bδ0(θ0) and ε0 is a small positive constant. For

each triple 〈θ, δ, ε〉 ∈ C, the while-loop from Line 3 checks the safety of the

reachtube from Bδ(θ), which is computed in Line 5-6. ψ is a (θ, T, ε, τ)-

simulation, which is a sequence of time-stamped rectangles {(Ri, ti)} and is

guaranteed to contain the trajectory ξ(θ, T) by Definition 4.1. Generalizing

the simulation result ψ by the discrepancy function to get R, a (Bδ(θ), T)-

reachtube, we have an over-approximation of Reach(Bδ(θ), [0, T]). If R is

disjoint from F , then the reachtube from Bδ(θ) is safe and the corresponding

triple can be safely removed from C. If for some j, Rj (one rectangle of the

40

simulation) is completely contained in the unsafe set, then we can obtain a

counterexample in the form of a trajectory that violates the safety property.

Otherwise the safety of Reach(Bδ(θ), [0, T]) is not determined, and in Line 12

a refinement of Bδ(θ) needs to be made with smaller δ and smaller ε, τ .

(a) (b)

(c) (d)

Figure 4.1: Conceptual demonstration of the data-driven verification
algorithm for dynamical systems. The pink region on the left is the unsafe
set F ; the black hollow box is the initial set Θ with successive refinements
and the blue boxes are initial covers that need to be checked for safety. (a):
A set of simulations are shown with black lines in the top left figure. (b):
dark brown region is a reachtube over-approximations computed using
sensitivity analysis with piecewise discrepancy function (will be introduced
in Chapter 5) which intersects with F , and therefore, it is inconclusive. (c):
The light brown region is the reachtube over-approximation from a part of
the initial set that is proven to be safe. (d): A counterexample unsafe
simulation is shown as the black line.

Figure 4.1 gives a conceptual demonstration of Algorithm 1 running on

the jet engine example (Example 3.2).

Theorem 4.1. Algorithm 1 is sound. That is, if it returns Safe then indeed

Reach(Θ, [0, T]) ∩ F = ∅; if it returns Unsafe then it also finds a counter-

41

example, the simulation ψ which enters F . Algorithm 1 is also relatively

complete. That is, for any robustly safe or unsafe system, it will terminate

and decide either Safe or Unsafe.

The detailed proof of Theorem 4.1 can be found in pages 50-51 of [88].

A crucial and challenging aspect of Algorithm 1 is choosing an appropriate

discrepancy function with which to implement the Generalize() function.

In the next chapter, we introduce algorithms that implement this function

for various types of dynamical systems.

Algorithm 1 can be extended for the safety verification of hybrid systems by

replacingR in Line 6 with the reachtube of the given hybrid system. Chapter

4 of [88] provides a detailed version of the data-driven verification algorithm

for hybrid systems with proofs for soundness and relative completeness.

4.6 Summary

In this chapter, we reviewed the data-driven verification approach for dy-

namical systems. The key to its success is the powerful amalgamation of

the speed of numerical simulations with the guarantees coming from sensi-

tivity analysis (discrepancy computation). In next chapter, we will introduce

multiple methods to obtain discrepancy functions and look at several case

studies.

42

Chapter 5

Computing Discrepancy

In this chapter, we discuss several approaches for computing discrepancy

functions for dynamical systems. We start with the simplest case of stable

linear systems where Lyapunov equations can be used for computing discrep-

ancy. Then we move on to discuss nonlinear models and contraction metrics.

Next, we introduce one of the major contributions of this dissertation: a lo-

cally optimal approach for the discrepancy computation of general nonlinear

systems. Finally, we extend the method to compute reachtubes for hybrid

systems.

5.1 Introduction

As noted in the last chapter, the performance of the data-driven verification

methods relies greatly on having a good discrepancy function that can give

sound and precise over-approximations on the distances between any pair of

trajectories of the system.

Several techniques like contraction metric, incremental stability, and Lya-

punov functions can be used to find discrepancy functions. Indeed, for a

linear system, we show that a discrepancy function can be easily constructed

using its Lyapunov function (Section 5.2). For a special class of nonlinear

systems where a polynomial contraction metric exists, several optimization

based methods can also be utilized to discover a discrepancy function for

them (Section 5.3). However, those techniques either restrict the class of

nonlinear systems or require nontrivial user inputs (e.g., the closed-form ex-

pression of a matrix measure function, as in [49]). In this section, we address

this problem by providing algorithms that compute discrepancy functions

automatically for general nonlinear dynamical systems. The proposed algo-

rithm can provide locally optimal reach set over-approximations.

43

Our approach for computing discrepancy is based on the well-known result

that an upper bound on the matrix measure of the system’s Jacobian matrix

Jf (x) can be used as an exponential upper bound on the distance between

neighboring trajectories [103, 51]. Closed-form expressions for matrix mea-

sures are in general difficult to obtain for nonlinear systems. For example, for

matrix Jf (x), the matrix measure under Euclidean norm is the largest eigen-

value of the symmetric part of the matrix λmax((Jf (x)+JTf (x))/2). However,

if we can over-approximate all possible values of the system’s Jacobian ma-

trix Jf (x) over some compact set S ⊂ Rn, we can obtain an upper bound on

the matrix measure of the Jacobian matrix over S without knowing its closed

form. This two-step computation proceeds as follows: (a) use interval matri-

ces to bound the variation of the Jacobian matrix over S, and (b) compute

the upper bound of the matrix measure of the interval matrix. We introduce

an algorithm Generalize (Algorithm 2) to achieve the second step. The

idea is to search all possible linear coordinate transformations of the norms

to minimize the matrix measures, which involves solving several optimization

problems using semidefinite programming.

We also introduce an algorithm in Section 5.4.2 that uses such discrepancy

function based on matrix measures and include discussion of the accuracy

and speed of the algorithm (Section 5.4.2). We extend the algorithm to

compute the reachable sets for hybrid systems (Section 5.5) and introduce the

verification tool C2E2 which implements these algorithms. We show that the

resulting algorithm and tool scale to large (up to 28) dimensions and complex

nonlinear (with hundreds of nonlinear terms) systems. We apply C2E2 to

several challenging hybrid benchmark models including Toyota engine control

models (Example 5.3) and a spacecraft rendezvous model (Example 5.4).

5.2 Linear Models

For a linear time invariant (LTI) system ẋ = Ax, if the system is asymp-

totically stable we can find a discrepancy function by solving the Lyapunov

equation:

Theorem 5.1. For asymptotically stable linear system ẋ = Ax, given any

positive definite matrix Q ∈ Rn×n, β(‖x1 − x2‖M , t) = e−γt‖x1 − x2‖M is a

44

discrepancy function, where M � 0 can be found by solving the Lyapunov

equation ATM +MA+Q = 0 and γ = λmin(Q)
2λmax(M)

.

Proof. Fix any x1, x2 ∈ Rn, and let y(t) = ξ(x1, t)− ξ(x2, t), we have

d
‖y(t)‖2

M

dt
= ẏT (t)My(t) + y(t)Mẏ(t) = yT (t)(ATM +MA)y(t)

= −yT (t)Qy(t) ≤ −λmin(Q)yT (t)y(t)

≤ − λmin(Q)
λmax(M)

yT (t)My(t) = − λmin(Q)
λmax(M)

‖y(t)‖2
M .

By applying Grönwall’s inequality, we obtain ‖y(t)‖M ≤ e−
λmin(Q)

2λmax(M)‖y(0)‖M .

Example 5.1. A simple linear model of a country’s economy by shifting the

equilibrium point to the origin is given by[
ẋ

ẏ

]
=

[
1 −c0

c1(1− c2) −c1

][
x

y

]
, (5.1)

where x and y represents the national income and the rate of consumer

spending respectively. Let c0 = 3, c1 = 2, and c2 = 0. Consider the Lyapunov

function V (x) = x>Mx with M =

[
6 −4

−4 7

]
. We have ATM+MA+Q =

0 with Q =

[
4 0

0 4

]
.

The eigenvalues of Q are λmax(Q) = λmin(Q) = 4, which are all posi-

tive. The eigenvalues of M are λmax(M) = 13+
√

65
2

and λmin(M) = 13−
√

65
2

.

Therefore, a discrepancy function for the linear system of Equation (5.1) is

β(‖x1 − x2‖M , t) = e
− 8

13+
√

65‖x1 − x2‖M with M =

[
6 −4

−4 7

]
.

5.3 Nonlinear Models: Optimization-based Approaches

For nonlinear systems with trajectories that exponentially converge to each

other, contraction metrics can be used as a certificate for this convergence [110]).

Discrepancy functions can be computed from contraction metrics.

45

Definition 5.1 (From [110]). A uniform metric M : Rn × R≥0 → Rn×n is

called a contraction metric for (3.1) if ∃γ ∈ R≥0 such that

JTf (x)M(x, t) +M(x, t)Jf (x) + Ṁ(x, t) + γM(x, t) � 0.

Theorem 5.2 (Theorem 2 from [110]). For system given by (3.1) that admits

a contraction metric M, the trajectories converge exponentially with time,

i.e. ∃k ≥ 1, γ > 0 such that, ∀x1, x2 ∈ Rn, yT (t)y(t) ≤ kyT (0)y(0)e−γt, where

y(t) = ξ(x1, t)− ξ(x2, t).

Proposition 5.1 (Proposition 5 from [88]). For system given by (3.1) that

admits a contraction metric M, β(‖x1 − x2‖2, t) =
√
ke−

γ
2
t‖x1 − x2‖2 is a

discrepancy function, where k, γ are from Theorem 5.2.

In [114], a technique for establishing exponential convergence among tra-

jectories using Sum of Squares (SOS) optimization is proposed. It fixes the

degree d of the polynomial for all terms in the contraction metricM(x), then

imposes constraints on the coefficients of the polynomials such that M(x)

satisfies conditions given in Definition 5.1. If the contraction metric can-

not be found with the d-degree polynomials, the algorithm will increase the

value of d and repeat. In [115] the authors presented a simulation-guided

approach for discovering contraction metric. It also fixes the degree of the

polynomial in the contraction metricM(x), then samples a finite number of

simulations and computes the coefficients of the polynomials such thatM(x)

is a valid contraction metric only for that finite number of simulations. Then

the algorithm will call an SMT solver to find counter-examples in the entire

state space such thatM(x) does not satisfy conditions given in Definition 5.1

for those counter-examples. Then the sampled simulation set is enhanced by

those counter-examples and the algorithm repeats using the enhanced sample

simulation set.

For a given nonlinear ODE, a contraction metric that has only polynomial

terms is not guaranteed to exist, and hence, none of the above procedures is

guaranteed to terminate.

46

5.4 Nonlinear Models: Local Discrepancy

The main obstacle to finding a (global) discrepancy function for general non-

linear systems is the difficulty of globally bounding the convergence (or diver-

gence) rates across all trajectories. By restricting the definition of discrep-

ancy functions over carefully computed parts of the state space, we will gain

two benefits. First, such local discrepancy functions will still be adequate to

compute Generalize needed in Algorithm 1. Second, it will become possi-

ble to compute a local discrepancy function automatically from simulation

traces. The success of the data-driven verification approach (Algorithm 1)

hinges on good discrepancy that can lead to coverage of all possible behav-

iors from only finitely many simulations to ensure soundness of the algorithm.

On the other hand, if the discrepancy function gives too-conservative over-

approximations, Algorithm 1 will need to refine many times before hitting an

answer. Therefore, we want to compute a discrepancy function that is less

conservative and in a computationally efficient way. In this section, we intro-

duce methods that use matrix measures to obtain good discrepancy functions

for a general class of nonlinear systems. This work was originally presented

in [24].

5.4.1 Compute Discrepancy Function with Matrix Measures

We begin by observing that, over a compact set S ⊆ Rn, the Jacobian Jf

of the system described by Equation (3.1) can be over-approximated by an

interval matrix. Then we establish that the distance between two trajecto-

ries in S satisfies a differential equation from a set of differential equations

described using the interval matrix. By bounding the matrix measure of the

interval matrix, we can get a discrepancy function.

Since we assume the system is continuously differentiable, the Jacobian

matrix is continuous, and therefore, over a compact set S, the elements of

Jf (x) are bounded. That is, there exists an interval matrix A such that

∀x ∈ S, Jf (x) ∈ A. For interval matrix A = IntV(B,C), the bounds B

and C can be obtained using interval arithmetic or an optimization toolbox

by maximizing and minimizing the terms of Jf over S. (The set S can be

chosen to be a coarse over-approximation of the reach set, obtained using the

Lipschitz constant as in Proposition 4.1).

47

Once the bounds are obtained, we use the interval matrix that over-

approximates the behavior of Jf (x) over S and matrix measures to analyze

the rate of convergence or divergence between trajectories:

Lemma 5.1. For system (3.1) with a compact initial set Θ starting from time

t1, suppose S ⊆ Rn is a compact convex set, and [t1, t2] is a time interval such

that for any x ∈ Θ, t ∈ [t1, t2], ξ(x, t) ∈ S. Let M ∈ Rn×n be an invertible

matrix. If there exists an interval matrix A such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ ∈ R, ∀A ∈ A, MAM−1 + (M−1)>A>M> � 2γI,

then for any x1, x2 ∈ Θ and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ eγ(t−t1)‖x1 − x2‖M .

Proof. Let the matrix measure of the Jacobian matrix correspond to the M -

norm µM(J(x)) = µ2(MJ(x)M−1) (Lemma 2.2); then from the definition of

matrix measures, we have

µM(J(x)) =
1

2
λmax((MJ(x)M−1 + (MJ(x)M−1)>)).

From the condition of the proposition, we know that ∀x ∈ S, MJ(x)M−1+

(M−1)>J>(x)M> � 2γI. So we have

µM(J(x)) ≤ γ.

Since for any x ∈ Θ, t ∈ [t1, t2], ξ(x, t) ∈ S, from Proposition 4.2, we know

that for any t ∈ [t1, t2],

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Meγ(t−t1).

Lemma 5.1 provides a discrepancy function: β(‖x1 − x2‖M , t) = ‖x1 −
x2‖Meγ(t−t1). This discrepancy function could result in more or less conser-

vative reachtubes, depending on the selection of M and γ. Ideally, we would

like to identify the optimal M such that we can obtain the tightest bound γ.

This problem is formulated as follows:

48

min
γ∈R,M∈Rn×n

γ (5.2)

s.t MAM−1 + (M−1)>A>M> � 2γI, ∀A ∈ A,

M is invertible.

Pre- and post-multiplying the matrix inequality of (5.2) by M> and M ,

then letting P = M>M be a positive semi-definite matrix, we arrive at

min
γ∈R,P�0

γ (5.3)

s.t PA+ A>P � 2γP, ∀A ∈ A,

which is closer to an semi-definite programing (SDP) problem. However,

solving (5.3) to obtain the optimal γ for each time interval involves solv-

ing optimization problems with infinite numbers of constraints, imposed by

the infinite set of matrices in A. To overcome this problem, we introduce

a strategy to transform (5.3) to an equivalent problem with finitely many

constraints based on the vertex matrices.

Proposition 2.1 establishes that an interval matrix is equivalent to the

convex hull of its vertex matrices. That means each constant matrix A in

the interval matrix A will have a representation based on elements of VT(A).

This allows us to simplify the optimization problem in Equation (5.3) to

one with a finite number of constraints, based on the vertex matrices. The

next lemma provides a method for computing discrepancy functions from the

vertex matrices of an interval matrix.

Lemma 5.2 (Lemma 4.1 from [24]). For system (3.1) with a compact initial

set Θ starting from time t1, suppose S ⊆ Rn is a compact convex set, and

[t1, t2] is a time interval such that for any x ∈ Θ, t ∈ [t1, t2], ξ(x, t) ∈ S. Let

M ∈ Rn×n be an invertible matrix. If there exists an interval matrix A such

that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ ∈ R, ∀ Ai ∈ VT(A), MAiM
−1 + (M−1)>A>i M

> � 2γI,

49

then for any x1, x2 ∈ Θ and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ eγ(t−t1)‖x1 − x2‖M .

Proof. From Proposition 2.1, we know that for any interval matrix A,

hull(VT(A)) = A.

Therefore, each A ∈ A is also in the convex hull of all vertex matrices in

VT(A). That is, suppose there are k matrices in the set of vertex matrices

VT(A): {A1, · · · , Ak}. For each A ∈ A, there exists k constant numbers

α1, · · · , αk ∈ [0, 1] such that A =
∑k

i=1 αiAi and
∑k

i=1 αi = 1.

Therefore, if ∀ Ai ∈ VT(A), MAiM
−1 + (M−1)>A>i M

> � 2γI, then

MAM−1 + (M−1)>A>M>

= M
∑k

i=1 αiAiM
−1 + (M−1)>(

∑k
i=1 αiAi)

>M>

=
∑k

i=1 αiMAiM
−1 +

∑k
i=1 αi(M

−1)>A>i M
>

� 2
∑k

i=1 αiγI = 2γI.

From Lemma 5.1, we can get that for any t ∈ [t1, t2],

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Meγ(t−t1).

So the lemma holds.

Similar to (5.3), Lemma 5.2 suggests the following bilinear optimization

problem for finding discrepancy over compact subsets of the state space:

min
γ∈R,P�0

γ (5.4)

s.t. for each Ai ∈ VT(A), PAi + A>i P � 2γP.

Letting γmax be the maximum of the eigenvalues of Ai + A>i for all i, then

Ai + A>i � γmaxI (i.e., M = I) holds for every Ai, so a feasible solution

exists for (5.4). To obtain a minimum feasible solution for γ, we choose a

range of γ ∈ [γmin, γmax], where γmin < γmax and perform a line search of γ

over [γmin, γmax]. Note that if γ is fixed, then (5.4) is a semidefinite program

50

(SDP), and a feasible solution can be obtained by an SDP solver. As a result,

we can solve (5.4) using a line search strategy, where an SDP is solved at

each step.

This approach using vertex matrices is computationally intensive due to

the potentially O(2n
2
) matrices in VT(A) that appear in the SDP (5.4).

In [24], a second method is shown to avoid the exponential increase in the

number of constraints in (5.4), at the expense of lower accuracy (i.e., increas-

ing the conservativeness). We give the Lemma below without the detailed

proof.

Lemma 5.3 (Lemma 4.2 from [24]). For system (3.1) with a compact initial

set Θ starting from time t1, suppose S ⊆ Rn is a compact convex set, and

[t1, t2] is a time interval such that for any x ∈ Θ, t ∈ [t1, t2], ξ(x, t) ∈ S.

Let M ∈ Rn×n be an invertible matrix. If there exists an interval matrix

A = IntV([B,C]) such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ ∈ R, such that M(B + C)M−1 + (M−1)>(B + C)>M> � 4γI,

then for any x1, x2 ∈ Θ and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e

(
γ+ δ

λmin(M>M)

)
(t−t1)

‖x1 − x2‖M , (5.5)

where δ = supD∈D ‖D‖2/2, and

D = {D | ∃A ∈ A such that D = (A−B + C

2
)>M>M+M>M(A−B + C

2
)}

is also an interval matrix.

In general, Lemma 5.3 provides the discrepancy function β(‖x1−x2‖M , t) =

e

(
γ+ δ

λmin(M)

)
(t−t1)‖x1 − x2‖M , where an M and γ need to be selected. This

suggests solving the optimization problem (5.4) but replacing all the vertex

matrices with a single matrix (B+C)/2. Then δ is computed as supD∈D ‖D‖2,

where D is an interval matrix. In [24], the authors suggested an efficient way

to compute supD∈D ‖D‖2, which needs only O(n2) linear computations.

51

Lemma 5.3 suggests solving the following alternative optimization problem:

min
γ∈R,P�0

γ (5.6)

s.t P (B + C) + (B + C)>P � 4γP.

The computations required to produce the discrepancy for Lemma 5.3 are

significantly less intensive than for Proposition 5.2, but this comes at the

price of decreasing the accuracy (i.e., increasing the conservativeness), due

to the positive error term δ
λmin(M)

that is added to γ in (5.5). In practice,

we want to make the compact sets S small so that δ (and by extension the

exponential term in (5.5)) remains small.

Lemmas 5.2 and 5.3 provide bounds on the M -norm distance between

trajectories. Given the simulation result of ξ(x1, t), for any other initial state

x2 such that ‖x1 − x2‖M ≤ c, we will have that ∀t ∈ [t1, t2], ‖ξ(x1, t) −
ξ(x2, t)‖M ≤ ceγ

′(t−t1) (γ′ = γ for Lemma 5.2 and γ′ = γ + δ
λmin(M)

for

Lemma 5.3). This means that at any time t ∈ [t1, t2], ξ(x2, t) is contained

in the ellipsoid centered at ξ(x1, t) defined by the set of points x that satisfy

‖(ξ(x1, t) − x)‖M ≤ ceγ
′(t−t1). That is, ξ(x2, t) is contained within ellipsoid

Eceγ′(t−t1) (ξ(x1, t),M) (see the definition of ellipsoid in Section 2.2).

Example 5.2. Consider the jet engine example (Example 3.2) over the set

S = {x = [u, v]> | u ∈ [0, 0.2], v ∈ [−0.5, 0.5]}. The interval matrix that

contains every possible value of the Jacobian matrix J(x) is[
[−0.66, 0] −1

3 −1

]
. (5.7)

Using Lemma 5.2, we obtain the following discrepancy function for this sys-

tem:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me−0.4t,

with M =

[
2.362 0.227

−0.227 1.356

]
for as long as the trajectories remain inside S.

Using Lemma 5.3, we obtain the following discrepancy function for this

system:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me−0.165t,

52

with M =

[
2.435 −0.173

−0.173 1.400

]
for as long as the trajectories remain in S.

5.4.2 Algorithm to Compute Local Optimal Reach Set

Given an initial set Bδ(x) and time bound T , Lemma 5.2 provides discrep-

ancy functions over compact subsets of the state space, and over a bounded

time horizon. To compute the reach set of a nonlinear model from a set of

initial states over a long time horizon [0, T], we will divide the time interval

[0, T] into smaller intervals [0, t1], . . . , [tk−1, tk = T], and compute a piece-

wise discrepancy function, where each piece is relevant for a smaller portion

of the state space and time.

In this section, we present an algorithm to compute a (Bδ(x), T)-reachtube

for system (3.1) using the results from Lemma 5.2. The inputs to Algorithm

Generalize are as follows:

(1) ψ: a simulation of the trajectory ξ(x, t), where x = ξ(x, t0) and t0 = 0,

represented as a sequence of points ξ(x, t0), . . . , ξ(x, tk) and a sequence

of hyper-rectangles Ri ⊆ Rn. such that for any t ∈ [ti−1, ti], ξ(x, t) ∈ Ri.

(2) Jf (·): the symbolic Jacobian matrix.

(3) L ∈ R≥0: a Lipschitz constant for the vector field (this can be replaced

by a local Lipschitz constant for each time interval).

(4) M0 ∈ Rn×n, c0 ∈ R≥0: parameters of the initial set such that Bδ(x) ⊆
Ec0(x,M0).

The output is a (Bδ(x), T)-reachtube. Note here we assume the simulation

trajectory ψ is accurate at discrete time points t0, · · · , tk. In Remark 5.2,

we will discuss how the algorithm works with validated simulations with

guaranteed error bounds.

Algorithm Generalize uses Lemma 5.2 to update the matrix Mi to en-

sure an optimal exponential rate γi of the discrepancy function in each time

interval [ti−1, ti]. It will solve the optimization problem (5.4) in each time

interval to get the local optimal rate. The algorithm proceeds as follows.

1. At Line 1, the radius of the ellipsoid containing the initial set Bδ(x) is

computed as the initial set size.

53

Algorithm 2: Algorithm Generalize

input : ψ, Jf (·), L, M0, c0

initially: R ← ∅, γ0 ← −100
1 δ0 = Rad (Ec0(x,M0)) ;
2 for i = 1:k do
3 ∆t← ti − ti−1 ;
4 S ← Bδi−1eL∆t(Ri) ;
5 Compute A such that ∀x ∈ S, Jf (x) ∈ A ;
6 if ∀V ∈ VT(A) :Mi−1VM

−1
i−1 + (M−1

i−1)>V >M>
i−1 � 2γI then

7 Mi ←Mi−1; ;
8 γi ← arg min

γ∈R
∀V ∈ VT(A) : MiVM

−1
i + (MiVM

−1
i)> � 2γI ;

9 c′ ← ci−1

10 else
11 compute Mi, γi from Equation (5.4) ;
12 compute minimum c′ such that

Eci−1
(ξ(x, ti−1),Mi−1) ⊆ Ec′(ξ(x, ti−1),Mi) ;

13 end
14 ci ← c′eγi∆t ;
15 δi ← Rad(Eci(ξ(x, ti),Mi)) ;
16 Oi ← Bδ′(Ri) where δ′ = max{Rad (Ec′ (ξ(x, ti−1),Mi)) , δi} ;
17 R ← R∪ [Oi, ti] ;

18 end
19 return R ;

2. At Line 4, Ri, which contains the trajectory between [ti−1, ti], is bloated

by the factor δi−1e
L∆t which gives the set S that is guaranteed to con-

tain Reach(Bδ(x), t) for every t ∈ [ti−1, ti].

3. At Line 5, an interval matrix A containing Jf (x) for each x ∈ S is

computed.

4. At Line 6, the “if” condition determines whether the Mi−1, γi−1 used in

the previous iteration satisfy the conditions of Lemma 5.2 (when i = 1,

γ0 is an initial guess). This condition will avoid performing updates

of the discrepancy function if it is unnecessary. If the condition is

satisfied, then Mi−1 is used again for the current iteration i (Lines 7, 8,

and 9) and γi will be computed as the smallest possible value such that

Lemma 5.2 holds (Line 8) without updating the shape of the ellipsoid

(i.e., Mi = Mi−1). In this case, the γi computed using Mi−1 in the

previous iteration (i− 1) may not be ideal (minimum) for the current

54

iteration (i), but we assume it is acceptable.

5. At Line 11, when the “if” condition at Line 6 does not hold, which

means that Mi−1 and γi−1 do not satisfy the conditions of Lemma 5.2,

the previous discrepancy function can no longer ensure an accurate

exponential converging or diverging rate between trajectories. Then

Mi and γi are recomputed by solving (5.4).

6. At Line 12, the algorithm identifies the smallest constant c′ for discrep-

ancy function updating such that

Eci−1
(ξ(x, ti−1),Mi−1) ⊆ Ec′(ξ(x, ti−1),Mi). (5.8)

This is because the shape matrices Mi−1 and Mi for the ellipsoids are

not equal for the two consecutive time intervals [ti−2, ti−1] (or only ti−1

when i = 1) and [ti−1, ti]. We need to ensure that at the transition time

ti−1, ellipsoid Ec′(ξ(x, ti−1),Mi) as the initial set for the time interval

[ti−1, ti] is an over-approximation of the ellipsoid Eci−1
(ξ(x, ti−1),Mi−1),

which is the reachable set of at time ti−1 for the time interval [ti−2, ti−1].

It is a standard SDP problem to compute the minimum value for c′ that

ensures (5.8) (see, for example [116]). We can use the “S procedure” [9]

to transfer this optimization problem to the following sum-of-squares

problem to make it solvable by SDP solvers:

min c′

s.t. c′2 − ‖x− ξ(x0, ti−1)‖2
Mi
− λ

(
c2
i−1 − ‖x− ξ(x0, ti−1)‖2

Mi−1

)
≥ 0,

λ ≥ 0.

(5.9)

7. At Line 14, the algorithm computes the updated ellipsoid size ci such

that Eci(ξ(x, ti),Mi) contains Reach(Bδ(x), ti).

8. At Line 15, the diameter of Eci(ξ(x, ti),Mi) is assigned to δi for next

iteration.

9. At Line 16 the set Oi is computed such that it contains the reachable

set during time interval [ti−1, ti].

55

10. Finally, at Line 17, R is returned as an over-approximation of the entire

reachable set.

The next lemma states that the γ produced by Line 11 is a local optimal

exponential converging or diverging rate between trajectories.

Lemma 5.4 (Lemma 5.1 from [24]). In the ith iteration of Algorithm 2,

suppose A is the approximation of the Jacobian over [ti−1, ti] computed in

Line 5. If Ei−1 is the reach set at ti−1, then for all M ′ and γ′ such that

Reach(Ei−1, ti) ⊆ Ec′(ξ(x, ti),M
′) where c′ is computed from γ′ (Line 14), we

have that the γ produced by Line 11 satisfies γ ≤ γ′.

Proof. The lemma follows from the fact that anyM ′, γ′ that satisfiesMAM−1+

(M−1)>A>M> � 2γI,∀A ∈ A results in an ellipsoidal approximation at ti

that over-approximates the reach set; however, at Line 11 we are computing

the minimum exponential change rate γ by searching all possible matrices M

for the given interval matrix. Thus, the γ value computed at Line 11 is the

optimal exponential change rate over local convex set S for the given interval

matrix A.

In other words, the computed γ is the optimal exponential growth rate

for any ellipsoidal reach set approximation, based on a given interval matrix

approximation for the Jacobian.

Theorem 5.3 ensures soundness of the verification algorithm.

Theorem 5.3 (Theorem 5.2 from [24]). For any (x, T)-simulation ψ =

ξ(x, t0), . . . , ξ(x, tk) and any constant δ ≥ 0, a call to Generalize(ψ, δ) re-

turns a (Bδ(x), T)-reachtube.

Proof. By Lemma 5.2, at any time t ∈ [ti−1, ti], any other trajectory ξ(x′, t)

starting from x′ ∈ Eci−1
(ξ(x, ti−1),Mi−1) is guaranteed to satisfy

‖ξ(x, t)− ξ(x′, t)‖Mi
≤ ‖ξ(x, ti−1)− x′‖Mi

eγi(t−ti−1). (5.10)

Then, at time ti, the reach set is guaranteed to be contained in the ellipsoid

Eci(ξ(x, ti),Mi).

At Line 16 we want to compute the set Oi such that it contains the reach

set during time interval [ti−1, ti]. According to Equation (5.10), at any time

t ∈ [ti−1, ti], the reach set is guaranteed to be contained in the ellipsoid

56

Ec(t)(ξ(x, t),Mi), where c(t) = c′eγi(t−ti−1). Oi should contain all the ellip-

soids during time [ti−1, ti]. Therefore, it can be obtained by bloating the

rectangle Ri using the largest ellipsoid’s radius. Since eγi(t−ti−1) is mono-

tonic (increasing when γi > 0 or decreasing when γi < 0) with time, the

largest ellipsoid during [ti−1, ti] is either at ti−1 or at ti. So the largest radius

of the ellipsoids is max{Rad (Ec′ (ξ(x, ti−1),Mi)) , δi}. Thus, at Line 16, Oi

computed at Line 16 is an over-approximation of the reach set during time

interval [ti−1, ti].

When i = 1, because the initial ellipsoid Ec0(x,M0) contains the ini-

tial set Bδ(x), we have that Ec1(ξ(x, t1),M1) defined at Line 15 contains

Reach(Bδ(x), t1). Also at Line 16, O1 contains Reach(Bδ(x), [t0, t1]). Repeat-

ing this reasoning for subsequent iterations, we have that Eci(ξ(x, ti),Mi)

contains Reach(Bδ(x), ti), and Oi contains Reach(Bδ(x), [ti−1, ti]). Therefore,

R returned at Line 17 is a (Bδ(x), T)-Reachtube.

Remark 5.1. Algorithm 2 uses Lemma 5.2 to compute discrepancy func-

tions, which can be replaced by Lemma 5.3 to decrease the computational

cost by introducing some conservativeness in the over-approximation.

Remark 5.2. To modify Algorithm 2 to accept validated simulations and the

error bounds introduced in Section 4.3, at Line 4 and Line 16, we need to bloat

hull({Ri−1, Ri}), which is guaranteed to contain the solution ξ(x, t),∀t ∈
[ti−1, ti]. Also, at Line 12 and Line 15, the ellipsoid Eci(ξ(x, ti),Mi) should

be replaced by Eci(0,Mi)⊕Ri.

5.4.3 Advantages of the Generalize Algorithm

At the beginning of this section, we discussed the importance of a good

discrepancy function for the overall data-driven verification approach. In

the rest of this section, we show that Algorithm 2, using the discrepancy

function from matrix measures, produces an accurate reachable set over-

approximations with less computational loads.

Proposition 5.2 establishes that the bloating factor δi in Line 15 for con-

structing reachtubes goes to 0 as the size of the initial set Bδ(x) goes to zero.

This implies that the over-approximation error from bloating can be made

arbitrarily small by making the uncertainty in the initial cover 〈x, δ, ε〉 small.

57

Proposition 5.2 (Proposition 5.3 from [24]). In Algorithm Generalize, for

any i, if M0 and c0 are optimal, in the sense that no M ′, c′ exists such that

c′ < c0 and Bδ(x) ⊆ EM ′,c′(x), then as the radius of the initial ball δ → 0

the size of the bloating factor δi → 0 (Line 15).

The contractive system’s Jacobian matrix has negative matrix measure

under certain coordinate transformation. Next, Corollary 5.1 establishes that

for contractive systems the reachtube computed by Algorithm Generalize

converges to the rectangles that represent the simulation.

Corollary 5.1 (Corollary 5.3 from [24]). Consider a contractive system for

which there exists a matrix M such that ∀x ∈ Rn, J>f (x)M + MJf (x) �
2γM , and γ < 0. Computing the reachtube of the system using Algorithm

Generalize, we have as k, T →∞,

|Rad(Ok)− Rad (Rk) | → 0.

A linear system is contractive if A is Hurwitz as the real part of its

eigenvalues are bounded by some constant γ < 0. For (even unstable) lin-

ear invariant systems, since the Jacobian matrix A does not change over

time, the discrepancy function can be computed globally for any time t and

x1, x2 ∈ Rn. Therefore, there is no accumulated error introduced using Algo-

rithm Generalize. We have also shown the convergence of the algorithm for

contractive nonlinear systems in Corollary 5.1. For non-contractive nonlin-

ear systems, the over-approximation error might be accumulated. Such error

caused by wrapping effect in the on-the-fly algorithms may not be avoidable.

Therefore, for non-contractive or unstable nonlinear systems, it is especially

important to reduce the over-approximation error in each time interval, which

is what Algorithm Generalize aims to achieve.

For an n-dimensional system model, assume that there are N entries of the

Jacobian matrix that are not a constant number. At any iteration, at Line 5,

the algorithm solves 2N optimization problems or uses interval arithmetic to

get lower and upper bounds of each component of the Jacobian. For linear

time invariant systems, this step is eliminated. At Line 6 using Lemma 5.2

(vertex matrices) the algorithm computes 2N matrix inequalities; however,

using Lemma 5.3 (center matrix with error term) the algorithm computes 1

matrix inequality. At Line 8 or Line 11, using Lemma 5.2 the algorithm solves

58

1 convex optimization problem with 2N +1 constraints, but using Lemma 5.3

the algorithm solves 1 convex optimization problem with 2 constraints. The

discrepancy function updating at Line 12 solves 1 SDP problem. The rest of

the algorithm from Line 14 to Line 16 consists of algebraic operations.

From the above analysis, we can see that Lemma 5.3 improves the ef-

ficiency of the algorithm as compared to Lemma 5.2, especially when the

number of non-constant terms in the Jacobian matrix is large. However, us-

ing Lemma 5.3 may result in a more conservative over-approximation. We

can consider Lemma 5.2 accurate but with a greater computational burden,

and Lemma 5.3 simple but coarse.

As solving the SDP problem is known to be in polynomial time, using

Lemma 5.3 will cost time exponentially with respect to the dimensionality,

while Lemma 5.3 is still in polynomial time. It is worth noting that other

methods like Taylor models suffer from complexity that increases exponen-

tially with both the dimension of the system and the order of the model.

The effective efficiency of the algorithm depends on whether the system

is contractive or not. For contractive systems, it is possible that the “if”

condition often holds at Line 6, allowing the algorithm to often reuse the

previous norm and contraction rate. For non-contractive systems this may

not be the case. Also, the algorithm only computes the discrepancy function

once for the linear system, since the interval matrix to which the Jacobian

matrix belongs is time invariant.

5.4.4 Experimental Evaluation of Algorithm Generalize

We implemented Generalize in MATLAB and tested it on several bench-

mark verification problems. Simulations are generated using the validated

simulation engine CAPD [109], which returns a sequence of time-stamped

rectangles as required. The optimization problems (5.4), (5.6), and the SDP

problems are solved using SDP3 [117] and Yalmip [118].

We compare the running time and accuracy of Algorithm Generalize

against a leading nonlinear verification tool, Flow* [22]. As a measure of

precision, we compare the ratio of the reachable set volume to the initial set

volume since tools use different set representations. We calculate two volume

ratios: (a) average volume of the reachable set divided by the initial volume

59

(sampled at the time steps used in Flow*), (b) the reachable set at the final

time point T divided by the initial volume.

We evaluated the algorithm on several nonlinear benchmarks. Van der

Pol, Moore-Greitzer, and Brusselator are standard low-dimensional mod-

els. The Diode Oscillator from [49] is low dimensional but has complex

dynamics described by degree 5 polynomials. Robot Arm is a 4-dimensional

model from [119]. Powertrain is the benchmark control system proposed

in [120]. This system has highly nonlinear dynamics with polynomials, ra-

tional functions, and square roots. Laub-Loomis is a molecular network that

produces spontaneous oscillations as a case study for NLTOOLBOX [121].

AS-Polynomial is a 12-dimensional polynomial system [122] that is asymp-

totically stable around the origin. We also study a 28-dimensional linear

model of a helicopter [18]. For the initial condition set of the helicopter

model, we used 0.05 as the radius for the first eight dimensions and 0.0005

for the remaining ones, because the reach set estimations of Flow* became

unbounded when using 0.05 as the diameter for all dimensions. For systems

with fewer than three dimensions, we use Lemma 5.2, and for systems with

higher dimensions, we use Lemma 5.3.

Table 5.1: n: Dimension of the system. δ: Radius of the initial set as a ball.
T : Time horizon. Run Time: Running Time (includes simulation time for
CAPD). A/I VR: the ratio of the average volume of the sampled
over-approximation reachable set over the initial set volume. F/I VR: the
ratio of the volume of the over-approximation reachable set at the final
time T to the initial set volume.

System n δ T (s)
Algorithm Generalize Flow*

Run Time(s) A/I VR F/I VR Run Time(s) A/I VR F/I VR
1 Van der Pol 2 0.10 10 0.69 0.28 4.60e-4 1.66 0.26 1.61e-4
2 Moore-Greitzer 2 0.10 10 4.76 0.25 3.79e-4 4.67 0.34 2.16e-3
3 Brusselator 2 0.10 10 5.39 0.69 3.78e-2 6.66 0.33 2.41e-2
4 Diode Oscillator 2 0.005 9 39.98 0.65 9.08e-6 214.40 1.22 0.65
5 Robot Arm 4 0.005 10 9.26 1.83 0.31 354.80 3.35 2.97
6 Powertrain 4 2e-4 5 3.97 10.14 0.77 267.00 3457 1886
7 Saturation 6 0.02 10 1.99 2.19 1.83 5245 1.72 1.16
8 Laub-Loomis 7 0.025 10 5.97 11.11 6.44 355.10 3.72 0.88
9 Biology Model 7 2.5e-3 2 9.25 171.30 344.10 603.60 68.03 343.40
10 AS-Polynomial 12 2.5e-3 2 3.63 45.79 45.74 5525 3.06e10 2.87e10
11 Helicopter (L) 28 0.05 30 2.96 0.75 0.55 288.20 4.24e49 6.02e39

The results are shown in Table 5.1. From Line 1-3 we see that for simple

low-dimensional nonlinear systems, the performance of Flow* is comparable

to our algorithm. Lines 4-5 and 7-9 show that for more complicated nonlin-

ear systems (with higher order polynomials or higher order dimensionality),

60

our tool performs much better in running time without sacrificing accuracy.

Moreover, from Line 6 and Lines 10-11, Algorithm Generalize not only

finishes reachtube computation much faster, but also provides less conser-

vative results for even more complicated systems (with complicated nonlin-

ear dynamics or even higher dimensions). For linear systems, Algorithm

Generalize can provide one global discrepancy function that is valid for the

entire space to do reach set over-approximation, as compared to Flow*, where

even for linear systems, the complexity for each time interval is exponential

in both the dimensionality and the order of the Taylor models. Algorithm

Generalize is more efficient because it is based on the Jacobian, which has

n dimensions, so the complexity of Algorithm Generalize using the interval

matrix norm method increases polynomially with the dimension.

5.5 Reachtube Computation for Hybrid System

In this section, we outline the hybrid extension of Algorithm 2 now presented

as Algorithm 3. Algorithm 2 computes the set of reachable states for a given

continuous system as described in Equation (3.1) for a given time interval.

Therefore, one can essentially apply this algorithm for each of the relevant

modes of a hybrid system. For simplicity, let us assume that all the mode

invariants and transition guards are convex polyhedra, and that all the reset

mappings are linear functions. Without loss of generality, we assume there is

only one mode `init in the set of initial locations Linit. Algorithm 3 performs

the following three steps iteratively until the time horizon for verification.

1. For the given mode ` and a given initial set Θ, the algorithm first

simulates from the center of Θ, computes the Jacobian of the continuous

dynamics in mode `, then computes the reachable set R` for that mode

from Θ for the bounded remaining time specified using Algorithm 2.

2. The reachable set is pruned by removing all the states that violate the

mode invariant I`.

3. The reachable set is checked to satisfy any guards for discrete transi-

tions. If the guards are satisfied, the initial states for the next mode

are computed by applying the reset map of the states that satisfy the

guard predicate. As the reachable set of states for a hybrid system at a

61

given time might belong to two different modes, we track the discrete

transitions using a queue of tuples 〈Θnext , `next, tleft〉, where `next is the

next location that needs to be checked, Θnext is the initial set corre-

sponding to the location `next, and tleft is remaining time we need to

compute the reachable set in `next.

Algorithm 3: Algorithm HybridReachtube

input : Hybrid System H = 〈V = (X ∪L),Θ, Linit, A,D,TL〉, Time
bound T , Lipschitz constants {L`}`∈L, Parameters for
validated simulation ε, τ .

initially: Q← 〈Θ, `init , T 〉, Rhybrid ← ∅
1 for each 〈Θ, `, tleft〉 ∈ Q do
2 ψ = {(Ri, ti)

k
i=0} ← Simulate(center(Θ), tleft , ε, τ);

3 Compute M0, c0 such that Θ ⊆ Ec0(center(Θ),M0);
4 Jf`(x)← Jacobian matrix of f` in mode `;
5 R` ← Generalize(ψ, Jf`(x), L`,M0, c0);
6 R` ← R` ∩ I`;
7 {〈Θnext , `next, tleft〉} ← discreteTransitions(R`);
8 Rhybrid ← Rhybrid ∪R`;
9 Q.append({〈Θnext , `next, tleft〉});

10 end
11 return Rhybrid ;

Algorithm 3 computes the reachable set for a hybrid system. The main loop

that performs the three key steps iteratively happens from Line 2 to Line 9.

Line 2 simulates from the center state of Θ. Then at Line 3, we compute

an ellipsoid Ec0(center(Θ),M0) to contain the initial set Θ as an ellipsoidal

initial set as required by Algorithm 2. Line 4 computes the Jacobian matrix

of f`, continuous dynamics in mode `. With these elements, at Line 5, we

can use the Generalize function as Algorithm 2 to get the reachable set

of states from Θ for the corresponding mode `. Line 6 checks the invariant

for the reachable set and line 7 computes the states reached Θnext and the

remaining time tleft to be checked after discrete transitions.

5.5.1 C2E2

Algorithm 2 is the core procedure implemented in the new version of the

verification tool C2E2 [28] to automate the reachability analysis for non-

linear hybrid systems. Using the data-driven verification and discrepancy

62

computation algorithms (Algorithms 1, 2, and 3), C2E2 can automatically

check bounded time invariant properties of nonlinear hybrid automata and

no longer needs the user-specified annotations. Hybrid models and the re-

quirements have to be specified in an xml format. The tool parses the xml

model to generate C++ libraries for numerical simulations, reachable set

computations, checking safety, and handling discrete transitions. The new

version of the tool also supports compositional modeling, a graphical user

interface for model editing, and plotting.

In what follows, we introduce two hybrid system examples verified using

the latest version of C2E2.

Example 5.3 (Powertrain control). The demands for greater fuel efficiency

and lower emissions constantly challenge automotive companies to improve

control software in the powertrain systems. Recently a suite of benchmarks

were published in [123] to introduce realistic, industrial scale models to the

formal verification community. The suite consists of three Simulink models

with increasing levels of complexity and sophistication. These models capture

the behavior of chemical reactions in internal combustion engines, and hybrid

models are deemed suitable for capturing the discrete transitions of control

software and the continuous parameters in these models. At a high level, the

models take inputs from a driver (throttle angle θin) and the environment

(sensor failures), and define the dynamics of the engine. The key controlled

quantity is the air-to-fuel ratio which in turn influences the emissions, the

fuel efficiency, and torque generated.

The most complicated model (Model 1) in the suite captures all the inter-

actions taking place in a physical process and faithfully models the control

software. It contains several hierarchical components in Simulink with look-

up tables, and delay differential equations. Model 1 is simplified to a model

with periodic inputs to ordinary differential equations using several heuris-

tics (Model 2), which as per the authors, exhibit behavior similar to that of

Model 1. Then Model 2 is further simplified to a hybrid system with only

polynomial ODEs (Model 3). At the time of publication of [123], these mod-

els were beyond the reach of the then available verification tools, but within

a year the simplified models were verified using C2E2 [4], and subsequently,

the more complex models were handled by another verification tool DryVR

in [25], which will be introduced in Chapter 6.

63

Start up
ṫ = 1
ẋc = 0

ẋp = f(xp)

Sensor fail
ṫ = 1
ẋc = 0

ẋp = f(xp)

Normal
ṫ = 1
ẋc = 0

ẋp = f(xp)

Power
ṫ = 1
ẋc = 0

ẋp = f(xp)

[t = h]
{xc = gi(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[t = h]
{xc = gc(xc), t = 0}

[t = h]
{xc = go(xc), t = 0}

[timer = Ts]
[Sen

sor Fails]

[θin ≥ 70◦]

[θin ≤ 50◦]

Figure 5.1: Hybrid system model of the powertrain control system Model 2.

In more detail, Model 2 and 3 have five variables: regulated throttle plate

position θ, intake manifold pressure p, air-fuel ratio λ, intake manifold pres-

sure estimate pe and integrator state i, and four modes: Start up, Normal,

Power and Sensor fail. The hybrid model also receives an input signal θin

(throttle angle) as the user input. The required safety specification of pow-

ertrain control systems was given in [123] as a number of Signal Temporal

Logic properties. Here we only illustrate one primary result for each model,

with the simple unsafe set F : in Power mode, t > 4 ∨ λ /∈ [12.4, 12.6], in

Normal mode, t > 4 ∨ λ /∈ [14.6, 14.8]. [4, 25] provides more comprehensive

studies involving other scenarios and requirements.

Figure 5.1 shows the hybrid model of the powertrain control system Model

2. The physical plant dynamics are modeled using continuous variables

xp = [θ, p, λ], which evolve according to a nonlinear ODE ẋp = f(xp). The

controller variables xc = [pe, i] are, instead, updated periodically every h time

units by the reset functions gi(xc), go(xc), gc(xc) in different modes. Since not

all the state variables are following ODEs, Algorithm 2 (and therefore C2E2)

64

cannot be used to compute the reachtubes for Model 2. We defer the verifi-

cation of this model to Chapter 6 where the entire system will be treated as

a black-box simulator with the five given variables and four modes.

automaton PowertrainModel3
2 actions

Cruise; Throttle increase ; Throttle decrease; Fail
4 variables

state variables [θ, p, λ, pe, i, t]
> : R6

6 input variables [Ts, θin]> : R2

input variable fail : B
8 ` : enumeration [{Start up}, {Normal}, {Power}, {Sensor fail}]

initially

10 [θ, p, λ, pe, i, t]
> := [8.8◦, 0.6215, 14.7, 0.5655, 0, 0]>

[Ts, θin]> := [9.5, 0]>

12 fail := false
` := Start up

14 transitions
Cruise

16 pre t = Ts ∧ ` = Start up
eff ` := Normal

18 Throttle increase

pre θin ≥ 70◦ ∧ ` = Normal
20 eff ` := Power up

Throttle decrease

22 pre θin ≤ 50◦ ∧ ` = Power up
eff ` := Normal

24 Sensor fail
pre fail = true ∧ ` = Normal

26 eff ` := Sensor fail
trajectories

28 Start up
evolve

30 θ̇ = 10(θin − θ)
ṗ = c1(2(c6 + c7θ + c8θ

2 + c9θ
3)(c20p

2 + c21p

32 +c22)− c12(c2 + c3wp + c4wp
2 + c5w

2p))

λ̇ = 4(c15 + c16c25Fc + c17c
2
25F

2
c +

34 c18ṁc + c19ṁcc25Fc − λ)

ṗe = c1(2c23(c6 + c7θ + c8θ
2 + c9θ

3)(c20p
2 + c21p

36 +c22)− (c2 + c3wpe + c4wp
2
e + c5w

2pe)))

i̇ = 0

38 ṫ = 1

where Fc = 1
c11

(c2 + c3wpe + c4wp
2
e + c5pew

2)

40 and ṁc = c12(c2 + c3wp + c4wp
2 + c5w

2p)
invariant ` = Start up ∧ t ≤ 9.5 ∧ fail = false

Normal
2evolve

θ̇ = 10(θin − θ)
4ṗ = c1(2(c6 + c7θ + c8θ

2 + c9θ
3)(c20p

2 + c21p

+c22)− c12(c2 + c3wp + c4wp
2 + c5w

2p))

6λ̇ = 4(c15 + c16c25Fc + c17c
2
25F

2
c +

c18ṁc + c19ṁcc25Fc − λ)

8ṗe = c1(2c23(c6 + c7θ + c8θ
2 + c9θ

3)(c20p
2 + c21p

+c22)− (c2 + c3wpe + c4wp
2
e + c5w

2pe)))

10i̇ = c14(c24λ− c11)

ṫ = 0

12where Fc = 1
c11

(1 + i + c13(c24λ− c11))

(c2 + c3wpe + c4wp
2
e + c5pew

2)

14and ṁc = c12(c2 + c3wp + c4wp
2 + c5w

2p)
invariant ` = Normal ∧ ∧fail = false

16
Power up

18evolve

θ̇ = 10(θin − θ)
20ṗ = c1(2(c6 + c7θ + c8θ

2 + c9θ
3)(c20p

2 + c21p

+c22)− c12(c2 + c3wp + c4wp
2 + c5w

2p))

22λ̇ = 4(c15 + c16c25Fc + c17c
2
25F

2
c +

c18ṁc + c19ṁcc25Fc − λ)

24ṗe = c1(2c23(c6 + c7θ + c8θ
2 + c9θ

3)(c20p
2 + c21p

+c22)− (c2 + c3wpe + c4wp
2
e + c5w

2pe)))

26i̇ = 0

ṫ = 0

28where Fc = 1
c11

(c2 + c3wpe + c4wp
2
e + c5pew

2)

and ṁc = c12(c2 + c3wp + c4wp
2 + c5w

2p)
30invariant ` = Power up ∧ fail = false

32Sensor fail
evolve

34θ̇ = 10(θin − θ)
ṗ = c1(2(c6 + c7θ + c8θ

2 + c9θ
3)(c20p

2 + c21p

36+c22)− c12(c2 + c3wp + c4wp
2 + c5w

2p))

λ̇ = 4(c15 + c16c25Fc + c17c
2
25F

2
c +

38c18ṁc + c19ṁcc25Fc − λ)

ṗe = c1(2c23(c6 + c7θ + c8θ
2 + c9θ

3)(c20p
2 + c21p

40+c22)− (c2 + c3wpe + c4wp
2
e + c5w

2pe)))

i̇ = 0

42ṫ = 0

where Fc = 1
c11

(c2 + c3wpe + c4wp
2
e + c5pew

2)

44and ṁc = c12(c2 + c3wp + c4wp
2 + c5w

2p)
invariant ` = Sensor fail ∧ fail = true

Figure 5.2: Hybrid automaton model of of the powertrain control system
Model 2.

Model 2 got further simplified such that all five variables are continuous

and follow a set of polynomial differential equations in Model 3. Figure 5.2

shows the hybrid automaton of Model 3 (see [123] for detailed values of

the coefficients ci). This model can be handled by C2E2. Figure 5.3 also

shows the hybrid systems of Model 3, and Figure 5.4 gives a safe reachtube

of λ from the initial set θ = 8.8◦, p ∈ [0.6115, 0.6315], λ ∈ [14.6, 14.8], pe ∈
[0.5555, 0.5755], i ∈ [0, 0.01].

65

Start up
ẋ = fs(x)

Sensor fail
ẋ = fsf (x)

Normal
ẋ = fn(x)

Power
ẋ = fp(x)

[timer = Ts]
[Sen

sor Fails]

[θin ≥ 70◦]

[θin ≤ 50◦]

Figure 5.3: Hybrid system model of the powertrain control system Model 3.

Figure 5.4: Reachtube for λ vs. time of Model 3 produced by C2E2. Blue
and green regions correspond to the Start up and Normal modes respectively.

66

Phase 2
ẋ = f2(x, u2)

Phase 3
ẋ = f3(x, u3)
ρ ≤ 100; t ≤ t2

Passive
ẋ = fp(x)
t ≥ t1

[ρ ≤ 100]

[ρ ≥ 100]

[t ∈ [t1, t2]]

[t ∈ [t1, t2]]

Figure 5.5: Hybrid system model of the autonomous spacecraft rendezvous
mission.

Example 5.4 (Spacecraft rendezvous). The extreme cost of failures and the

infeasibility of terrestrial testing have made formal methods singularly at-

tractive for space systems. Reachability-based automatic safety verification

for satellite control systems were first studied in [124]. At the time of that

study, hybrid verification tools were available only for linear hybrid systems,

which have restricted applicability because many satellite control problems

involve nonlinear orbital dynamics and nonlinear constraints. In this ex-

ample we present a case study based on the ARPOD problem introduced

in [75]. ARPOD stands for autonomous rendezvous proximity operations

and docking. It captures an overarching mission needed to assemble a new

space station that has been launched in separate modules. Our discussion

here is based on the results presented in [30, 31].

A generic ARPOD scenario involves a passive module or a target (launched

separately into orbit) and a chaser spacecraft that must transport the passive

module to an on-orbit assembly location. The chaser maintains a relative

bearing measurement to the target, but initially it is too far to use its range

sensors. Once range measurements become available, the chaser gets more

accurate relative positioning data and it can stage itself to dock with the

target. Docking must happen with a specific angle of approach and closing

velocity, in order to avoid collision and to ensure that the docking mechanisms

on each spacecraft will mate.

For simplicity here we discuss the planar (or 2-dimensional) version of

the model. The variables of the hybrid model include position (relative to

the target) x, y (in meters), time t (in minutes), and horizontal and vertical

velocity vx, vy. The modes of the hybrid automaton capture four phases of

the docking maneuver. Each phase is defined by a separation distance ρ =

67

√
x2 + y2 between the chaser and target spacecraft, closing this distance from

up to 10 km down to 0, and then performing a maneuver once the satellites

are docked. The chaser spacecraft begins in Phase1 while the separation

distance ρ is not available, but only has angle of approach θ = atan(y
x
)

available, and the system is unobservable. While ρ gets small enough, the

mission moves into Phase2, where the chaser spacecraft now has a ranging

measurement to the chaser spacecraft and must position itself for the Phase

3 docking. After the chaser moves such that ρ ≤ 100, the docking phase,

Phase3 is initiated and additional docking port constraints are active. Once

the spacecraft docks (i.e., ρ = 0), both spacecraft move into Phase4, where

the joint assembly must move to the relocation position.

The chaser must adhere to different sets of constraints in each discrete

mode. In [30] a switched linear quadratic regulator (LQR) is designed to

meet these constraints, while maintaining liveness in navigating toward the

target spacecraft. Figure 5.5 gives the hybrid system model of interest. In

addition to the existing mode, the model also has a Passive mode in which the

chaser has the thrusters shut down. The system may nondeterministically

transition to the Passive mode as a result of a failure or loss of power. The

nonlinear dynamic equations describing the motion of the chaser spacecraft

relative to the target are:
ẋ = vx

ẏ = vy

v̇x = n2x+ 2nvy + µ
r2 − µ

r3
c
(r + x) + ux

mc

v̇y = n2y − 2nvx − µ
r3
c
y + uy

mc
.

The parameters are µ = 3.986 × 1014 × 602 [m3 / min2], r = 42164 × 103

[m], mc = 500 [kg], n =
√

µ
r3 and rc =

√
(r + x)2 + y2. The linear feedback

controllers for the different modes are defined as [ux, uy]
T = K1z for mode

Phase2, and [ux, uy]
T = K2z for mode Phase2, where z = [x, y, vx, vy]

T is

the vector of system states. The feedback matrices Ki were determined

with an LQR-approach applied to the linearized system dynamics, where

the detailed number can be found at [30]. In mode Passive the system is

uncontrolled [ux, uy]
T = [0, 0]T . The spacecraft starts from the initial set

x ∈ [−925,−875] [m], y ∈ [−425,−375] [m], vx = 0 [m/min] and vy = 0

[m/min]. For the considered time horizon of t ∈ [0, 200] [min], the following

68

Figure 5.6: Reachtube of x (x-axis) vs y (y-axis) produced by C2E2.

specifications have to be satisfied:

• Line-of-sight: In mode Phase3, the spacecraft has to stay

inside line-of-sight cone

{[x, y]T | (x ≥ −100) ∧ (y ≥ x tan(30◦)) ∧ (−y ≥ x tan(30◦))}.

• Collision avoidance: In mode Passive, the spacecraft has to avoid a

collision with the target, which is modeled as a box B with 0.2m edge

length and the center placed at the origin.

• Velocity constraint: In mode Phase3, the absolute velocity has to

stay below 3.3 [m/min]:√
v2
x + v2

y ≤ 3.3 [m/min].

C2E2 was used to prove that the autonomous rendezvous system with

the LQR controller satisfies the above requirements. Figure 5.6 shows the

reachtube of x (x-axis) vs y (y-axis) produced by C2E2.

Both the powertrain control and the spacecraft rendezvous applications

can be verified by C2E2 within a couple of minutes. Other than these

69

two examples, C2E2 has been used to check properties for mixed-signal cir-

cuites [7], which have ODEs that contain hundreds of exponential and loga-

rithmic terms. All these challenging models prove the capability of C2E2 as

a promising tool for verifying nonlinear hybrid models and provide soundness

and relative completeness guarantees.

5.6 Summary

In this chapter, we discussed several techniques to over-approximate reach-

able states of linear and nonlinear dynamical systems from simulation traces

and discrepancy. We proposed a method to compute the upper bounds on

the matrix measures, which was used to bloat the simulation traces to ob-

tain the over-approximations. It computes locally optimal coordinate trans-

formations such that the local exponential change rate of the discrepancy

is minimized, which leads to over-approximations that are less conservative.

To our knowledge, this is the first result with such local optimality guar-

antees. Our empirical results show that the approaches perform favorably

compared to the Flow* tool on examples with higher dimensions or with

complex dynamics. We also discussed how to extend the reachability algo-

rithm to handle hybrid systems, which is implemented in the verification tool

C2E2. Finally, we studied two applications of C2E2: a powertrain control

system from Toyota and a spacecraft rendezvous scenario.

70

Chapter 6

Verification of Models with Black-box
Components

In hybrid system models we have discussed thus far, the evolution of the

continuous state variables is explicitly described by differential equations and

trajectories. In real world control systems, “models” are typically a hetero-

geneous mix of simulation code, differential equations, block diagrams, and

hand-crafted look-up tables. Extracting clean mathematical models (e.g.

ODEs) from these descriptions is usually infeasible. At the same time, rapid

developments in advanced driving assist systems (ADAS), autonomous vehi-

cles, robotics, and drones now make the need for effective and sound verifica-

tion algorithms stronger than ever before. The high-level logic deciding the

transitions of when and for how long the system stays in each mode is usu-

ally implemented in a relatively clean piece of code and this logical module

can be seen as the discrete transition system as Definition 3.1 in Section 3.1.

In contrast, the dynamics of physical plant, with hundreds of parameters,

is more naturally viewed as a “black-box”. That is, it can be simulated or

tested with different initial conditions and inputs, but it is nearly impossible

to write down a nice mathematical model. This unavailability of explicit

“white-box” models, is a major roadblock to making formal techniques prac-

tical for CPS. In this chapter, will view hybrid systems as a combination

of a “white-box” discrete transition system that specifies the mode switches

and a “black-box” that can simulate the continuous evolution in each mode.

The DryVR framework presented in this chapter aims to narrow the gap

between sound and practical verification for control systems. This work was

also originally presented in [25]. We will also present a case study on analyz-

ing risks of a set of automatic emergency braking systems using DryVR [36]

in this chapter.

71

6.1 Introduction

Consider an ADAS feature like an automatic emergency braking system

(AEB). The high-level logic deciding the timing of when and for how long the

brakes are engaged after an obstacle is detected by sensors is implemented

in a relatively clean piece of code and this logical module can be seen as a

white-box . In contrast, the dynamics of the vehicle itself, with hundreds of

parameters, is more naturally viewed as a black-box . That is, it can be sim-

ulated or tested with different initial conditions and inputs, but it is nearly

impossible to write down a nice mathematical model.

The empirical observation motivating this work is that many control sys-

tems, and especially automotive systems, share this combination of white

and black boxes (see other examples in Section 6.3.3). In this chapter, we

view a hybrid system as a combination of a white-box that specifies the

mode switches and a black-box that can simulate the continuous evolution in

each mode. We still consider the hybrid systems as defined in Definition 3.2:

H = 〈V = (X ∪ L),Θ, Linit, A,D,TL〉, where V is the set of variables, Θ and

Linit are initial states for the continuous and discrete variables respectively,

A is a set of actions or transition labels, D is the set of transitions, and TL

is a set of deterministic trajectories. Each trajectory ξ(t) in TL is a function

of the initial state ξ(0) and time t. Also, TL is not a fixed or finite set of

trajectories. We can generate different deterministic trajectories by setting

different initial states. Note here the definition of TL does not cover trajecto-

ries generated from models with nondeterministic noise. Compared with the

hybrid systems we studied in Chapter 4 and Chapter 5, in this chapter, we

do not have a closed form description of TL like ODEs, but instead, we have

a simulator , that can generate sampled data points on individual trajectories

for a given initial state and mode.

With black-box modules in our hybrid systems, the main challenge is to

compute discrepancy functions (see Section 4.4 for detailed definition) for

modes that are now represented by black-boxes. We introduce a probabilistic

algorithm that learns the parameters of exponential discrepancy functions

from simulation data. The algorithm transforms the problem of learning the

parameters of the discrepancy function to the problem of learning a linear

separator for a set of points in R2 that are obtained from transforming the

simulation data. A classical result in PAC learning [35] ensures that any such

72

discrepancy function works with high probability for all trajectories.

We performed dozens of experiments with a variety of black-box simulators

and observed that 15-20 simulation traces typically give a discrepancy func-

tion that works for nearly 100% of all simulations. The reachability algorithm

for the hybrid system is still given by Algorithm 3, with the modification that

at Line 5, instead of using Generalize, we will use the learned discrepancy

function to give us the reachtube. The algorithm gives a sound bounded time

verification algorithm, provided the learned discrepancy function is correct.

White-box discrete transitions identify the switching sequences under which

the black-box modules are exercised. There is a simpler class of hybrid sys-

tems where the transitions will only depend on time (for example, the car-

diac pacemaker system as in Example 3.3). In this case, the underlying

mode switches can be seen as a one-clocked timed automaton [14], or timed

transition graph. To enable the analysis of such systems, we identify reason-

ing principles that establish the safety of a system under a complex timed

transition graph based on its safety under a simpler timed transition graph.

We define a notion of forward simulation between timed transition graphs

that provides a sufficient condition of when one timed transition graph “sub-

sumes” another — if G1 is simulated by G2 then the reachable states of a

hybrid system under G1 are contained in the reachable states of the system

under G2. Thus the safety of the system under G2 implies the safety under

G1. Moreover, we give a simple polynomial time algorithm that can check if

one timed transition graph is simulated by another.

Our timed transition graphs are acyclic with transitions having bounded

switching times. Therefore, the executions of the systems we analyze are over

a bounded time, and have a bounded number of mode switches. An impor-

tant question to investigate is whether establishing the safety for bounded

time enables one to establish the safety of the system for an arbitrarily long

time and for arbitrarily many mode switches. With this in mind, we define a

notion of sequential composition of timed transition graphs G1 and G2, such

that switching sequences allowed by the composed graph are the concate-

nation of the sequences allowed by G1 with those allowed by G2. Then we

prove a sufficient condition on a timed transition graph G such that safety

of a system under G implies the safety of the system under arbitrarily many

compositions of G with itself.

We have implemented these ideas to create the Data-driven System for

73

Verification and Reasoning (DryVR). The tool is able to automatically ver-

ify or find counter-examples in a few minutes, for a suite of automotive sys-

tems such as powertrain control [123], automatic transmission control [125],

and ADAS features like automatic emergency braking (AEB), lane-change,

and auto-passing. Reachability analysis combined with compositional reason-

ing enabled us to infer safety of systems with respect to arbitrary transitions

and duration.

6.2 Hybrid Systems with Black-box Modules

Consider a hybrid system H = 〈V = (X ∪ L),Θ, Linit, A,D,TL〉. L = val(L)

is a finite set of modes and X = val(X) ⊆ Rn is the space for continuous

states. The black-box generates a set of trajectories TL in X for each mode

in L. We denote by TLinit,` = {ξ.fstate | 〈ξ, `〉 ∈ TL} the set of initial states of

trajectories in TL that start in mode `. Without loss of generality we assume

that TLinit,` is a connected, compact subset of X.

Instead of a closed form description of TL as in Definition 3.2, we have a

simulator that can generate sampled data points on individual trajectories.

We will develop techniques that avoid over-reliance on the models generating

the trajectories and instead work with sampled data of ξ(·) generated from

the simulators. Of course, in order to obtain safety guarantees we will need

to make assumptions about the underlying system generating the data.

Definition 6.1. A simulator for a (deterministic and prefix-closed) set TL of

trajectories labeled by L is a function (or a program) sim that takes as input

a mode label ` ∈ L, an initial state x0 ∈ TLinit,`, and a finite sequence of time

points t1, . . . , tk, and returns a sequence of states sim(x0, `, t1), . . . , sim(x0, `, tk)

such that there exists 〈ξ, `〉 ∈ ξ with ξ.fstate = x0 and for each i ∈ {1, . . . , k},
sim(x0, `, ti) = ξ(ti).

For simplicity, we assume that the simulations are perfect (as in the last

equality of Definition 6.1). Formal guarantees of soundness are not compro-

mised if we use validated simulations (Definition 4.1) instead. Executions

and reachable states are defined in the same way as those in Section 3.4.

74

6.3 Learning Discrepancy from Simulations

The key subroutine needed for computing the reachable states with Algo-

rithm 1 has to compute a discrepancy function which upper bounds the

distance between trajectories. Owing to the absence of ODE models, the

Generalize function of Algorithm 2 is useless. We will use a probabilistic

algorithm for estimating the discrepancy from the data generated by black-

box simulators [25].

Recall that a discrepancy function is a continuous function β : Rn×R≥0 →
R≥0, such that for any pair of identically labeled trajectories 〈ξ1, `〉, 〈ξ2, `〉 ∈
TL, and any t ∈ ξ1.dom ∩ ξ2.dom: (a) β upper-bounds the distance between

the trajectories, i.e.,

‖ξ1(t)− ξ2(t)‖ ≤ β(‖ξ1.fstate− ξ2.fstate‖, t), (6.1)

and (b) β converges to 0 as the initial states converge, i.e., for any trajectory

ξ and t ∈ ξ.dom, if a sequence of trajectories ξ1, . . . , ξk, . . . has ξk.fstate →
ξ.fstate, then β(‖ξk.fstate−ξ.fstate‖, t)→ 0. We present a simple method for

discovering discrepancy functions that only uses simulations. Our method is

based on a classical result in PAC learning theory [35]. We revisit this result

before applying it to finding discrepancy functions.

Definition 6.2 (Learning linear separators). For Γ ⊆ R× R, a linear sepa-

rator is a pair (a, b) ∈ R2 such that

∀(x, y) ∈ Γ. x ≤ ay + b. (6.2)

Let us fix a subset Γ that has a (unknown) linear separator (a∗, b∗). Our

goal is to discover some (a, b) that is a linear separator for Γ by sampling

points in Γ 1. The assumption is that elements of Γ can be drawn according

to some (unknown) distribution D. With respect to D, the error of a pair

(a, b) from satisfying Equation 6.2, is defined to be errD(a, b) = D({(x, y) ∈
Γ | x > ay + b}) where D(X) is the measure of set X under distribution D.

Thus, the error is the measure of points (w.r.t. D) that (a, b) is not a linear

separator for. There is a very simple (probabilistic) algorithm that finds a

1We prefer to present the learning question in this form as opposed to one where we
learn a Boolean concept because it is closer to the task at hand.

75

pair (a, b) that is a linear separator for a large fraction of points in Γ, as

follows.

1. Draw k pairs (x1, y1), . . . (xk, yk) from Γ according to D; the value of k

will be fixed later.

2. Find (a, b) ∈ R2 such that xi ≤ ayi + b for all i ∈ {1, . . . k}.

Step 2 involves checking feasibility of a linear program, and so can be done

quickly. This algorithm, with high probability, finds a linear separator for a

large fraction of points.

Proposition 6.1 (Proposition 4 from [25]). Let ε, δ ∈ R≥0. If k ≥ 1
ε

ln 1
δ
,

then, with probability ≥ 1 − δ, the above algorithm finds (a, b) such that

errD(a, b) < ε.

Proof. The result follows from the PAC-learnability of concepts with low

VC-dimension [35]. However, since the proof is very simple in this case,

we reproduce it here for completeness. Let k be as in the statement of the

proposition, and suppose the pair (a, b) identified by the algorithm has error

> ε. We will bound the probability of this happening.

Let B = {(x, y) | x > ay + b}. We know that D(B) > ε. The algorithm

chose (a, b) only because no element from B was sampled in Step 1. The

probability that this happens is ≤ (1 − ε)k. Observing that (1 − s) ≤ e−s

for any s, we get (1 − ε)k ≤ e−εk ≤ e− ln 1
δ = δ. This gives us the desired

result.

6.3.1 Discrepancy Functions as Linear Separators

Using the above result, we will compute discrepancy functions from simu-

lation data, independently for each mode. Let us fix a mode ` ∈ L, and

a domain [0, T] for each trajectory. The discrepancy functions that we will

learn from simulation data will be of two different forms, and we discuss how

these are obtained.

Global exponential discrepancy (GED) is a function of the form

β(‖x1 − x2‖, t) = ‖x1 − x2‖Keγt.

76

Here K and γ are constants. Thus, for any pair of trajectories ξ1 and ξ2 (for

mode `), we have

∀t ∈ [0, T]. ‖ξ1(t)− ξ2(t)‖ ≤ ‖ξ1.fstate− ξ2.fstate‖Keγt.

Taking logs on both sides and rearranging terms, we have

∀t. ln
‖ξ1(t)− ξ2(t)‖

‖ξ1.fstate− ξ2.fstate‖
≤ γt+ lnK.

It is easy to see that a global exponential discrepancy is nothing but a linear

separator for the set Γ consisting of pairs (ln ‖ξ1(t)−ξ2(t)‖
‖ξ1.fstate−ξ2.fstate‖ , t) for all pairs of

trajectories ξ1, ξ2 and time t. Using the sampling based algorithm described

under Definition 6.2, we could construct a GED for a mode ` ∈ L, where in

step 1, drawing samples from Γ reduces to using the simulator to generate

traces from different states in TLinit,`. Proposition 6.1 guarantees the correct-

ness, with high probability, for any separator discovered by the algorithm.

However, for our reachability algorithm to not be too conservative, we need

K and γ to be small. Thus, when solving the linear program in Step 2 of the

algorithm, we search for a solution minimizing γT + lnK.

Piece-wise exponential discrepancy (PED) is the second form of discrepancy

functions we consider. It depends on dividing up the time domain [0, T]

into smaller intervals, and finding a global exponential discrepancy for each

interval. Let 0 = t0, t1, . . . tN = T be an increasing sequence of time points.

Let K, γ1, γ2, . . . γN be such that for every pair of trajectories ξ1, ξ2 (of mode

`), for every i ∈ {1, . . . , N}, and t ∈ [ti−1, ti], ‖ξ1(t) − ξ2(t)‖ ≤ ‖ξ1(ti−1) −
ξ2(ti−1)‖Keγit. Under such circumstances, the discrepancy function itself can

be seen to be given as

β(‖x1 − x2‖, t) = ‖x1 − x2‖Ke
∑i−1
j=1 γj(tj−tj−1)+γi(t−ti−1) for t ∈ [ti−1, ti].

If the time points 0 = t0, t1, . . . tN = T are fixed, then the constantsK, γ1, γ2, . . .

γN can be discovered using the learning approach described for GED; here,

to discover γi, we take Γi to be the pairs obtained by restricting the trajecto-

ries to be between times ti−1 and ti. The sequence of time points ti are also

dynamically constructed by our algorithm based on the following approach.

Our experience suggests that a value for γ that is ≥ 2 results in very conser-

77

vative reach tube computation. Therefore, the time points ti are constructed

inductively to be as large as possible, while ensuring that γi < 2.

6.3.2 Learned Discrepancy and Guarantees in Practice

In theory, there is some probability that the learned discrepancy function β is

incorrect. That is, some pair of executions ξ, ξ′ ∈ TL of the system, starting

from the same initial state Θ, diverges more than the bound given by the

computed β. However, experiments in [25] on dozens of modes with complex,

nonlinear trajectories suggest that this almost never happens. In the reported

experiments, for each mode a set Strain of simulation traces that start from

independently drawn random initial states in TLinit,` are used to learn a

discrepancy function. Each trace has between 100 and 10, 000 data points,

depending on the relevant time horizon and sample times. Then another

set Stest of 1000 simulation traces are drawn for validating the computed

discrepancy. For every pair of traces in Stest and for every time point, it

is checked whether the computed discrepancy satisfies Equation 6.1. It is

observed that for |Strain| > 10 the computed discrepancy function is correct

for 96% of the points in Stest, and for |Strain| > 20 it is correct for more than

99.9%, across all experiments.

6.3.3 DryVR

Replacing the Generalize function in Algorithm 3 with a subroutine for

learning discrepancy, we can obtain a complete verification algorithm for

black-box hybrid models. This and the data-driven verification algorithm

(Algorithm 1) are the core of the approach implemented in the open source

DryVR verification tool [25, 34]. The tool supports other forms of discrep-

ancy functions (for example, piece-wise exponential and polynomial) that

can also be learned from simulation data with the same type of guarantees.

DryVR has been effectively employed to analyze spacecraft control systems

and maneuvers involving multiple autonomous and semi-autonomous vehi-

cles.

The mode switches, simulator locations, name of variables, and unsafe set

are specified in a JSON file. The black-box simulators have to be provided as

78

separate functions. For example, the following JSON files specify the mode

transitions of Example 3.3 (the same as the automaton shown in Figure 3.4),

without knowing the underlying dynamics for the variables t, u, v.

1 {
2 "vertex":["Stim_on","Stim_off"],

3 "edge":[[0,1],[1,0]],

4 "variables":["t","u","v"],

5 "guards":[

6 "(t>=5)",

7 "(t>=20)"

8],

9 "resets":[

10 "(t==0)",

11 "(t==0)"

12],

13 "initialSet":[[0.0,0.0,0.0],[0.0,0.2,0.2]],

14 "unsafeSet":"@Allmode:And(u>0.6,v>0.25)",

15 "timeHorizon":50.0,

16 "directory":"examples/cardiac"

17 }

In order to use the DryVR approach on a system, we have to make some

practical choices. First, we could treat the whole system as a black-box with

a single mode. At the other extreme, we could first identify the high-level

modes and the mode switching logic, for example, by inspecting the model

block diagrams or through program analysis, and then treat the individual

modes as black-boxes. There are other intermediate policies. Second, for

the black-box modules, we need to choose the system variables that are to

be considered for reachability analysis. The variable valuations have to be

computable from the simulation traces; they should be adequate for inferring

the safety properties; and they should be resettable, that is, the simulation

engine should be capable of changing the initial values of these variables to

generate different simulation traces.

In what follows, we discuss several case studies using DryVR, including

ADAS features like automatic emergency braking (AEB), lane-change, and

auto-passing. We will also study a more complicated model of the power-

train control model (Example 5.3) and spacecraft rendezvous problem (Ex-

ample 5.4), along with a automatic transmission control system [125].

79

6.4 Example: ADAS and Autonomous Driving Control

Growth of autonomy and advanced driver assist (ADAS) features in cars

has led to significant pressure to assure system-level safety at design time.

The broad topic of safety certification for such systems is currently a big

technical challenge. While this topic touches multiple technical challenges

in several disciplines that are beyond the scope of our discussion (for exam-

ple, human-autonomy interactions, traffic modeling, and testing for different

weather conditions), formal verification, and in particular data-driven verifi-

cation, can play an effective role for creating safety assurance cases needed for

certification with standards like the ISO2626 [126]. Here we discuss several

benchmarks we have created representing various common scenarios used for

testing ADAS and autonomous driving control systems.

Each scenario for safety verification is constructed by composing several

hybrid automaton models—one for each vehicle or road agent. Each vehicle

has several continuous variables including the x, y-coordinates of the vehicle

on the road, its velocity, heading, and steering angle. The detailed dynamics

of each vehicle come from a black-box simulator (for example, written in

Python or MatLab). For the experiments in this chapter, we use a standard

kinematic steering-based vehicle model from Mathworks as a black-box.2

The higher-level decisions about the modes (for example, for “cruising”,

“speeding”, “merging left”, etc.) followed by the vehicles are captured by

control graphs. In more detail, a vehicle can be controlled by two input

signals, namely the throttle (acceleration or brake) and the steering. By

choosing appropriate values for these input signals, the modes are defined—

cruise: move forward at constant speed, speedup: constant acceleration, brake:

constant (slow) deceleration, and em brake: constant (hard) deceleration. In

addition, we have designed lane switching modes change left and change right

in which the acceleration and steering are controlled in such a manner that

the vehicle switches to its left (resp. right) lane in a certain amount of

time. The switching rules (guards) between the modes are defined by “driver

models”. The composed hybrid automaton is then presented to DryVR as

the input model.

2https://www.mathworks.com/matlabcentral/fileexchange/

54852-simple-2d-kinematic-vehicle-steering-model-and-animation?

requestedDomain=www.mathworks.com

80

https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com

−5

−4

−3

−2

−1

0
speedup ch_left speedup brake ch_right cruise

0 5
0

25
50
75

100
125

0 10 0 5 0 5 0 10 0 10

−5

−4

−3

−2

−1

0
speedup ch_left speedup brake ch_right cruise

0 5
0

20

40

60

80

100

0 10 0 5 0 5 0 10 0 10

Figure 6.1: Verification of the vehicles overtake scenario. Left: Safe
reachtube. Right: Unsafe execution. Vehicle A’s (red) modes are shown
above each subplot. Vehicle B (green) is in cruise. Top: sxA, sxB vs. time.
Bottom: syA, syB vs. time.

Consider a scenario AutoPassing, where Vehicle A is behind B in the same

lane starting with the same speed, and A wants to overtake B. A will switch

to the left lane after it approaches B, then switch back to the right lane once

it is ahead of B. In some cases, A may fail to get ahead of B, in which case it

times out and returns in the right lane behind B. The safety requirement is

that the vehicles maintain safe separation. Figure 6.1 (left) shows a version

of this scenario that is verified to be safe by DryVR. The plots show the

reachtube over-approximations computed by DryVR. Vehicle B stays in

the cruise always but Vehicle A goes through a sequence of modes speedup,

change left, speedup,brake, and change right, cruise to overtake B. Figure 6.1

left, top shows the projection of reachtubes on lateral positions (sxA in red

and sxB in green), and the bottom plot shows the positions along the lane

(syA in red and syB in green). Initially, for both i ∈ {A,B}, sxi = vxi = 0

and vyi = 1, i.e., both are cruising at constant speed at the center of the

right lane; initial positions along the lane are syA ∈ [0, 2], syB ∈ [15, 17]. As

time advances, Vehicle A moves to left lane (sx decreases) and then back to

the right, while B remains in the right lane, as A overtakes B (bottom plot).

With a different initial set, syB ∈ [30, 40], DryVR finds counter-example

demonstrating unsafe behavior of the system (Figure 6.1 (right)).

We also construct the following scenarios by defining appropriate sets of

initial states and mode transitions of two or more vehicles.

Merge: Initial condition: vehicle A is in left and vehicle B is in the right lane;

initial positions and speeds are in some range; A is in cruise mode, and

B is in cruise or speedup. Mode transitions: Vehicle A goes through

81

Table 6.1: Safety verification results. Numbers below benchmark names: #
vertices and edges of G, TH: duration of shortest path in G, Ref: #
refinements performed, Runtime: overall running time.

Model TH Initial set Ref Safe Runtime
AutoPassing 50 syA ∈ [−1, 1] syB ∈ [14, 16] 4 Safe 208.4s

(12 vers, 13 edges) 50 syA ∈ [−1, 1] syB ∈ [4, 6.5] 5 Unsafe 152.5s
Merge 50 sxA ∈ [−5, 5] syB ∈ [−2, 2] 0 Safe 55.0s

(7 vers, 7 edges) 50 sxA ∈ [−5, 5] syB ∈ [2, 10] - Unsafe 38.7s

Merge3 50
syA ∈ [−3, 3] syB ∈ [14, 23]
syC ∈ [36, 45]

4 Safe 197.6s

(6 vers, 5 edges) 50
syA ∈ [−3, 3] syB ∈ [14, 15]
syC ∈ [16, 20]

- Unsafe 21.3s

the mode sequence cruise, speedup, change right, cruise over specified

intervals to merge to the right lane. Variants of this scenario involve B

also switching to speedup or brake. Requirement: A merges to the right

lane within a time bound and maintains at least a given safe separation.

AutoPassing: Initial condition: vehicle A behind B in the same lane, with A in

speedup and B in cruise; initial positions and speeds are in some range.

Mode transitions: A goes through the mode sequence change left, speedup,

brake, and change right, cruise with specified time intervals in each mode

to complete the overtake maneuver. If B switches to speedup before A

enters speedup then A aborts and changes back to right lane. If B

switches to brake before A enters change left, then A should adjust the

time to switch to change left to avoid collision.

Merge3: Initial conditions: same as AutoPassing with a third car C always

ahead of B. Mode transitions: vehicle A and vehicle B are the same

as AutoPassing, vehicle C is always in the cruise mode. Requirement:

vehicle A overtakes B while maintaining minimal safe separation.

Table 6.1 summarizes some of the verification results obtained using DryVR.

These experiments were performed on a laptop with Intel Core i7-6600U CPU

and 16 GB RAM. The initial range of only the salient continuous variables are

shown in the table. The unsafe sets are (|sxA− sxB| < 2 & |syA− syB| < 2).

For all the benchmarks, the algorithm terminated in a few minutes which

includes the time to simulate, learn discrepancy, generate reachtubes, check

the safety of the reachtube, and make overall refinements. For the results

82

presented in Table 6.1, we used GED. However, the reachtubes and the ver-

ification times using both GED and PED were comparable.

6.5 Example: Analyzing Risk in Automatic

Emergency Braking Systems

Here we summarize a comprehensive case study from [36] which looks at

the most common type of rear-end crashes involving automatic emergency

braking (AEB) and forward collision.

6.5.1 Overview

More than 25% of all reported accidents are rear-end crashes [127], of which

around 85% happen on straight roads. Emergency braking and forward col-

lision warning systems are becoming standard ADAS features. However,

testing the safety of such systems can be nontrivial. The safe braking pro-

files for a sequence of cars on the highway depend on several factors—initial

separation, velocities, vehicle dynamics, reaction times, road surface etc. The

DryVRtool works with black-box or unknown vehicle models, using which

we can prove, for example, that a given braking profile is safe for a set of

scenarios characterized by the ranges of initial separation (d) and reaction

times (r). For unsafe scenarios, DryVRcan compute the worst case relative

velocity of the collision, which determines the severity of the accident. This

type of analysis can be used as a design tool for tuning the braking profiles

for different highway speeds, road conditions, etc. In this section, we will

analyze hundreds of scenarios to generate a safety surface that can aid such

design and analysis.

Consider for example an automatic emergency braking (AEB) system (Fig-

ure 6.2): Car1,Car2 and Car3 are cruising with zero relative speeds and cer-

tain initial relative separation; Car1 suddenly switches to a braking mode and

starts slowing down according to a certain deceleration profile. Irrespective

of whether Car2 is human-driven, AEB-equipped, or fully autonomous, a cer-

tain amount of time elapses before Car2 switches to a braking mode. We call

this the reaction time r. Similarly, the mode switch for Car3 happens after a

delay. Obviously, Car2’s safety is in jeopardy: if it brakes “too hard” it will

83

be rear-ended and if it is “too gentle” then it would have a forward collision.

The envelope of safe (no collision) behaviors depends on all the parameters:

initial separations, velocities, braking profiles, and reaction times. It is easy

to see that if we can solve the safety verification problem described above,

then we can also compute this envelope and determine whether a given AEB

system is safe over a range of scenarios.

Each car can be viewed as a hybrid system: it has several continuous

state variables: deceleration rate a(t), velocity v(t) and position s(t) and

two modes: cruise and brake. In the cruise mode, the car maintains a con-

stant speed, and in the brake mode, it decelerates according to a certain

braking profile for a(t), which is an input to the system. The initial set K

of the system is defined by the uncertainties in the initial vehicle velocities

(v1(0), v2(0), v3(0)) and the initial separations d12, d23 between the vehicles.

The unsafe set U corresponds to states where there is a collision, that is, the

separation between a pair of cars is less than some threshold. In case of colli-

sions, we would be interested in the maximum possible relative velocity just

before the collision, which strongly influences the severity of the accident.

The key parameters we will consider in this chapter are the reaction time

or the delay r in switching to the braking mode, and the initial separation d

between the cars.

Figure 6.2: Cars cruising and braking in a single lane configuration.

6.5.2 Determining Severity of Collisions using Reachability

Fix the initial velocities and braking profiles for all the cars, fix the ranges

for initial separations and reaction times; if DryVR returns safe (and the

learned discrepancy is correct), then it means the distance between any two

cars is always larger than the threshold value θ = 2 meters at all times,

84

(a) Safe case: reachtubes of position
are separated by a distance ≥ 2 for
any time.

(b) Unsafe case: at least a pair of
reachtubes of position for some time
are contained in the unsafe region
(≤ 2 separations).

Figure 6.3: Safety of the AEB system. Horizontal axis is time in seconds,
vertical axis is position in meters.

before the cars stop. Figure 6.3a shows the projection of the reachsets plot-

ted against time for the entire range of initial conditions; the positions of

Car1 (red), Car2 (green) and Car3 (blue) are separated by at least 2 meters.

If DryVR returns unsafe, then it also computes parameter values (initial

separations d12, d23, reaction times r2, r3) that lead to a state where the cars

have less than 2 meters separation. In Figure 6.3b, the reachsets for position

overlap indicating a collision and in this case the tool also over-approximates

the worst case relative velocity in the collision. For example, in the particular

example the worst case collision velocity between Car1 and Car2 is 9.0 (m/s).

6.5.3 Risk Analysis for ASIL

Reachability analysis can be used for determining risk levels of an automotive

control system. According to ISO 26262 ASIL classification, risk is broadly

defined as

severity of accident × probability of occurrence.

For the AEB system with 2 cars, the severity is largely determined by the rel-

ative velocity of collision, which is approximated from the above reachability

analysis.

The probability of occurrence depends on the probability distributions on

85

the parameters (d, r, etc.). In general, these distributions can be complicated.

As a starting point, the preliminary study presented in [128] uses empirical

observations to construct distributions on initial separation (d) which turn

out to be a skewed Gaussian with the mean dependent on the car speed.

Similarly, the reaction time distribution is also a skewed Gaussian. Examples

of such distributions are built using [128, 129] and shown in Figures 6.4a

and 6.4b, where the separation d ranges over [40, 50] meters and reaction

time r ranges over [0.7, 2.4] seconds.

We analyze the risk by dividing [40, 50] into 10 consecutive small intervals

[dil, d
i
u], i = 1, . . . , 10, and [0.7, 2.4] into 17 consecutive intervals [ril , r

i
u], j =

1, . . . , 17. For each region consisting of small intervals of d and r, we use

DryVR to verify safety or compute the worst case collision velocity. To

compute the probability of the accident occurring, we need to compute the

probability that each parameter lies in the given range. For distributions

shown in Figures 6.4a and 6.4b, the probability of the region d ∈ [dil, d
i
u], r ∈

[rjl , r
j
u] is Pr(d ∈ [dil, d

i
u])×Pr(r ∈ [rjl , r

j
u]) if we assume the events d ∈ [dil, d

i
u])

and r ∈ [rjl , r
j
u] are independent. For example, Pr(41 ≤ d ≤ 42, 1.0 ≤ r ≤

1.1) = 0.19× 0.139 = 0.026.

With the given braking profile and initial velocity of both cars, we can

compute the worst case relative velocity, for each region of d and r. We report

the results in Figure 6.4c. The numbers corresponding to each rectangle in

the figure are the worst case relative velocities. For example, for the case

d ∈ [40, 41] and r ∈ [2.3, 2.4], the worst case relative velocity vc is 17.5 (m/s).

We also plot the heat map of risks as the background of Figure 6.4c, where

the green rectangles with number 0 correspond to the safe cases. Combined

with the probability of occurrence, we can compute the expected velocity in

the collision for Figure 6.4 to be E[vc] =
∑10

i=1

∑17
j=1 Pr(d ∈ [dil, d

i
u])×Pr(r ∈

[rjl , r
j
u])×vc(i, j) = 2.86 (m/s). Therefore, for AEB system with given braking

profile and initial velocity for each car, and given distributions for initial

separations and reaction times, we can compute the risk defined in ASIL as

the expected worst case relative velocity for the collisions.

86

(a) Initial separation distribution. (b) Reaction time distribution.

(c) Worst case relative velocities (m/s) for the collisions. Braking profiles are
fixed (Car1: mild brake, Car2: medium brake) and initial velocities are 30 (m/s).

Figure 6.4: AEB of two cars: probability and severity.

87

6.5.4 Integrated Safety Analysis

For the emergency braking system with two and three vehicles, we have

analyzed hundreds of experiments; the summary of the worst-case relative

collision velocities computed from these experiments is shown in Figures 6.5.

(a)
Car1&2: mild brake,

initial velocity: 30 (m/s)

(b)
Car1&2: hard brake,

initial velocity: 30 (m/s)

(c)
Car1: medium brake,

Car2: mild brake,
initial velocity: 30 (m/s)

(d)
Car1&2: medium brake,
initial velocity: 30 (m/s)

(e)
Car1&2: medium brake,
initial velocity: 22 (m/s)

(f)
Car1&2: medium brake,
initial velocity: 18 (m/s)

(g)
Initial separation: d23 vs d12.

Fix the reaction time of both Car2
and Car3: r2, r3 ∈ [1.8, 1.9] (s)

(h)
Reaction time: r3 vs r2.

Fix the initial separation of both
pairs of cars: d12, d23 ∈ [44, 45] (m)

Figure 6.5: Top row: two cars with different braking profiles and fixed initial
velocities. Middle row left to right: two cars with decreasing velocities and fixed
braking profiles. Bottom row: three cars, where each car’s deceleration is
medium-hard, and initial velocity is 22 (m/s). The x-axis of Figure 6.5a to 6.5f is
the distance between Car1 and Car2.

We consider 3 different braking profiles for each vehicle: mild, medium and

88

hard. The average deceleration rate increases from mild to hard. The risk

analysis can also be applied to any braking profile like the threshold braking

and cadence braking used in anti-lock braking systems. Figures 6.5a and 6.5d

show the collision heat maps with fixed initial velocities but changing braking

profiles for two cars. From Figures 6.5a, 6.5b and 6.5d, we observe that if

the lead and the following cars have similar levels of braking, the safe regions

are nearly invariant. However, with increasing braking level, the severity

(relative velocities) of collisions also increases. Comparing with Figure 6.5d,

we can see that if the lead car brakes harder than the follower, then as

expected, the safety regions shrink rapidly. Moreover, the collisions are more

severe than those in the previous case with both cars braking equally hard.

If the lead car brakes more gently (Figure 6.4c), then the severity reduces

quickly. Therefore, qualitatively, it is safer for the following car to choose a

braking profile harder than or equal to the braking profile of the lead car.

Figures 6.5d-6.5f show a sequence of collision heat maps with fixed brak-

ing but changing initial velocities. As expected, both the area of the unsafe

regions and severity of collisions decrease with reduction of the initial veloc-

ities. The analysis enables us to prove that, for example, the system is safe

when the initial velocities of both cars are less than 17 (m/s) for the given

braking profiles and reaction times.

For the system with three cars, we consider scenarios with 4 parameters:

the initial separations d12, d23 and reaction times r2, r3. For visualizing the

risk, we fix the range of 2 parameters while varying the others. Fixing the

reaction times of both Car2 and Car3 to be within the range [1.8, 1.9] (s), we

analyze the change of safety envelope with respect to the change of d12 and

d23. Figure 6.5g shows that the system is collision-free only when both the

distances d12 and d23 are large enough. Compare Figure 6.5g with Figure

6.5e when all the cars have the same initial velocities and braking profiles.

We can see that when the reaction time is between [1.8, 1.9] (s), the safe

distance changes from d > 44 (m) for the system with two cars to d12 > 47

(m), d23 > 49 (m) for system with three cars. Therefore, with the increase

of number of cars in a chain, the “safe” distance between any pair of cars

increases as well.

Next, fixing the distance d12, d23 to be within the range [44, 45] (m), we

analyze the change of safety envelope with respect to the change of reaction

time r2, r3. Figure 6.5h shows that the cars are collision free only if both

89

Car2 and Car3’s reaction times are short enough. Compared with Figure

6.5e again, when the distance between the cars is between [44, 45] (m), the

safe reaction time changes from r < 1.9 (s) for the two cars scenario to

r2 < 1.7 (s), r3 < 1.6 (s) for three cars scenario. Both Figure 6.5g and

6.5h show quantitatively that the safety envelope shrinks with the increase

of number of cars in the system.

As the running time for each scenario is 3−5 seconds on a standard laptop,

it takes 5− 30 minutes to generate a heat map, which suggests that similar

analysis could be applied to more complicated scenarios with more modes

and parameters, and more sophisticated ADAS systems.

6.6 Other Examples: Powertrain, Spacecraft, and Gear

Transmission

We will revisit the powertrain example (Example 5.3) and spacecraft ren-

dezvous example (Example 5.4) introduced in Chapter 5.

6.6.1 Powertrain Control Model

As we have seen in Example 5.3, Model 2’s continuous variables can be be

described using a set of ODEs (Figure 5.1).The continuous variables for the

physical plant xp = [θ, p, λ] evolve according to ODEs, but the controller

variables xc = [pe, i] are updated periodically. Using DryVR, we can treat

the entire system as a black-box simulator with the five given variables and

four modes. With the initial set p ∈ [0.6115, 0.6315], λ ∈ [14.6, 14.8], pe ∈
[0.5555, 0.5755], i ∈ [0, 0.01], DryVR is able to prove that the system satisfies

the safety requirements as stated above. Figure 6.6 shows a safe reachtube of

the Air/Fuel variable λ computed using DryVR going through the sequence

of modes Start up, Normal, Power up (also called Power), Normal.

6.6.2 Spacecraft Rendezvous

As for the spacecraft rendezvous example 5.4, a different control strategy for

ARPOD was proposed in [130] which characterizes the family of individual

90

0 10

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0
Start_up

0 10

Normal

0 10

Power

0 20

Normal

Figure 6.6: Reachtube for λ vs. time of Model 2 produced by DryVR.

controllers and the required properties they should induce for the closed

loop system to solve the problem within each phase, then uses a supervisor

that robustly coordinates the individual controllers. Using these controlled

subsystems as a black-box, we have been able to check the safety of the

overall system using DryVR. Figure 6.7 (right) shows the reachtube of x

and y produced by DryVR.

Figure 6.7: Reachtube of x vs. time (above) and y vs. time (below)
produced by DryVR.

91

6.6.3 Automatic Transmission Control

The automatic transmission control benchmark is a slightly modified version

of the Automatic Transmission model provided by Mathworks as a Simulink

demo [125]. It is a model of an automatic transmission controller that exhibits

both continuous and discrete behavior. The model has been previously used

by S-TaLiRo [131] for falsifying certain requirements. We are not aware of

any verification results for this system.

For our experiments, we made some minor modifications to the Simulink

model to create the hybrid system ATS. This allows us to simulate the

vehicle from any one of the four modes, namely, gear1, gear2, gear3 and gear4.

Although the system has many variables, we are primarily interested in the

car Speed (v), engine RPM (Erpm), impeller torque (Ti), output torque (To),

and transmission RPM (Trpm), and therefore we use simulations that record

these. The timed transition graph of ATS encodes transition sequences and

intervals for shifting from gear1 through to gear4. The requirement of interest

is that the engine RPM is less than a specified maximum value, which in turn

is important for limiting the thermal and mechanical stresses on the cylinders

and camshafts. A typical unsafe set Ut could be Erpm > 4000.

Setting the initial set to be v = 0, Ti = 394.05, To = 52.92, Trpm = 0

and Erpm to be within [900, 1000], DryVR can prove that the engine RPM

Erpm is always lower than 4000 with the transition graph from gear1 through

gear4 at various time intervals.

6.7 Formal Reasonings on Hybrid Systems with

Black-box Modules

In this section, to simplify the analysis, we would like to separate the “white-

box” and “black-box”. In this way, we will be able to reason over the “white-

box” only to infer properties of the overall hybrid systems (see Definition 3.2).

We will focus on a special class of hybrid systems where the mode switches

will only be decided by time and the transition graph is a directed acyclic

graph (DAG). That is, the discrete behaviors or mode transitions are specified

by what we call a timed transition graph over L.

Definition 6.3. A timed transition graph is a labeled, directed acyclic graph

92

G = 〈L,V,E, vlab, elab〉, where (a) L is the set of vertex labels also called

the set of modes , (b) V is the set of vertices, (c) E ⊆ V × V is the set of

edges, (d) vlab : V→ L is a vertex labeling function that labels each vertex

with a mode, and (e) elab : E→ R≥0×R≥0 is an edge labeling function that

labels each edge with a nonempty, closed, bounded interval defined by pair

of non-negative reals.

Since G is a DAG, there is a nonempty subset Vinit ⊆ V of vertices with

no incoming edges and a nonempty subset Vterm ⊆ V of vertices with no

outgoing edges. The set of initial locations can also be written as Linit =

{` | ∃ v ∈ Vinit, vlab(v) = `}. A (maximal) path of the graph G is a

sequence π = v1, t1, v2, t2, . . . , vk such that (a) v1 ∈ Vinit, (b) vk ∈ Vterm,

and (c) for each (vi, ti, vi+1) subsequence, there exist (vi, vi+1) ∈ E and

ti ∈ elab((vi, vi+1)). Path(G) is the set of all possible paths of G. For a

given path π = v1, t1, v2, t2, . . . , vk, its trace, denoted by vlab(π), is the se-

quence vlab(v1), t1, vlab(v2), t2, . . . , vlab(vk). Since G is a DAG, a trace of

G can visit the same mode finitely many times. Traces(G) is the set of all

traces of G.

For a given path π = v1, t1, v2, t2, . . . , vk,
∑k−1

i=1 ti is its time horizon and

T = maxπ=v1,t1,...,vk∈Path(G)

∑k−1
i=1 ti is the time horizon for any path of the

timed transition graph G. We can see from Definition 6.3 that a transi-

tion graph actually defines the actions set A and transitions D in a hybrid

system H. Therefore, in this section, the hybrid system can also be writ-

ten as H = 〈V = (X ∪ L),Θ, G,TL〉. The reachable set of hybrid system

ReachH(〈Θ, Linit〉, [0, T]) is the set of all states that can be reached from the

initial states Θ and initial modes Linit, where T is the time horizon for the

corresponding transition graph G. We also write the reachable set as ReachH

for brevity. For any given vertex v ∈ V, ReachH d v is the set of states that

can be reached at vertex v only.

We will develop reasoning techniques based on reachability, abstraction,

composition, and substitutivity. To this end, we will need to establish

containment relations between the behaviors of systems. Here we define

containment of timed transition graph traces. Consider timed transition

graphs G1, G2, with modes L1, L2, and a mode map lmap : L1 → L2. For a

trace σ = `1, t1, `2, t2, . . . , `k ∈ Traces(G1), simplifying notation, we denote

by lmap(σ) the sequence lmap(`1), t1, lmap(`2), t2, . . . , lmap(`k). We write

93

G1 �lmap G2 iff for every trace σ ∈ Traces(G1), there is a trace σ′ ∈ Traces(G2)

such that lmap(σ) is a prefix of σ′.

Definition 6.4 (Trace containment). Given graphs G1, G2 and a mode map

lmap : L1 → L2, a relation R ⊆ V1×V2 is a forward simulation relation from

G1 to G2 iff

(a) for each v ∈ V1,init, there is u ∈ V2,init such that (v, u) ∈ R,

(b) for every (v, u) ∈ R, lmap(vlab1(v)) = vlab2(u), and

(c) for every (v, v′) ∈ E1 and (v, u) ∈ R, there exists a finite set u1, . . . , uk

such that:

(i) for each uj, (v, uj) ∈ R, and

(ii) elab1((v, v′)) ⊆ ∪jelab2((u, uj)).

Proposition 6.2. If there exists a forward simulation relation from G1 to

G2 with lmap, then G1 �lmap G2.

We will find it convenient to define the sequential composition of two timed

transition graphs. Intuitively, the traces of the composition of G1 and G2

will be those that can be obtained by concatenating a trace of G1 with a

trace of G2. To keep the definitions and notations simple, we will assume

(when taking sequential compositions) |Vinit| = |Vterm| = 1. It is easy to

generalize to the case when this does not hold. Under this assumption, the

unique vertex in Vinit will be denoted as vinit and the unique vertex in Vterm

will be denoted as vterm.

Definition 6.5 (Sequential composition of timed transition graphs). Given

graphs G1 = 〈L,V1,E1, vlab1, elab1〉 and G2 = 〈L,V2,E2, vlab2, elab2〉 such

that vlab1(v1term) = vlab2(v2term), the sequential composition of G1 and G2

is the graph G1 ◦G2 = 〈L,V,E, vlab, elab〉 where

(a) V = (V1 ∪ V2) \ {v2,init)},

(b) E = E1 ∪ {(v1,term, u) | (v2,init, u) ∈ E2} ∪ {(v, u) ∈ E2 | v 6= v2,init},

(c) vlab(v) = vlab1(v) if v ∈ V1 and vlab(v) = vlab2(v) if v ∈ V2,

(d) For edge (v, u) ∈ E, elab((v, u)) equals

(i) elab1((v, u)), if u ∈ V1,

94

(ii) elab2((v2,init, u)), if v = v1,term,

(iii) elab2((v, u)), otherwise.

Given our definition of trace containment between graphs, we can prove a

very simple property about sequential composition.

Proposition 6.3. Let G1 and G2 be two graphs with modes L that can be

sequential composed. Then

G1 �id G1 ◦G2,

where id is the identity map on L.

The proposition follows from the fact that every path of G1 is a prefix of

a path of G1 ◦G2.

After defining trace containment and sequential composition on timed

transition graphs, we want to define the containment of trajectories which

describes the behaviors of the continuous variables.

Definition 6.6 (Trajectory containment). Consider sets of trajectories TL1

labeled by L1 and TL2 labeled by L2, and a mode map lmap : L1 → L2. If

for every labeled trajectory 〈ξ, `〉 ∈ TL1, 〈ξ, lmap(`)〉 ∈ TL2, we say TL1 is

contained in TL2 and denote it by TL1 �lmap TL2.

6.7.1 Behavior Containment of Hybrid Systems

Containment between graphs and trajectories can be leveraged to establish

the containment of the set of reachable states of two hybrid systems.

Proposition 6.4. Considering a pair of hybrid systems Hi = 〈Vi = (Xi ∪
Li),Θi, Gi,TLi〉, i ∈ {1, 2} and mode map lmap : L1 → L2. If X1 = X2, L1 =

L2, Θ1 ⊆ Θ2, G1 �lmap G2, and TL1 �lmap TL2, then

ReachH1 ⊆ ReachH2 .

For a fixed unsafe set F and two hybrid systems H1 and H2, proving

ReachH1 ⊆ ReachH2 and the safety of H2 allows us to establish the safety of

H1. Proposition 6.4 establishes that proving containment of traces, trajecto-

ries, and initial sets of two hybrid systems ensures the containment of their

95

respective reach sets. These two observations together give us a method of

concluding the safety of one system, from the safety of another, provided we

can check trace containment of two graphs, and trajectory containment of

two trajectory sets. In most systems we need to conduct formal reasoning;

the set of modes L and the set of trajectories TL are often the same in the hy-

brid systems we care about. So in this section we present different reasoning

principles to check trace containment between two graphs.

Semantically, a timed transition graph G can be viewed as one-clock timed

automaton; i.e., one can constructed a timed automaton T with one-clock

variable such that the timed traces of T are exactly the traces of G. This

observation, coupled with the fact that checking the timed language contain-

ment of one-clock timed automata [132] is decidable, allows one to conclude

that checking if G1 �lmap G2 is decidable. However the algorithm in [132] has

non-elementary complexity. Our next observation establishes that forward

simulation between graphs can be checked in polynomial time. Combined

with Proposition 6.2, this gives a simple sufficient condition for trace con-

tainment that can be efficiently checked.

Proposition 6.5. Given graphs G1 and G2, and mode map lmap, checking

if there is a forward simulation from G1 to G2 is in polynomial time.

Proof. The result can be seen to follow from the algorithm for checking timed

simulations between timed automata [133] and the correspondence between

one-clock timed automata; the fact that the automata have only one clock

ensures that the region construction is poly-sized as opposed to exponential-

sized. However, in the special case of timed transition graphs there is a more

direct algorithm which does not involve region construction that we describe

here.

Observe that if {Wi}i∈I is a family of forward simulations between G1

and G2, then ∪i∈IWi is also a forward simulation. Thus, as in classical

simulations, there is a unique largest forward simulation between two graphs

that is the greatest fixpoint of a functional on relations over states of the

transition graph. Therefore, starting from the relation V1 × V2, one can

progressively remove pairs (v, u) such that v is not simulated by u until a

fixpoint is reached. Moreover, in this case, since G1 is a DAG, one can

guarantee that the fixpoint will be reached in |V1| iterations.

Executions of hybrid systems are for bounded time, and bounded number

96

of mode switches. This is because our timed transition graphs are acyclic

and the labels on edges are bounded intervals. Sequential composition of

graphs allows one to consider switching sequences that are longer and of a

longer duration. We now present observations that will allow us to establish

the safety of a hybrid system with long switching sequences based on the

safety of the system under short switching sequences. To do this we begin by

observing simple properties about sequential composition of graphs. In what

follows, all hybrid systems we consider will be over a fixed set of modes L and

trajectory set TL. Also id will be identity function on L. Our first observation

is that trace containment is consistent with sequential composition.

Proposition 6.6. Let Gi, G
′
i, i ∈ {1, 2}, be four timed transition graphs over

L such that G1 ◦ G2 and G′1 ◦ G′2 are defined, and Gi �id G
′
i for i ∈ {1, 2}.

Then G1 ◦G2 �id G
′
1 ◦G′2.

Next we observe that sequential composition of graphs satisfies the “semi-

group property”.

Proposition 6.7. Let G1, G2 be graphs over L for which G1 ◦G2 is defined.

Let v1,term be the unique terminal vertex of G1. Consider the following hybrid

systems: H = 〈X ∪ L,Θ, G1 ◦ G2,TL〉, H1 = 〈X ∪ L,Θ, G1,TL〉, and H2 =

〈X ∪ L,ReachH d v1,term, G2,TL〉. Then

ReachH = ReachH1 ∪ ReachH2 .

Consider a graph G such that G ◦ G is defined. Let H be the hybrid

system with timed transition graph G, and H′ be the hybrid system with

timed transition graph G ◦ G; the modes, trajectories, and initial set for H
and H′ are the same. Now by Proposition 6.3 and 6.4, we can establish

that ReachH ⊆ ReachH′ . Our main result of this section is that under some

conditions, the converse also holds. This is useful because it allows us to

conclude the safety of H′ from the safety of H. In other words, we can

deduce the safety of a hybrid system for long, possibly unbounded, switching

sequences (namely H′) from the safety of the system under short switching

sequences (namely H).

Theorem 6.1. Suppose G is such that G ◦ G is defined. Let vterm be the

unique terminal vertex of G. For natural number i ≥ 1, define Hi = 〈(X ∪

97

L),Θ, Gi,TL〉, where Gi is the i-fold sequential composition of G with itself.

In particular, H1 = 〈(X ∪ L),Θ, G,TL〉. If ReachH1 d vterm ⊆ Θ, then

∀i ≥ 1,ReachHi ⊆ ReachH1 .

Proof. Let Θ1 = ReachH1 d vterm. From the condition in the theorem, we

know that Θ1 ⊆ Θ. Let us define H′i = 〈(X ∪ L),Θ1, G
i,TL〉. Observe that

from Proposition 6.4, we have ReachH′i ⊆ ReachHi .

The theorem is proved by induction on i. The base case (for i = 1) trivially

holds. For the induction step, assume that ReachHi ⊆ ReachH1 . Since ◦ is

associative, using Proposition 6.7 and the induction hypothesis, we have

ReachHi+1
= ReachH1 ∪ ReachH′i ⊆ ReachH1 ∪ ReachHi = ReachH1 .

Theorem 6.1 allows one to determine the set of reachable states of a set

of modes L with respect to graph Gi, provided G satisfies the conditions in

the statement. This observation can be generalized. If a graph G2 satisfies

conditions similar to those in Theorem 6.1, then using Proposition 6.7, we

can conclude that the reachable set with respect to graph G1 ◦ Gi
2 ◦ G3 is

contained in the reachable set with respect to graph G1 ◦G2 ◦G3.

6.8 Experiments on Behavior Containment Reasoning

6.8.1 Trace Containment

Consider an emergency brakes scenario AEB where initially vehicle A is be-

hind B in the same lane with A in cruise, and B is stopped (in cruise mode

with velocity 0). A transits from cruise to em brake over a given interval of

time or several disjoint intervals of time. We want that vehicle A stops behind

B and maintains at least a given safe separation. In the actual system with

timed transition graph G2 as in Figure 6.8, two different sensor systems trig-

ger the obstacle detection and emergency braking at time intervals [1, 2] and

[2.5, 3.5] and take the system from vertex 0 (cruise) to two different vertices

labeled with em brake. To illustrate trace containment reasoning, consider a

simpler timed transition graph G1 as in Figure 6.9 that allows a single tran-

sition of A from cruise to em brake over the interval bigger [0.5, 4.5]. Using

Proposition 6.4 and checking that graph G2 �id G1, it follows that verifying

98

cruise em brake

em brake

terminal
[2.5, 3.5]

[1, 2] [20, 50]

[20, 50]

Figure 6.8: Timed transition graph G2 of the emergency brakes scenario
AEB.

cruise em brake terminal
[0.5, 4.5] [20, 50]

Figure 6.9: Timed transition graph G1 of the emergency brakes scenario
AEB.

the safety of AEB with G1 is adequate to infer the safety with G2. Figure 6.10

shows that the safe reachtubes returned by the algorithm for G1 in red do

indeed contain the reachtubes for G2 (in blue and gray).

0 1 2 3 4

−10

−8

−6

−4

−2

0

2

cruise

0 20 40

em_brake

Figure 6.10: AEB reachtubes.

99

6.8.2 Sequential Composition

We revisit the Powertrain Model 2 of Example 5.3. The initial set Θ is

the same as in Example 5.3 Model 3. Let GA be the graph (v0,Start up)
[5,10]−−−→ (v1,Normal)

[10,15]−−−→ (v2,Power up), and GB be the graph (v0,Power up)
[5,10]−−−→ (v1,Normal)

[10,15]−−−→ (v2,Power up). The graph G1 = (v0,Start up)
[5,10]−−−→

(v1,Normal)
[10,15]−−−→ (v2,Power up)

[5,10]−−−→ (v3,Normal)
[10,15]−−−→ (v4,Power up) can

be expressed as the composition G1 = GA ◦ GB. Consider the two hybrid

systems Hi = 〈(X ∪ L),Θi, Gi,TL〉, i ∈ {A,B} with ΘA = Θ and ΘB =

ReachHA d v2. DryVR’s estimate of ΘB had λ in the range from 14.68 to

14.71. The reachset ReachHB d v2 computed by DryVR had λ from 14.69 to

14.70. The remaining variables also were observed to satisfy the containment

condition. Therefore, ReachHB d v2 ⊆ ΘB. Consider the two hybrid systems

Hi = 〈(X ∪ L),Θ, Gi,TL〉, i ∈ {1, 2}, where G1 is (defined above) GA ◦GB,

and G2 = GA ◦ GB ◦ GB ◦ GB. Using Theorem 6.1 it suffices to analyze H1

to verify H2. Moreover, H1 was been proved to be safe by DryVR.

6.9 Summary

The work presented in this chapter takes an alternative view that complete

mathematical models of hybrid systems are unavailable. Instead, the avail-

able system description combines a black-box simulator and a white-box

transition graph. Starting from this point of view, we have developed the

semantic framework, a probabilistic verification algorithm, and results on

simulation relations and sequential composition for reasoning about complex

hybrid systems over long switching sequences. Through modeling and anal-

ysis of a number of automotive control systems using implementations of the

proposed approach, we hope to have demonstrated their promise.

100

Chapter 7

Approximate Partial Order Reduction

In previous chapters, we have seen how to compute discrepancy functions

for nonlinear systems and black-box systems, which can be used in the data-

driven verification approach. Another challenging problem that arises in

distributed autonomous systems is the interleaving of concurrent actions. If

we assume every possible ordering of the actions is possible, then we may

have to explore exponentially many of such orderings. In this chapter, we

study how to overcome this hurdle for an infinite transition system model,

which is a special class of hybrid systems where we ignore the continuous

evolutions of the states within each mode.

7.1 Introduction

Actions of different computing nodes may interleave arbitrarily in distributed

systems. The number of action sequences that have to be examined for state-

space exploration grows exponentially with the number of nodes. Partial or-

der reduction methods (POR) [134, 135] tackle this combinatorial explosion

by eliminating executions that are equivalent , i.e., that do not provide new

information about reachable states. This equivalence is based on indepen-

dence of actions: a pair of actions are independent if they commute, i.e.,

applying them in any order results in the same state. Thus, of all execu-

tion branches that start and end at the same state, but perform commuting

actions in different order, only one has to be explored.

There are two main classes of POR methods. The persistent or ample

set is a subset of representative transitions such that the omitted transitions

are independent of those in the persistent set. Therefore the persistent set

is guaranteed to contain all behaviors of the original system. [134]. The

persistent sets are often derived by static analysis of the code. Another line

101

of work is called dynamic POR. It relies on the sleep set, which is the set of

omitted actions, to avoid the static analysis [136, 137, 138]. These methods

examine the history of actions taken by an execution and decide a set of

actions that need to be explored in the future.

Current partial order methods are limited when it comes to computation

with numerical data and physical quantities (e.g., sensor networks, vehicle

platoons, IoT applications, and distributed control and monitoring systems).

First, a pair of actions are considered independent only if they commute

exactly (see Figure 7.1 left); actions that nearly commute—as are common in

these applications—cannot be exploited for pruning the exploration. Second,

conventional partial order methods do not eliminate executions that start

from nearly similar states and experience equivalent action sequences.

We address these limitations and propose a state space exploration method

for nondeterministic, infinite state transition systems based on approximate

partial order reduction. Our setup has two mild assumptions: (i) the state

space of the transition system has a discrete part L and a continuous part X

and the latter is equipped with a metric; (ii) the actions on X are continuous

functions. Nondeterminism arises from both the choice of the initial state

and the choice of actions. Fixing an initial state v0 and a sequence of actions

τ (also called a trace) uniquely defines an execution of the system which we

denote by ξ(v0, τ). For a given approximation parameter ε ≥ 0, we define

two actions a and b to be ε-independent if from any state v, the continuous

parts of states resulting from applying action sequences ab and ba are ε-

close (see Figure 7.1 right). Two traces of A are ε-equivalent if they result

from permuting ε-independent actions. To compute the reachable states of A
using a finite (small) number of executions, the key is to generalize or expand

an execution ξ(v0, τ) by a factor r ≥ 0, so that this expanded set contains all

executions that start δ-close to v0 and experience action sequences that are

ε-equivalent to τ . We call this r a (δ, ε)-trace equivalent discrepancy factor

(ted) for ξ.

For a fixed trace τ , the only source of nondeterminism is the choice of the

initial state. The reachable states from Bδ(v0)—a δ-ball around v0—can be

over-approximated by expanding ξ(v0, τ) by a (δ, 0)-ted . This is essentially

the sensitivity of ξ(v0, τ) to v0. Fixing v0, the only source of nondetermin-

ism is the possible sequence of actions in τ . The reachable states from v0

following all possible valid traces can be over-approximated by expanding

102

v0

v1

v2

v3 v0

v1

v2

v3

v′3

a b

ab

a
b

a
b

ε

Figure 7.1: Left: Actions a, b commute exactly. Right: Actions a, b are
ε-independent.

ξ(v0, τ) by a (0, ε)-ted , which includes states reachable by all ε-equivalent

action sequences. Computing (0, ε)-ted uses the principles of partial order

reduction. However, unlike exact equivalence, here, starting from the same

state, the states reached at the end of executing two ε-equivalent traces are

not necessarily identical. This breaks a key assumption necessary for con-

ventional partial order algorithms: here, an action enabled after ab may not

be enabled after ba. Of course, considering disabled actions can still give

over-approximation of reachable states, but we show that the precision of

approximation can be improved arbitrarily by shrinking δ and ε.

Thus, the reachability analysis in this part brings together two different

ideas for handling nondeterminism: it combines sensitivity analysis with re-

spect to initial state and ε-independence of actions in computing (δ, ε)-ted ,

i.e., upper-bounds on the distance between executions starting from initial

states that are δ-close to each other and follow ε-equivalent action sequences.

As a matter of theoretical interest, we show that the approximation error can

be made arbitrarily small by choosing sufficiently small δ and ε. We validate

the correctness and effectiveness of the algorithm with three case studies

where conventional partial order reduction would not help: an iterative con-

sensus protocol, a simple vehicle platoon control system, and a distributed

building heating system. In most cases, our reachability algorithm reduces

the number of explored executions by a factor of O(n!), for a time horizon of

n, compared with exhaustive enumeration. Using these over-approximations,

we could quickly decide safety verification questions. This work was origi-

nally presented in [26].

103

7.2 Background

Recall from Section 3.1 that a deterministic labeled transition system A is a

tuple 〈V = (X ∪L),Θ, A,D〉 (see Definition 3.1). val(V) is the set of states.

A state v ∈ val(V) is a valuation of the real-valued and finite-valued variables.

We denote by v.X and v.L, respectively, the real-valued and discrete (finite-

valued) parts of the state v. Θ ⊆ val(V) is a set of initial states, A is a

finite set of actions, and D is a the set of transitions. Traces, executions, and

reachable sets of the labeled transition system are all defined in Section 3.1.

We have defined discrepancy function for dynamical systems in Section 4.4.

A discrepancy function bounds the changes in a system’s executions as a

continuous function of the changes in its inputs. In this chapter, we extend

the notion naturally to labeled transition systems: a discrepancy for an action

bounds the changes in the continuous state brought about by its transition

function.

Definition 7.1. For an action a ∈ A, a continuous function βa : R≥0 → R≥0

is a discrepancy function if for any pair of states v, v′ ∈ V with v.L = v′.L,

(i) ‖a(v).X − a(v′).X‖ ≤ βa(‖v.X − v′.X‖), and

(ii) βa(·)→ 0 as ‖v.X − v′.X‖ → 0.

As the following proposition states, given discrepancy functions for actions,

we can reason about distance between executions that share the same trace

but have different initial states.

Proposition 7.1. Suppose each action a ∈ A has a discrepancy function

βa. For any T ≥ 0 and action sequence τ = a0a1a2 . . . aT , and for any pair

of states v, v′ ∈ V with v.L = v′.L, the last states of the pair of potential

executions satisfy:

ξv,τ .lstate.L = ξv′,τ .lstate.L, (7.1)

‖ξv,τ .lstate.X − ξv′,τ .lstate.X‖ ≤ βaTβaT−1
. . . βa0(‖v.X − v′.X‖). (7.2)

The proposition can be proved simply by reasoning the distance between

the two executions step by step.

104

Example 7.1. Consider an instance of Consensus of Example 3.1 with n = 3

and N = 3 with the standard 2-norm on R3. Let the matrices Ai be

A0 =

 0.2 −0.2 −0.3

−0.2 0.2 −0.1

−0.3 −0.1 0.3

 , A1 =

0.2 0.3 0.2

0.3 −0.2 0.3

0.2 0.3 0

 , A2 =

−0.1 0 0.4

0 0.4 −0.2

0.4 −0.2 −0.1

 .
It can be checked that for any pair v, v′ ∈ V with v.L = v′.L, ‖ai(v).X −
ai(v

′).X‖2 ≤ ‖Ai‖2‖v.X−v′.X‖2. Where the induced 2-norms of the matrices

are ‖A0‖2 = 0.57, ‖A1‖2 = 0.56, ‖A2‖2 = 0.53. Thus, for any v ∈ R≥0,

we can use discrepancy functions for a0, a1, a2: βa0(v) = 0.57v, βa1(v) =

0.56v, and βa2(v) = 0.53v.

For a finite set of discrepancy functions {βa}a∈A′ corresponding to a set of

actions A′ ⊆ A, we define βmax = maxa∈A′{βa} as βmax(v) = maxa∈A′ βa(v),

for each v ≥ 0. From Definition 7.1, for each a ∈ S, βa(‖v.X − v′.X‖) → 0

as ‖v.X − v′.X‖ → 0. Hence, as the maximum of βa, we have βmax(‖v.X −
v′.X‖)→ 0 as ‖v.X−v′.X‖ → 0. It can be checked that βmax is a discrepancy

function of each a ∈ S.

For n ≥ 0 and a function βmax defined as above, we define a function

γn =
∑n

i=0 β
i
max; here βi = β ◦ βi−1 for i ≥ 1 and β0 is the identity mapping.

Using the properties of discrepancy functions as in Definition 7.1, we can

show the following properties of {γn}n∈N.

Proposition 7.2. Fix a finite set of discrepancy functions {βa}a∈A′ with

A′ ⊆ A. Let βmax = maxa∈A′{βa}. For any n ≥ 0, γn =
∑n

i=0 β
i
max satisfies

(i) ∀ ε ∈ R≥0 and any n ≥ n′ ≥ 0, γn(ε) ≥ γn′(ε), and (ii) limε→0 γn(ε) = 0.

Proof. (i) For any n ≥ 1, we have γn − γn−1 = βnmax. Since βnmax =

maxa∈S{βa} for some finite S, using Definition 7.1, βnmax takes only non-

negative values. Hence, the sequence of functions {γn}n∈R≥0 is non-decreasing.

(ii) Using the property of discrepancy functions, we have limε→0 βmax(ε) = 0.

By induction on the nested functions, we have limε→0 β
i
max(0) for any i ≥ 0.

Hence for any n ∈ R≥0, limε→0 γn(ε) = limε→0

∑n
i=0 β

i
max(ε) = 0.

The function γn depends on the set of {βa}a∈A′ , but as the βs will be fixed

and clear from context, we write γn for brevity.

105

7.3 Independent Actions and Neighboring Executions

Central to partial order methods is the notion of independent actions. A

pair of actions are independent if from any state, the occurrence of the two

actions, in either order, results in the same state. We extend this notion and

define a pair of actions to be ε-independent (Definition 7.2), for some ε > 0,

if the continuous states resulting from swapped action sequences are within

ε distance.

7.3.1 Approximately Independent Actions

Definition 7.2. For ε ≥ 0, two distinct actions a, b ∈ A are ε-independent,

denoted by a
ε∼ b, if for any state v ∈ V

(i) (Commutativity) ab(v).L = ba(v).L, and

(ii) (Closeness) ‖ab(v).X − ba(v).X‖ ≤ ε.

The parameter ε captures the degree of the approximation. The smaller

the value of ε, the more restrictive the independent relation. If a and b are ε-

independent with ε = 0, then ab(v) = ba(v) and the actions are independent

in the standard sense (see e.g. Definition 8.3 of [139]). Definition 7.2 extends

the standard definition in two ways. First, b need not be enabled at state a(v),

and vice versa. That is, if ξ(v0, ab) is an execution, we can only infer that

ξ(v0, ba) is a potential execution and not necessarily an execution. Secondly,

with ε > 0, the continuous states can mismatch by ε when ε-independent

actions are swapped. Consequently, an action c may be enabled at ab(v)

but not at ba(v). If ξ(v0, abc) is a valid execution, we can only infer that

ξ(v0, bac) is a potential execution and not necessarily an execution.

We assume that the parameter ε does not depend on the state v. When

computing the value of ε for concrete systems, we could first find an invariant

for the state’s real-valued variable v.X such that v.X is bounded, then find

an upper-bound of ‖ab(v).X−ba(v).X‖ as ε. For example, if a and b are both

linear mappings with a(v).X = A1v.X + b1 and b(v).X = A2v.X + b2 and

there is an invariant for v.X is such that ‖v.X‖ ≤ r, then it can be checked

that ‖ab(v).X−ba(v).X‖ = ‖(A2A1−A1A2)v.X+(A2b1−A1b2 +b2−b1)‖ ≤
‖A2A1 − A1A2‖r + ‖A2b1 − A1b2 + b2 − b1‖.

106

For a trace τ ∈ A∗ and an action a ∈ A, τ is ε-independent to a, written

as τ
ε∼ a, if τ is empty string or for every i ∈ {0, · · · , len(τ) − 1}, τ(i)

ε∼ a.

It is clear that the approximate independence relation over A is symmetric,

but not necessarily transitive.

Example 7.2. Consider approximate independence of actions in Consensus

(Example 3.1). Fix any i, j ∈ {0, · · · , N} such that i 6= j and any state

v ∈ V . It can be checked that aiaj(v).d(k) = ajai(v).d(k) = true if k ∈ {i, j},
otherwise it is v.d(k). Hence, we have aiaj(v).d = ajai(v).d and the commuta-

tivity condition of Definition 7.2 holds. For the closeness condition, we have

‖aiaj(v).x − ajai(v).x‖2 = ‖(AiAj − AjAi)v.x‖2 ≤ ‖AiAj − AjAi‖2‖v.x‖2.

If the matrices Ai and Aj commute, then ai and aj are ε-approximately

independent with ε = 0.

Suppose initially x ∈ [−4, 4]3 then the 2-norm of the initial state is bounded

by the value 4
√

3. The specific matrices Ai, i ∈ {0, 1, 2} presented in Ex-

ample 7.1 are all stable, so ‖ai(v).x‖2 ≤ ‖v.x‖2, for each i ∈ {0, 1, 2}
and the norm of state is non-increasing in any transitions. Therefore, I =

{x ∈ R3 : ‖x‖2 ≤ 4
√

3} is an invariant of the system. Together, we

have ‖a0a1(v).x − a1a0(v).x‖2 ≤ 0.1, ‖a0a2(v).x − a2a0(v).x‖2 ≤ 0.07, and

‖a1a2(v).x− a2a1(v).x‖2 ≤ 0.17. Thus, with ε = 0.1, it follows that a0
ε∼ a1

and a0
ε∼ a2 and

ε∼ is not transitive, but with ε = 0.2,
ε∼ is transitive.

7.3.2 (δ, ε)-Trace Equivalent Discrepancy for Action Pairs

Definition 7.2 implies that from a single state v, executing two ε-independent

actions in either order, we end up in states that are within ε distance. The

following proposition uses discrepancy to bound the distance between states

reached after performing ε-independent actions starting from different initial

states v and v′.

Proposition 7.3. If a pair of actions a, b ∈ A are ε-independent, and the

two states v, v′ ∈ V satisfy v.L = v′.L, then we have

(i) ba(v).L = ab(v′).L, and

(ii) ‖ba(v).X − ab(v′).X‖ ≤ βb ◦ βa(‖v.X − v′.X‖) + ε, where βa, βb are

discrepancy functions of a, b respectively.

107

Proof. Fix a pair of states v, v′ ∈ V with v.L = v′.L. Since a
ε∼ b, we

have ba(v).L = ab(v).L. Using the Assumption, we have ab(v).L = ab(v′).L.

Using triangular inequality, we have ‖ba(v).X − ab(v′).X‖ ≤ ‖ba(v).X −
ba(v′).X‖+‖ba(v′).X−ab(v′).X‖. The first term is bounded by βb◦βa(‖v.X−
v′.X‖) using Proposition 7.1 and the second is bounded by ε by Definition

7.2, and hence, the result follows.

7.4 Effect of ε-Independent Traces

In this section, we will develop an analog of Proposition 7.3 for ε-independent

traces (action sequences) acting on neighboring states.

7.4.1 ε-Equivalent Traces

First, we define what it means for two finite traces in A∗ to be ε-equivalent.

Definition 7.3. For any ε ≥ 0, we define a relation R ⊆ A∗ × A∗ such

that τRτ ′ iff there exists σ, η ∈ A∗ and a, b ∈ A such that a
ε∼ b, τ =

σabη, and τ ′ = σbaη. We define an equivalence relation
ε≡ ⊆ A∗ × A∗ called

ε-equivalence, as the reflexive and transitive closure of R.

That is, two traces τ, τ ′ ∈ A∗ are ε-equivalent if we can construct τ ′ from

τ by performing a sequence of swaps of consecutive ε-independent actions.

The following proposition states that the last states of two potential exe-

cutions starting from the same initial discrete state (location) and resulting

from equivalent traces have identical locations.

Proposition 7.4. Fix potential executions ξ = ξ(v0, τ) and ξ′ = ξ(v′0, τ
′). If

v0.L = v′0.L and τ
ε≡ τ ′, then ξ.lstate.L = ξ′.lstate.L.

Proof. If τ = τ ′, then the proposition follows from Assumption 3.1. Suppos-

ing τ 6= τ ′, from Definition 7.3, there exists a sequence of action sequences

τ0, τ1, . . . , τk to join τ and τ ′ by swapping neighboring approximately inde-

pendent actions. Precisely the sequence {τi}ki=0 satisfies:

(i) τ0 = τ and τk = τ ′, and

(ii) for each pair τi and τi+1, there exists σ, η ∈ A∗ and a, b ∈ A such that

a
ε∼ b, τi = σabη, and τi+1 = σbaη.

108

From Definition 7.2, swapping approximately independent actions preserves

the value of the discrete part of the final state. Hence for any i ∈ {0, · · · , k−
1}, ξ(v0, τi).lstate.L = ξ(v0, τi+1).lstate.L. Therefore, ξ.lstate.L = ξ′.lstate.L.

Next, we relate pairs of potential executions that result from ε-equivalent

traces and initial states that are δ-close.

Definition 7.4. Given δ, ε ≥ 0, a pair of initial states v0, v
′
0, and a pair

traces τ, τ ′ ∈ A∗, the corresponding potential executions ξ = ξ(v0, τ) and

ξ′ = ξ(v′0, τ
′) are (δ, ε)-related , denoted by ξ

δ,ε
≈ ξ′, if

(i) v0.L = v′0.L,

(ii) ‖v0.X − v′0.X‖ ≤ δ, and

(iii) τ
ε≡ τ ′.

Example 7.3. In Example 7.2, we show that a0
ε∼ a1 and a0

ε∼ a2 with

ε = 0.1. Consider the executions ξ = v0, a0, v1, a1, v2, a2, v3, a⊥, v4 and ξ′ =

v′0, a1, v
′
1, a2, v

′
2, a0, v

′
3, a⊥, v

′
4. with traces trace(ξ) = a0a1a2a⊥ and trace(ξ′) =

a1a2a0a⊥. For ε = 0.1, we have a0a1a2a⊥
ε≡ a1a0a2a⊥ and a1a0a2a⊥

ε≡
a1a2a0a⊥. Since the equivalence relation

ε≡ is transitive, we have trace(ξ)
ε≡

trace(ξ′). Suppose v0 ∈ Bδ(v
′
0), then ξ and ξ′ are (δ, ε)-related executions

with ε = 0.1.

It follows from Proposition 7.4 that the discrete state (locations) reached

by any pair of (δ, ε)-related potential executions are the same. In Lemma 7.3

of next section, we will bound the distance between the continuous state

reached by (δ, ε)-related potential executions. We define in the following this

bound as what we call trace equivalent discrepancy factor (ted), which is a

constant number that works for all possible values of the variables starting

from the initial set. Looking ahead, by bloating a single potential execution

by the corresponding ted , we can over-approximate the reachset of all related

potential executions. This will be the basis for the reachability analysis in

Section 7.5.

Definition 7.5. For any potential execution ξ and constants δ, ε ≥ 0, a (δ, ε)-

trace equivalent discrepancy factor (ted) is a nonnegative constant r ≥ 0, such

109

that for any (δ, ε)-related potential finite execution ξ′,

‖ξ′.lstate.X − ξ.lstate.X‖ ≤ r.

That is, if r is a (δ, ε)-ted , then the r-neighborhood of ξ’s last state

Br(ξ.lstate) contains the last states of all other (δ, ε)-related potential ex-

ecutions.

7.4.2 (0, ε)-Trace Equivalent Discrepancy for Traces (on the
Same Initial States)

In this section, we will develop an inductive method for computing (δ, ε)-ted .

We begin by bounding the distance between potential executions that differ

only in the position of a single action.

Lemma 7.1. Consider any ε ≥ 0, an initial state v0 ∈ V , an action a ∈ A
and a trace τ ∈ A∗ with len(τ) ≥ 1. If τ

ε∼ a, then the potential executions

ξ = ξ(v0, τa) and ξ′ = ξ(v0, aτ) satisfy

(i) ξ′.lstate.L = ξ.lstate.L and

(ii) ‖ξ′.lstate.X − ξ.lstate.X‖ ≤ γn−1(ε), where γn corresponds to the set of

discrepancy functions {βc}c∈τ for the actions in τ .

Proof. Part (i) directly follows from Proposition 7.4. We will prove part (ii)

by induction on the length of τ .

Base: For any trace τ of length 1, ξ and ξ′ are of the form ξ = v0, b0, v1, a, v2

and ξ′ = v0, a, v
′
1, b0, v

′
2. Since a

ε∼ b0 and the two executions start from the

same state, it follows from Definition 7.2 that ‖v′2.X − v2.X‖ ≤ ε.

Recall from the preliminary that γ0(ε) = β0(ε) = ε. Hence ‖v′2.X −
v2.X‖ ≤ γ0(ε) holds for trace τ with len(τ) = 1.

Induction: Suppose the lemma holds for any τ with length at most n−1.

Fixing any τ = b0b1 . . . bn−1 of length n, we will show the lemma holds for τ .

Let the potential executions ξ = ξ(v0, τa) and ξ′ = ξ(v0, aτ) have the form

ξ = v0, b0, v1, b1, ..., bn−1, vn, a, vn+1,

ξ′ = v0, a, v
′
1, b0, v

′
2, b1, ..., bn−1, v

′
n+1.

110

v0

v1 v2 v3 · · · vn vn+1 ξ

v′′2 v′′3 · · · v′′n v′′n+1 ξ′′

v′1 v′2 v′3 · · · v′n v′n+1 ξ′
a

b 0 a

b1 b2 b3 bn−1 a

b0 b1 b2 bn−2 bn−1

b1 b2 bn−2 bn−1

Figure 7.2: Potential executions ξ, ξ′, and ξ′′.

It suffices to prove that ‖ξ.lstate.X − ξ′.lstate.X‖ = ‖vn+1.X − v′n+1.X‖ ≤
γn−1(ε). We first construct a potential execution ξ′′ = ξ(v0, b0ab1 . . . bn−1)

by swapping the first two actions of ξ′. Then, ξ′′ is of the form ξ′′ =

v0, b0, v1, a, v
′′
2 , b1, ..., bn−1, v

′′
n+1. The potential executions ξ, ξ′ and ξ′′ are shown

in Figure 7.2. We first compare the potential executions ξ and ξ′′. Notice

that ξ and ξ′′ share a common prefix v0, b0, v1. Starting from v1, the action

sequence of ξ′′ is derived from trace(ξ) by inserting action a in front of the

action sequence τ ′ = b1b2 . . . bn−1.

Since τ ′
ε∼ a, applying the induction hypothesis on the length n− 1 action

sequence τ ′, we get

‖vn+1.X − v′′n+1.X‖ ≤ γn−2(ε).

Then, we compare the potential executions ξ′ and ξ′′. Since b0
ε∼ a, by

applying the property of Definition 7.2 to the first two actions of ξ′ and ξ′′,

we have ‖v′2.X − v′′2 .X‖ ≤ ε. We note that ξ′ and ξ′′ have the same suffix

of action sequence from v′2 and v′′2 . Using Proposition 7.1 from states v′2 and

v′′2 , we have

‖v′n+1.X − v′′n+1.X‖ ≤ βb1βb2 . . . βbn−1(‖v′2.X − v′′2 .X‖) ≤ βn−1(ε). (7.3)

Combining the bound on ‖v′2.X−v′′2 .X‖ and (7.3) with triangular inequality,

we have

‖vn+1.X − v′n+1.X‖ ≤ ‖vn+1.X − v′′n+1.X‖+ ‖v′n+1.X − v′′n+1.X‖
≤ γn−2(ε) + βn−1(ε) = γn−1(ε).

111

7.5 Reachability with Approximate Partial Order

Reduction

We will present our main algorithm (Algorithm 6) for reachability analysis

with approximate partial order reduction in this section. The core idea is

to over-approximate Reach(Bδ(v0), T) by (a) computing the actual execu-

tion ξ(v0, τ) and (b) expanding this ξ(v0, τ) by a (δ, ε)-ted to cover all the

states reachable from any other (δ0, ε)-related potential execution. Combin-

ing such over-approximations from a cover of Θ, we get over-approximations

of Reach(Θ, T), and therefore, Algorithm 6 can be used to soundly check for

bounded safety or invariance as a subroutine of the data-driven verification

approach (Algorithm 1) introduced in Chapter 4. The over-approximations

can be made arbitrarily precise by shrinking δ0 and ε (Theorem 7.2). Of

course, at ε = 0 only traces that are exactly equivalent to τ will be covered,

and nothing else. Algorithm 6 avoids computing (δ0, ε)-related executions,

and therefore, gains (possibly exponential) speedup.

The key subroutine in Algorithm 6 is CompTed which computes the ted by

adding one more action to the traces. It turns out that the ted is independent

of v0, but only depends on the sequence of actions in τ . CompTed is used to

compute δt from δt−1, such that δt is the ted for the length t prefix of ξ.

Let action a be the tth action and ξ = ξ(v0, τa). The action a may not be

ε-independent to the whole sequence τ , but we would still want to compute a

set of executions that ξ(v0, τa) can cover. We observe that, with appropriate

computation of ted , ξ(v0, τa) can cover all executions of the form ξ(v0, φaη),

where φaη is ε-equivalent to τa and a /∈ η. In what follows, we introduce

this notion of earliest equivalent position of a in τ (Definition 7.6), which is

the basis for the CompTed subroutine and is used in the main reachability

Algorithm 6.

7.5.1 Earliest Equivalent Position of an Action in a Trace

For any trace τ ∈ A∗ and action a ∈ τ , we define LastPos(τ, a) as the

largest index k such that τ(k) = a. The earliest equivalent position (eep),

eep(τ, a, ε) is the minimum of LastPos(τ ′, a) in any τ ′ that is ε-equivalent

to τa.

112

Definition 7.6. For any trace τ ∈ A∗, a ∈ A, and ε > 0, the earliest

equivalent position of a on τ is

eep(τ, a, ε)
∆
= min

τ ′
ε
≡τa

LastPos(τ ′, a).

For any trace τa, its ε-equivalent traces can be derived by swapping con-

secutive ε-independent action pairs. Hence, the earliest equivalent position

of a is the leftmost position it can be swapped to, starting from the end. Any

equivalent trace of τa is of the form φaη where φ and η are the prefix and

suffix of the last occurrence of action a. Hence, equivalently:

eep(τ, a, ε) = min
φaη

ε
≡τa, a/∈η

len(φ).

The following algorithm finds the earliest equivalent point (eep) of action a

on an action sequence τ . For any trace τ and action a, eep(τ, a, ε) constructs

a trace φ ∈ A∗. Initially φ is set to be the empty sequence. Iteratively, from

the end of τ , we add action τ(t) to φ if it is not independent to the entire

trace φa. The length of φ gives the eep of action a on trace τ . The time

complexity of the algorithm is at most O((len(τ))2). If the ε-independence

relation is symmetric, then its eep can be computed in O(len(τ)) time.

Algorithm 4: eep(τ, a, ε)

1 φ← 〈〉 ;
2 T ← len(τ);
3 for t = T − 1 : 0 do

4 if ∃b ∈ φa, τ(t) 6 ε∼ b then
5 φ← τ(t)φ

6 end
7 return len(φ);

Lemma 7.2 (Lemma 4.7 of [33]). For any action a ∈ A and trace τ ∈ A∗,
the function eep(τ, a, ε) computes the eep of a on τ .

Example 7.4. In Example 7.2, we showed that a0
ε∼ a1 and a0

ε∼ a2 with

ε = 0.1; a⊥ is not ε-independent to any actions. What is eep(a⊥a0a1, a2, ε)?

We can swap a2 ahead following the sequence τa2 = a⊥a0a1a2
ε≡ a⊥a1a0a2

ε≡
a⊥a1a2a0. As a⊥ and a1 are not independent of a2, it cannot occur earlier.

eep(a⊥a0a1, a2, ε) = 2.

113

7.5.2 Reachability using (δ, ε)-Trace Equivalent Discrepancy

CompTed (Algorithm 5) takes inputs of trace τ , a new action to be added a, a

parameter r ≥ 0 such that r is a (δ0, ε)-ted for the potential execution ξ(v0, τ)

for some initial state v0, initial set radius δ0, approximation parameter ε ≥ 0,

and a set of discrepancy functions {βa}a∈A. It uses the earliest equivalent

position of the action a in τ and returns a (δ0, ε)-ted r′ for the potential

execution ξ(v0, τa).

Algorithm 5: CompTed(τ, a, r, ε, {βa}a∈A)

1 β ← maxb∈τa{βb};
2 k ← eep(τ, a, ε);
3 t← len(τ);
4 if k = t then
5 r′ ← βa(r)
6 else
7 r′ ← βa(r) + γt−k−1(ε) ;
8 end
9 return r′;

We establish the correctness of Algorithm 5 by showing that r′ is indeed

an ted for the potential execution ξ(v0, τa) and δ0, ε.

Lemma 7.3. For some initial state v0 and initial set size δ0, if r is a (δ0, ε)-ted

for ξ(v0, τ) then value returned by CompTed() is a (δ0, ε)-ted for ξ(v0, τa).

Proof. Let us fix some initial state v0 and initial set size δ0.

Let ξt = ξ(v0, τ) be the potential execution starting from v0 by taking

the trace τ , and ξt+1 = ξ(v0, τa). Fix any ξ′ that is (δ0, ε)-related to ξt+1.

From Proposition 7.4, ξ′.lstate.L = ξt+1.lstate.L. We only need to prove that

‖ξ′.lstate.X − ξt+1.lstate.X‖ ≤ r′.

Since trace(ξ′)
ε≡ τa, action a is in the sequence trace(ξ′). Partitioning

trace(ξ′) on the last occurrence of a, we get trace(ξ′) = φaη for some

φ, η ∈ A∗ with a 6∈ η. Since k is the eep, from Definition 7.6, the position of

the last occurrence of a on trace(ξ′) is at least k. Hence we have len(φ) ≥ k

and len(η) = t − len(φ) ≤ t − k. We construct another potential execution

ξ′′ = ξ(v′0, φηa) with the same initial state as ξ′. The executions ξt+1, ξ
′ and

ξ′′ are illustrated in Figure 7.3.

The term vt is the last state of the execution ξt. From the condition of

the lemma, Br(vt) contains the last states of other length t, (δ0, ε)-related

114

v0 vt vt+1 ξt+1

v′′t v′′t+1 ξ′′

v′0 v′l v′l+1 v′t+1 ξ′

τ

φ

a

a η

η

a

Figure 7.3: Execution ξ, its ε-equivalent execution ξ′, and execution ξ′′ that
is constructed by swapping action a to the back in ξ′.

potential executions. We note that the length t prefix ξ′′ is (δ0, ε)-related to

ξt. Therefore, we have ‖vt.X − v′′t .X‖ ≤ r. Using the discrepancy function

of action a, we have

‖vt+1.X − v′′t+1.X‖ ≤ βa(‖vt.X − v′′t .X‖) ≤ βa(r). (7.4)

Next, we will quantify the distance between ξ′ and ξ′′. There are two cases:

(i) If k = t then, len(η) ≤ t− k = 0, that is, η is an empty string. Hence,

ξ′ and ξ′′ are indeed identical and v′t+1 = v′′t+1. Thus from (7.4),

‖vt+1.X − v′t+1.X‖ = ‖vt+1.X − v′′t+1.X‖ ≤ βa(r),

and the lemma holds.

(ii) Otherwise k < t and from Lemma 7.1, we can bound the distance

between ξ′ and ξ′′ as

‖v′t+1.X − v′′t+1.X‖ ≤ γlen(η)−1(ε) ≤ γt−k−1(ε).

Combining with (7.4) and using triangular inequality, we get

‖vt+1.X − v′t+1.X‖ ≤ ‖vt+1.X − v′′t+1.X‖+ ‖v′t+1.X − v′′t+1.X‖
≤ βa(r) + γt−k−1(ε).

115

We also notice that if a is ε-independent of τ , that is, if a is ε-independent

of any action in τ , then the eep of a in τ is eep(τ, a, ε) = 0, so the ted r′ in

Algorithm 5 can be computed from r using the following corollary.

Corollary 7.1. For any potential execution ξ = ξ(v0, τ) and constants δ, ε ≥
0, if r is a (δ, ε)-ted for ξ, and the action a ∈ A satisfies τ

ε∼ a, then

r′ = βa(r) + γlen(τ)−1(ε) is a (δ, ε)-ted for ξ(v0, τa).

Next, we present the main reachability algorithm which uses CompTed.

Algorithm 6 takes inputs of an initial set Θ, time horizon T , two parameters

δ0, ε ≥ 0, and a set of discrepancy functions {βa}a∈A. It returns the over-

approximation of the reach set for each time step.

The algorithm first computes a δ0-cover V0 of the initial set Θ such that

the union of the δ0 balls around all initial states v0 ∈ V0 covers the initial

set Θ: Θ ⊆ ∪v0∈V0Bδ(v0) (Line 6). The for-loop from Line 1 to Line 16

will compute the over-approximation of the reachset from each initial cover

Reach(Bδ0(v0), t). The over-approximation from each cover is represented as

a collection 〈D0, . . . , DT 〉, where each Dt is a set of tuples 〈τt, vt, δt〉 such that

(i) the traces Dt d 1 and their ε-equivalent traces contain the traces of all

valid executions of length t,

(ii) the traces in Dt d 1 are mutually non-ε-equivalent, and

(iii) for each tuple δt is the (δ0, ε)-ted for ξ(v0, τt).

For each initial cover Bδ0(v0), D0 is initialized as the tuple of empty string,

the initial state v0 and size δ0 (Line 2). Then the reachset over-approximation

is computed recursively for each time step by checking for the maximum set of

enabled actions EA for the set of states Bδt(vt) (Line 6), and trying to attach

each enabled action a ∈ EA to τt unless τta is ε-equivalent to some length

t + 1 trace that is already in Dt+1 d 1. This is where the major reduction

happens using approximate partial order reduction. If not, the (δ0, ε)-ted for

ξ(v0, τta) will be computed using CompTed, and new tuple 〈τta, vt+1, δt+1〉 will

be added to Dt+1 (Line 11).

If there are k actions in total and they are mutually ε-independent, then

as long as the numbers of each action in τt and τ ′t are the same, τt
ε≡ τ ′t .

Therefore, in this case, Dt contains at most
(
t+k−1
k−1

)
tuples. Furthermore,

for any length t trace τt, if all actions in τt are mutually ε-independent, the

116

algorithm can reduce the number of executions explored by O(t!). Essentially,

each τt ∈ Dt d 1 is a representative trace for the length t ε-equivalence class.

Algorithm 6: Reachability algorithm to over-approximate
Reach(Θ, T)

input : Θ, T, ε, δ0, {βa}
initially: V0 ← δ0-cover(Θ), R ← ∅

1 for v0 ∈ V0 do
2 D0 ← {〈′′, v0, δ0〉};
3 for t = 0, · · · , T − 1 do
4 Dt+1 ← ∅;
5 for each 〈τt, vt, δt〉 ∈ Dt do
6 EA← enabledactions(Bδt(vt)) ;
7 for a ∈ EA do

8 if ∀τt+1 ∈ Dt+1 d 1,¬
(
τta

ε≡ τt+1

)
then

9 vt+1 ← a(vt) ;
10 δt+1 ← CompTed(τt, a, δt, ε, {βa}a∈A) ;
11 Dt+1 ← Dt+1 ∪ 〈τta, vt+1, δt+1〉 ;

12 end

13 end

14 end

15 end
16 R ← R∪ 〈D0, . . . , DT 〉 ;

17 end
18 return R ;

Theorem 7.1 shows that Algorithm 7.1 indeed computes an over-approximation

for the reachable sets, and Theorem 7.2 states that the over-approximation

can be made arbitrarily precise by reducing the size of δ0, ε.

Theorem 7.1 (Soundness). Set R returned by Algorithm 6 satisfies ∀t =

0, . . . , T,

Reach(Θ, t) ⊆
⋃

Dt∈Rdt

⋃
〈τ,v,δ〉∈Dt

Bδ(v). (7.5)

Proof. Since ∪v0∈V0Bδ(v0) ⊇ Θ, it suffices to show that at each time step

t = 0, . . . , T , the Dt computed in the for-loop from Line 2 to Line 14 satisfies

Reach(Bδ0(v0), t) ⊆ ∪〈τ,v,δ〉∈DtBδ(v). Fixing any v0 ∈ V0, we will prove the

theorem by induction.

117

Base case: Initially before any action happens, the only valid trace is the

empty string ′′ and the initial set is indeed Bδ0(v0).

Induction: Assume that at time step t < T , the union of all the tracesRt d
1 and their ε-equivalent traces contains the traces of all length t valid execu-

tions, and for each tuple 〈τt, vt, δt〉 ∈ Dt, δt is a (δ0, ε)-ted for ξ(v0, τt). That

is, Bδt(vt) contains the final states of all (δ0, ε)-related executions to ξ(v0, τt).

This is sufficient for showing that Reach(Bδ0(v0), t) ⊆ ∪〈τ,v,δ〉∈DtBδ(v).

For each tuple contained in Dt, we will consider the maximum possible

set of actions enabled at Line 6 and attempt to compute the (δ0, ε)-ted for

ξ(v0, τta). If τta is not ε-equivalent to any of the length t + 1 traces that

have already been added to Dt+1, then Lemma 7.3 guarantees that the vt+1

and δt+1 computed at Line 9 and 10 satisfy that δt+1 is the (δ0, ε)-ted for

ξ(v0, τta). Otherwise, τta is ε-equivalent to some trace τt+1 that has already

been added to Dt+1. In this case, for any initial state v′0 that is δ0-close to v0,

ξ(v′0, τta) and ξ(v0, τt+1) are (δ0, ε)-related. It is easy to check that the final

state of ξ(v′0, τta) is already contained in Bδt+1(vt+1). Therefore, the union

of all the traces Rt+1 d 1 and their ε-equivalent traces contains the traces

of all length t + 1 valid executions, and for each tuple 〈τt+1, vt+1, δt+1〉 ∈
Dt+1, δt+1 is a (δ0, ε)-ted for ξ(v0, τt+1), which means Reach(Bδ0(v0), t+ 1) ⊆
∪〈τ,v,δ〉∈Dt+1Bδ(v). So the theorem holds.

Theorem 7.2 (Precision). For any r > 0, there exist δ0, ε > 0 such that

the reachset over-approximation R computed by Algorithm 6 satisfies ∀t =

0, . . . , T, ⋃
Dt∈Rdt

⋃
〈τ,v,δ〉∈Dt

Bδ(v) ⊆ Br(Reach(Θ, t)). (7.6)

Proof. From Proposition 7.2, for any n, γn(ε) → 0 as ε → 0. From Def-

inition 7.1, for any δt and discrepancy function β, β(δt) → 0 as δt → 0.

Therefore, when Line 10 of Algorithm 6 is executed, δt+1 → 0 as δt → 0 and

ε → 0. Iteratively applying this observation leads to the conclusion that δt

contained in any set Dt converges to zero as δ0 → 0 and ε→ 0.

Let us fix an arbitrary r > 0 for the rest of the proof. We know that the

set R is a union of approximations for each Reach(Bδ0(v0), [0, T]). Fixing

any such v0, δ0, it suffices to show that at any time t, ∪〈τ,v,δ〉∈DtBδ(v) ⊆
Br(Reach(Θ, t)) for small enough δ0 and ε. Moreover, it suffices to show that

fixing any 〈τt, vt, δt〉 ∈ Dt, Bδ(vt) ⊆ Br(Reach(Θ, t)) for small enough δ0 and

ε.

118

Since each δt is a (δ0, ε)-ted of the execution ξ(v0, τt) and δ0, ε, there is an

execution ξ′ = ξ(v′0, τ
′) from v′0 ∈ Bδ(v0) following the trace τ ′

ε≡ τt. By the

definition of reachable set, we have ξ′(t) ∈ Reach(Θ, t). On the other hand, ξ′

is (δ0, ε)-related to the potential execution ξ(v0, τt), so ξ′(t) ∈ Bδt(vt). That

is, Bδt(vt) and the reachset Reach(Θ, t) have intersections at the state ξ′(t).

The radius of at each time step δt can be made arbitrarily small as δ0 and

ε go to 0. We chose small enough δ0 and ε, such that the radius of Bδt(vt)

is less than r/2. Therefore, Bδt(vt) is contained in the radius r ball of the

reachset Br(Reach(Θ, t)).

Notice that as δ0 and ε go to 0, the Algorithm 6 actually converges to

a simulation algorithm which simulates every valid execution from a single

initial state.

7.6 Experimental Evaluation of Approximate POR

In this section, we discuss the results of evaluating Algorithm 6 in three

case studies. Our Python implementation runs on a standard laptop (Intel

CoreTM i7-7600 U CPU, 16G RAM).

7.6.1 Iterative Consensus

This is an instance of Consensus (Example 3.1) with 3 continuous variables

and 3 actions a0, a1, a2. We want to check if the continuous states converge

to [−0.4, 0.4]3 in 3 rounds starting from a radius 0.5 ball around [2.5, 0.5,−3].

Figure 7.4 shows the reachable set over-approximation computed and pro-

jected on x[0]. The blue and red curves give the bounds. As the figure

shows, x(0) converges to [−0.4, 0.4] at round 3; and so do x(1) and x(2]) (not

shown). We also simulated 100 random valid executions (yellow curves) from

the initial set and validate that indeed the over-approximation is sound.

Recall that three actions can occur in any order in each round, i.e., 3! = 6

traces per round, and 63 = 216 executions from a single initial state up

to 3 rounds. We showed in Example 7.2 that a0
ε∼ a1 and a0

ε∼ a2 with

ε = 0.1. Therefore, a0a1a2
ε≡ a1a0a2

ε≡ a1a2a0 and a0a2a1
ε≡ a2a0a1

ε≡ a2a1a0,

and Algorithm 6 explored only 2 (length 12) executions from a set of initial

119

states for computing the bounds. The running time for Algorithm 6 is 1

millisecond while exploring all valid executions from even only a single state

took 20 milliseconds.

Figure 7.4: Reachable set of the Consensus example. The blue curves are
the upper bound of the reachsets and the red curves are the lower bound of
the reachsets. Between the blue and red curves, the yellow curves are 100
random simulations of valid executions.

7.6.2 Platoon

Consider an N car platoon on a single-lane road (see Figure 7.5). Each car

can choose one of three actions at each time step: a (accelerate), b (brake),

or c (cruise). Car 0 can choose any action at each time step; remaining cars

try to keep safe distances from preceding cars by choosing to (a) accelerate if

the distance is more than 50, (b) brake if the distance is less than 30, and (c)

cruise otherwise. For each i ∈ {0, · · · , N − 1}, x(2i) is the position, x(2i+1) is

the velocity, and m(i) is the chosen action of the ith car. At each step, m(i) is

updated using relative positions according to the rule described above, and

then x is updated according to the actions. For concreteness, the linear state

transition equation for a 2-car platoon is shown below:

120

1 automaton CarPlatoon(N : N)
variables

3 x : R2N ;

m : {c, a, b}N ;
5

initially
7 for each i ∈ {0, · · · , N − 1}

m(i) := choose {c, a, b};

1transitions
move

3pre true

eff m(0) := choose {c, a, b};
5for each i ∈ {1 · · · , N}

m(i) :=

 a if x(2(i−1)) − x(2i) > 50
b if x(2(i−1)) − x(2i) < 30
c else

;

7x := Ax + bm;

Figure 7.5: Labeled transition system model of cars keeping a platoon.

x←


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

x+


acc0(∆t)2

2

acc0∆t
acc1(∆t)2

2

acc1∆t

 = Ax+ bm, (7.7)

where acci > 0 if car i accelerates; acci < 0 if it brakes; and acci = 0 if it

cruises. For any value of m, the discrepancy functions for the corresponding

actions are the same: For any v, v′ with v.L = v′.L, βa(‖v.x − v′.x‖) =

‖A‖‖v.x − v′.x‖. For any i, j ∈ {0, · · · , 8} with i 6= j, we notice that

‖aiaj(v).x − ajai(v).x‖ = ‖Abmi − Abmj + bmj − bmi‖ which is a constant

number and can be used as ε. If we choose ∆t = 0.1, then the discrepancy

function could be βa(‖v.x− v′.x‖2) = 1.06‖v.x− v′.x‖2. Furthermore, if acci

can choose from {−10, 0}, or from {10, 0}, then the corresponding actions

are ε-independent with ε = 0.141, and if acci can choose from {−10, 0, 10},
then the corresponding actions are ε-independent with ε = 0.282.

Consider a 2-car platoon and a time horizon of T = 10. We want to verify

that the cars maintain safe separation. Reachset over-approximations pro-

jected on the position variables are shown in Figure 7.6, with 100 random

simulations of valid executions as a sanity check. Car 0 has lots of choices

and its position over-approximation diverges (Figure 7.6). Car 1’s position

depends on its initial relative distance with Car 0. It is also easy to con-

clude from Figure 7.6 that two cars maintain safe relative distance for these

different initial states.

From a single initial state, in every step, Car 0 has 3 choices, and therefore

there are 310 possible executions. Considering a range of initial positions for

121

two cars, there are infinitely many executions, and 910 (around 206 trillion)

possible traces. With ε = 0.282, Algorithm 6 explored a maximum of
(

18
8

)
=

43758 traces; the concrete number varies for different initial sets. The running

time for Algorithm 6 is 5.1 milliseconds while exploring all valid executions

from even only a single state took 2.9 seconds.

For a 4-car platoon and a time horizon of T = 10, there are 8110 possible

traces considering a range of initial positions. With ε = 0.282, Algorithm 6

explored 7986 traces to conclude that all cars maintain safe separation for the

setting where all cars are initially separated by a distance of 40 and have an

initial set radius of 4. The running time for Algorithm 6 is 62.3 milliseconds,

while exploring all valid executions from even only a single state took 6.2

seconds.

Figure 7.6: Position over-approximations for 2 cars of the CarPlatoon
example. The blue curves are the upper bound of the reachsets and the red
curves are the lower bound of the reachsets. Between the blue and red
curves, the yellow curves are 100 random simulations of valid executions.
Car 0’s initial position is in the range [0, 5], Car 1’s initial position is 60
(Left), 40 (Center) and 25 (Right).

7.6.3 Building Heating System

Consider a building heating system in Figure 7.7. The building has N rooms

each with a heater. For i ∈ {0, · · · , N − 1}, x(i) ∈ R is the temperature

of room i and m(i) ∈ {0, 1} captures the off/on state of the heater in the

room. The building measures the temperature of rooms periodically every

T seconds and saves the measurements to y(i). Based on the measurement

y(i), each room takes action ai to decide whether to turn on or turn off

its heater. The Boolean variable d(i) indicates whether room i has made a

decision. These decisions are made asynchronously among the rooms with a

122

small delay h. For this system, we want to check whether the temperature

of the room remains in an appropriate range.

1 automaton Roomheating(N : N)
variables

3 x : RN initially x(i) := 60;

y : RN initially y(i) := 60;

5 d : BN initially d := falseN ;

m : BN initially m := falseN ;
7

transitions
9 oni, for i ∈ {0, · · · , N − 1}

pre !d(i) ∧ y(i) <= 72
11 eff x := Whx + bh + Chm;

d(i) := true ∧m(i) := true;

2offi, for i ∈ {0, · · · , N − 1}
pre !d(i) ∧ y(i) >= 68

4eff x := Whx + bh + Chm;

d(i) := true ∧m(i) := false;
6

8flow
pre ∧i∈{0,··· ,N−1}di

10eff x := WTx + bT + CTm;

d(i) := false,∀i ∈ {0, · · · , N − 1};
12y := x;

Figure 7.7: Transition system of room heating.

For i ∈ {0, · · · , N−1}, actions oni,offi, capture the decision-making process

of room i about whether or not to turn on the heater. During the process,

time elapses for a (short) period h, which leads to an update of the tempera-

ture as an affine function of current temperature x and the heaters state m.

The affine function is derived from the thermal equations presented in [140].

In this section, we use an instance of the system with the following matrices:

Wh =

0.96 0.01 0.01

0.02 0.97 0.01

0 0.01 0.97

 , bh =

1.2

0

1.2

 , Ch =

0.4 0 0

0 0 0

0 0 0.4

 . (7.8)

After a room controller makes a decision (oni or offi transition occurs), the

variable d(i) changes to true. After all rooms make their decisions, action

flow captures the time elapsed for a (longer) period T which also updates

the measured values y. We use an instance of this step with the following

matrices:

WT =

0.18 0.11 0.14

0.18 0.25 0.17

0.09 0.13 0.28

 , bT =

34.2

24

30

 , CT =

11.4 0 0

0 8 0

0 0 10

 . (7.9)

For each i ∈ {0, · · · , N − 1} and ai ∈ {oni, offi}, we will derive the discrep-

123

ancy function for action a. For any v, v′ with v.L = v′.L,

‖ai(v).x− ai(v′).x‖
= ‖Whv.x+ bh + Chv.m−Whv

′.x− bh − Chv′.m‖
≤ ‖Wh‖‖v.x− v′.x‖.

We note that ‖Wh‖2 = 0.99. Hence, we can define βa(‖v.x − v′.x‖2) =

0.99‖v.x − v′.x‖2 as the discrepancy functions of each a ∈ {oni, offi}i∈{0,1,2}.
Similarly, we derived that βflow(‖v.x− v′.x‖2) = 0.52‖v.x− v′.x‖2.

For any i, j ∈ {0, 1, 2} with i 6= j, ai ∈ {oni, off i} and aj ∈ {onj, offj}, we

can prove ai
ε∼ aj with ε = 0.6. Notice that ai(v).x = Whv.x+ bh +Chv.m =

aj(v).x are identical, but ai(v).m and aj(v).m could be different.

‖aiaj(v).x− ajai(v).x‖
= ‖Whaj(v).x+ bh + Chaj(v).m−Whai(v).x− bh − Chai(v).m‖
= ‖Chaj(v).m− Chai(v).m‖ ≤ ‖Ch‖‖aj(v).m− ai(v).m‖.

We note that ‖Ch‖2 = 0.4. We will give an upper bound on ‖aj(v).m −
ai(v).m‖. Notice that ai(v).m and v.m can only differ in one bit (mi).

Similarly, aj(v).m and v.m can only differ in one bit (mj). Hence ai(v).m

and aj(v).m can be differ in at most two bits, and ‖ai(v).m − aj(v).m‖2 ≤
‖[1, 1, 0]‖2 = 1.41. Therefore,

‖aiaj(v).x− ajai(v).x‖2 ≤ 0.4 ∗ 1.41 ≤ 0.6.

Thus for any pair of rooms, the on/off decisions are ε-approximately indepen-

dent with ε = 0.6. The action flow is not independent of any other actions.

For a round in which each room makes a decision once in arbitrary order,

there are in total 3! = 6 ε-equivalent action sequences.

We want to verify that the room temperatures remain in the [60, 79] range.

Computed reachable set over-approximation for 8 rounds and projected on

the temperature of Room 0 is shown in Figure 7.8. Indeed, the temperature

of Room 0 is contained within the range.

For a round in which each room makes a decision once in arbitrary order,

there are 3! = 6 ε-equivalent action sequences. Therefore, from a single

initial state, there are 68 (1.6 million) valid executions. Algorithm 6 in this

case explores only one (length 32) execution with ε = 0.6 to approximate all

124

executions starting from an initial set with radius δ = 2. The running time

for Algorithm 6 is 1 millisecond, while exploring all valid executions from

only a single state took 434 seconds.

Figure 7.8: Reachable set of the Roomheating example. The blue curves are
the upper bound of the reachsets and the red curves are the lower bound of
the reachsets. Between the blue and red curves, the yellow curves are 100
random simulations of valid executions.

7.7 Summary

In this chapter, we discussed a partial order reduction technique for reacha-

bility analysis of infinite state transition systems that exploits approximate

independence and bounded sensitivity of actions to reduce the number of

executions explored. This relies on a novel notion of ε-independence that

generalizes the traditional notion of independence by allowing approximate

commutation of actions. With this ε-independence relation, we have devel-

oped an algorithm for soundly over-approximating reachsets of all executions

using only ε-equivalent traces. The over-approximation can also be made ar-

bitrarily precise by reducing the size of δ, ε. In experimental evaluation with

three case studies we observe that it can reduce the number of executions

explored exponentially compared to explicit computation of all executions.

125

Chapter 8

Controller Synthesis for Linear Systems with
Reach-avoid Specification

8.1 Introduction

In this chapter, we study the control synthesis problem for linear, discrete-

time, and time-varying plant models with bounded disturbance — a standard

and general framework for dynamical systems [38, 39]. We will consider

reach-avoid specifications which require that starting from any initial state

Θ, the controller has to drive the system to a target set G, while avoiding

certain unsafe states or obstacles O.

Textbook control design methods address specifications like stability, dis-

turbance rejection, and asymptotic convergence, but they do not provide for-

mal guarantees about reach-avoid specifications. Receding horizon control,

also known as model predictive control (MPC), has been broadly used on

constrained control problems by solving a constrained optimization problem

repeatedly over a moving time horizon. Using MPC for reach-avoid spec-

ifications typically solves a sequence of mixed integer linear programming

(MILP) [141, 142] or general nonlinear optimization problems [143, 144]. An-

other approach is based on discrete abstraction, where a discrete, finite-state,

symbolic abstraction of the original control system is computed, and a dis-

crete controller is synthesized by solving a two-player game on the abstracted

game graph. Theoretically, these methods can be applied to systems with

nonlinear dynamics and they can synthesize controllers for a general class

of linear temporal logic (LTL) specifications. However, in practice, the dis-

cretization step leads to a severe state space explosion for higher dimensional

models. A detailed comparison between these methods and the proposed ap-

proach in this chapter is provided in the related work section (Section 8.2).

In this chapter, the controller we synthesize follows a natural paradigm

for designing controllers. The approach is to first design an open-loop con-

126

troller for a single initial state x0 ∈ Θ to meet the reach-avoid specification.

This is called the reference trajectory. For the remaining states in the initial

set, a tracking controller is combined, that drives these other trajectories to-

wards the reference trajectory that starts from x0. However, designing such

a combined controller can be computationally expensive [145] because of

the interdependency between the open-loop controller and the tracking con-

troller (Section 8.4.1). Our novel approach to making this approach feasible

is to demonstrate that the two controllers can be synthesized in a decoupled

way. Our strategy is as follows. We first design a tracking controller using

a standard control-theoretical method called LQR (linear quadratic regula-

tor) [146]. The crucial observation that helps decouple the synthesis of the

tracking and open-loop controller is that for such a combined controller, once

the tracking controller is fixed, the set of states reached from the initial set

is contained within a sequence of ellipsoidal sets [83] centered around the

reference trajectory. The shape and size of these ellipsoidal sets are solely

dependent on the tracking controller and the disturbance, and are indepen-

dent of the reference trajectory or the open-loop controller. On the flip side,

the open-loop controller and the resulting reference trajectory can be chosen

independently of the fixed tracking controller. Based on this, the problem

of synthesizing the open-loop controller can be completely decoupled from

synthesizing the tracking controller.

Our open-loop controller is synthesized by encoding the problem in logic.

The straightforward encoding of the synthesis problem is to find an open

loop controller that can make sure all states in the reach set ellipsoids satisfy

the reach-avoid specification. Such encoding results in a ∃∀ formula in the

theory of linear arithmetic. Unfortunately, solving large instances of such

formulas using current satisfiability modulo theories (SMT) solvers is chal-

lenging. To overcome this, we exploit geometric properties of polytopes and

ellipsoids, and reduce the original ∃∀-formula into the quantifier-free frag-

ment of linear arithmetic (QF-LRA). Moreover, assuming that the obstacles

and goal set can be represented as polytopes, then the number of linear con-

straints in the QF-LRA formulas is only linear to time and to the number of

hyperplanes as the surfaces of the obstacles and the goal set. In this way,

the proposed approach for synthesizing the combined controller can scale to

large dimensional systems.

Our overall algorithm (Algorithm 7), after computing an initial track-

127

ing controller, iteratively synthesizes open-loop controllers by solving QF-

LRA formulas for smaller subsets that cover the initial set. The algorithm

will automatically identify the set of initial states for which the combined

tracking+open-loop controller is guaranteed to work. Our algorithm is sound

(Theorem 8.1), and for a class of robust linear systems, it is also complete

(Theorem 8.2).

We have implemented the synthesis algorithm in the tool RealSyn, which

first appeared in [27]. We compare the performance of the new algorithm

proposed in this chapter with the one in [27] on 10 benchmark problems,

whose obstacles are general polytopes instead of only axis-aligned hyper-

rectangles. In RealSyn, any SMT solver can be plugged in for solving the

open-loop problem. We report the results of using the Yices solver, as Yices

outperformed other solvers in [27]. Results show that our new approach can

achieve a 2 to 65 times speedup for most benchmark models. The proposed

new algorithm also scales well for complex models — including a system with

3 vehicles (12-dimensional) trying to reach a common goal while avoiding

collision with the obstacles and each other, and another system with 10

vehicles (20 dimensional) trying to maintain a platoon. For all the benchmark

models, RealSyn with the new algorithm finds a controller within 3 minutes

using the Yices solver, and for most benchmarks it finds a controller within

10 seconds.

An early version of this approach was presented in [27]. Compared with [27],

the major improvements in this chapter are:

1. In this dissertation the approach works for linear time-varying systems,

while in [27] only linear time-invariant systems were considered.

2. In [27] the sets of the reachable states were represented as a sequence of

ellipsoids with same shape and orientation (but different sizes), which

were always over-approximations of the exact reach sets. However, in

this dissertation, we allow the reach set ellipsoids to change their shape

and orientation at different time steps, which leads to a more accurate

over-approximation.

3. In this dissertation, we exploit more efficient methods to encode the

constraints of reach sets being separated from the obstacles (or con-

tained in the goal set). As a result, the final formulas for synthesizing

128

the open-loop controller consist of O(k) linear constraints, where k is

the number of hyperplanes as the surfaces of the obstacles and the goal

set. In contrast, in [27], such formulas have O(2nk) linear constraints,

where n is the dimensionality of the state space. Experimental results

also show the improvements using the new approach, especially on large

dimensional (n > 10) systems.

8.2 Related Work on Synthesis

Controller synthesis techniques have been the center of extensive investiga-

tion with numerous publications every year lately. Here we briefly review

related works based on different plant models, specifications, and several

major approaches.

Models and Specifications for Synthesis. In increasing order of gen-

erality, the types of plant models that have been considered for controller

synthesis are double-integrator models [147], linear dynamical models [148,

149, 150, 151, 152, 141, 153], piecewise affine models [41, 154], and nonlinear

(possibly switched) models [155, 40, 156, 157, 144]. There is also a line of

work on synthesis approaches for stochastic plants (see [158], and the refer-

ences therein). For each of the classes, both continuous and discrete-time

models have been addressed with possibly different approaches.

There are several classes of specifications typically used for synthesis:

(1) stabilization for system with special properties, including positive sys-

tems [148] and systems with quantized measurements [159, 160], (2) pure

safety or invariance specifications [156, 161, 162], (3) reach-avoid [42, 156,

161, 40, 41], and (4) general LTL, GR(1) [163, 149, 164] [150, 154, 165],

Metric Temporal Logic [166], and Signal Temporal Logic [167, 142]. For

each of these classes both bounded and unbounded-time variants have been

considered.

In this work, we focus on linear, discrete-time, time-varying systems with

reach-avoid specifications.

Model Predictive Control. MPC [168] utilizes an explicit plant model to

predict the plant state and compute the control input to the plant based on

129

this prediction. At each control interval, an MPC algorithm attempts to solve

a constrained, discrete-time, optimal control problem in an online setting,

with the objective of optimizing future plant behavior based on current state.

Without loss of generality, assume the current state of the system is x[0],

MPC solves a finite horizon (N steps) optimal control problem defined by:

minu[0],...,u[N−1] Vf (x[N]) +
∑N−1

i=0 `(x[i], u[i])

s.t.
∧N
i=0 x[i] ∈ X,

∧N−1
j=0 u[j] ∈ U,

(8.1)

where in the objective function Vf defines cost of the final state of the con-

trolled system x[N], ` defines the cost of the rest of the states and control

inputs, and the controlled system is required to satisfy the state and control

constraints x[i] ∈ X, u[i] ∈ U , respectively. The implicit MPC law asks that

at the state x[0], the first control u[0] of the computed optimal control se-

quence is applied, and the entire calculation is repeated at subsequent control

intervals. When optimal control problems admit an explicit offline solution,

online operations reduce to a simple function evaluation of a function of the

state vectors. Such approach is referred to as explicit MPC and has been ex-

ploited in many applications including motion planing [152, 141, 153]. The

idea of explicit MPC is to solve the optimization problem (8.1) offline for all

x within a given set, and to make the dependence of u(t) on x(t) explicit.

The resulting MPC control law is a piecewise affine function of the state x

defined over a polyhedral partition of the feasible set Xf . For systems with

large dimensions of states and controls, explicit MPC is not practically fea-

sible since the number of partitions can be very large. Furthermore, it is

hard to make explicit MPC handle cases where the system, cost function, or

constraints are time-varying [169].

Using MPC for controller synthesis typically requires model reduction for

casting the optimization problem (8.1) as a linear programming (LP) [152],

quadratic programming (QP) [170], mixed integer linear programming (MILP) [141,

167, 142] or general nonlinear optimization problems [143, 144].

The major differences between our approach and the MPC-based approaches

include:

1. Our approach does not require the help of a cost function.

2. We solve a controller that works for an initial set X0 with radius r.

130

Implicit MPC solves for a single initial point, and explicit MPC solves

for all states in the feasible set Xf .

3. We use different approaches to incorporate the avoidance condition

x[i] ∈ X in the optimization problem (8.1). In this dissertation, the

obstacles at each step are specified by a collection of polytopes. There-

fore, the safe region X, as the complement of the obstacles, is usually

non-convex.

To encode such avoidance condition, one has to introduce disjunctions

to the constraints. In [144], the authors use Farkas’ lemma to change

the avoidance condition into its dual form that is compatible for MPC

formulation. However, the extra variables introduced by Farkas’ lemma

will lead to nonlinear constraints. In [141], the authors introduce extra

Boolean variables to eliminate the disjunctions, and make the origi-

nal optimization problem (8.1) an MILP. Both the works use implicit

MPC law. The main drawback of implicit MPC is the need to solve a

mathematical program online or within the sampling time to compute

the control action. Therefore, it is hard to use on systems with large

dimensionality [171] and when the sampling period is short. Explicit

MPC can help relieve the heavy online computation load, especially

when the optimization problem is a LP or QP. However, in this case,

the explicit solution for nonlinear optimization and MILP cannot be

solved very efficiently in practice [171].

Compared with these MPC-based approaches, our proposed method

benefits from the fact that the tracking controller can fix the shapes and

sizes of the reach set ellipsoids from an initial set. We further exploit

special properties of the separation between ellipsoids and polytopes to

make the constraints quantifier-free over linear real arithmetics, which

can be efficiently solved using state-of-the-art SMT solvers. As a result,

our approach can scale to large dimensional systems and the computa-

tion can be performed offline.

Discrete Abstractions. In recent years, controller synthesis techniques

based on so-called symbolic models or discrete abstractions have received con-

siderable attention within the control systems community, see e.g. [156, 161,

163, 149, 164, 149, 150, 151]. These techniques involve constructing a finite

131

partition of the continuous state space with respect to a set-valued map.

Following these methods, it is possible to synthesize controllers for general

nonlinear systems to enforce complex specifications formulated in LTL.

There is a growing set of controller synthesis tools and libraries based on

the discrete abstraction approach. These include tools like CoSyMA [172],

Pessoa [173], LTLMop [174, 175], Tulip [164, 176], and SCOTS [155]. Com-

pared with these methods, our proposed solution takes a different route by

“designing” the shape of reach sets first with the tracking controller, then

“placing” the reach sets using the open loop controller. The entire process

does not involve any partition of the state space, and therefore avoids the

potential problem of exponentially growing partitions for large dimensional

systems. Our trial with a 4-dimensional example on Tulip [164, 176] did not

finish the discretization step in one hour. LTLMop [174, 175] handles GR(1)

LTL specifications, which are more general than reach-avoid specifications

considered in this dissertation, but it is designed for 2-dimensional robot

models working in the Euclidean plane. It generates a hybrid controller as

a combination of discrete controllers and continuous controllers to meet the

high-level specification under certain assumptions on the environment.

Sampling Based Path Planning. Sampling based methods such as Prob-

abilistic Road Maps (PoMP) [177], Rapidly-exploring Random Trees (RRT) [178],

and fast marching tree (FMT) [179] have gained much interest in recent years.

They offer the benefits of generating feasible trajectories through known or

partially known environments. Compared with the deterministic guarantees

provided by our proposed method, the sampling based methods usually come

with stochastic guarantees. Also, they are not designed to be robust to model

uncertainty or disturbances.

In addition to the above approaches, an alternative synthesis technique

generates mode switching sequences for switched system models [180, 181,

182, 183, 184] to meet the specifications. This line of work focuses on a finite

input space, instead of the infinite input space we are considering in this

paper.

Abate et al. [162] use a controller template similar to the one considered in

this chapter for invariant specifications. A counter-example guided inductive

synthesis (CEGIS) approach is used to first find a feedback controller for

stabilizing the system. Since this feedback controller may not be safe for

132

all initial states of the system, a separate verification step is employed to

verify safety, or alternatively to find a counter-example. In the latter case,

the process is repeated until a valid controller is found. This is different from

our approach, where any controller found needs no further verification.

8.3 Bounded Controller Synthesis Problem on

Discrete-time Linear Control Systems

An (n,m)-dimensional time-varying discrete-time linear system A is a 5-

tuple 〈A,B,Θ, U,D〉, where

(i) A is an infinite sequence of Rn×n matrices, called dynamic matrices.

(ii) B is an infinite sequence of Rn×m matrices, called input matrices, and

at each time step t, we ask that the pair (A[t], B[t]) is controllable.

(iii) Θ ⊆ Rn is a set of initial states.

(iv) U ⊆ Rm is the space of inputs.

(v) D ⊆ Rn is the space of disturbances.

A control sequence for an (n,m)-dimensional system A is a (possibly infi-

nite) sequence u = u[0], u[1], . . ., where each u[t] ∈ U . Similarly, a disturbance

sequence for A is a (possibly infinite) sequence d = d[0], d[1], . . ., where each

d[t] ∈ D. Given control u and disturbance d, and an initial state x[0] ∈ Θ,

the execution of A is uniquely defined as the (possibly infinite) sequence of

states x = x[0], x[1], . . . , where for each t > 0,

x[t+ 1] = A[t]x[t] +B[t]u[t] + d[t]. (8.2)

A (state feedback) controller for A is a function g : Θ×Rn → Rm that maps

an intial state and a (current) state to an input. That is, given an initial

state x0 ∈ Θ and state x ∈ Rn at time t, the control input to the plant at

time t is:

u[t] = g(x0, x). (8.3)

133

This controller is allowed to use the memory of some initial state x0 (not nec-

essarily the current execution’s initial state) for deciding the current state-

dependent feedback. Thus, given an initial state x[0], a disturbance d, and a

state feedback controller g, Equations (8.2) and (8.3) define a unique execu-

tion x of A. A state x is reachable at the tth-step if there exists an execution

x of A such that x[t] = x. The set of all reachable states from some set

S ⊆ Θ in exactly T steps using the controller g is denoted by ReachA,g(S, T).

When A and g are clear from the context, we write Reach(S, T).

Given an (n,m)-dimensional time-varying discrete-time linear system A,

a sequence O of obstacles or unsafe sets (with O[t] ⊆ Rn, for each t), a goal

G ⊆ Rn, and a time bound T , the bounded time controller synthesis problem

is to find, a state feedback controller g such that for every initial state θ ∈ Θ

and disturbance sequence d ∈ D∗ of length T , the unique execution x of A
with g, starting from x[0] = θ, satisfies

(i) for all t ≤ T , u[t] ∈ U ,

(ii) for all t ≤ T , x[t] 6∈ O[t], and

(iii) x[T] ∈ G.

For the rest of this section, we will assume that each of the sets in {O[t]}t∈N,

G and U are closed polytopes. Moreover, we assume that the pairs (A[t], B[t])

at each time step are controllable [39].

The controller synthesis problem requires one to find a state feedback con-

troller that ensures that the trajectory starting from any initial state in Θ

will meet the reach-avoid specification. Since the set of initial states Θ will

typically be an infinite set, this requires the synthesized feedback controller g

to have an effective representation. Thus, an “enumerative” representation,

where a (separate) open-loop controller is constructed for each initial state,

is not feasible — by an open-loop controller for initial state x0 ∈ Θ, we mean

a control sequence u such that the corresponding execution x with x[0] = x0

and 0 disturbance satisfies the reach-avoid constraints. We therefore need

a useful template that will serve as the representation for the feedback con-

troller. We address this challenge in our work and articulate the details in

the remaining article.

Example 8.1. Consider a mobile robot that needs to reach the green area of

an apartment starting from the entrance area, while avoiding the red areas

134

(Figure 8.1). The robot’s dynamics are described by a linear model (for

example the navigation model from [140]). The obstacle sequence O here is

static, that is, O[t] = O[0] for all t ≥ 0. Both Θ and G are rectangles (which

are also polytopes). Although these sets are depicted in 2D, the dynamics of

the robot may involve a higher dimensional state space.

Figure 8.1: The settings for controller synthesis of a mobile robot with
reach-avoid specification.

In this example, there is no disturbance, but a similar problem can be

formulated for a drone flying outdoors, in which case the disturbance input

would model the effect of wind. Time-varying obstacle sets are useful for

modeling safety requirements of multi-robot systems.

Suppose the robot is asked to reach the target set in 40 steps. The dotted

curves are two executions from Θ and the pink ellipsoids show the projection

of the reachset on the robot’s position with synthesized controller.

8.4 Synthesis Algorithm

8.4.1 Algorithm Overview

In control theory, one natural controller design paradigm is to first find a ref-

erence execution xref which uses an open-loop controller, then add a tracking

controller which tries to force other executions x starting from different ini-

tial states x[0] to get close to xref by minimizing the distance between xref and

x. This form of controller combining open-loop control with tracking control

is also proposed in [145] for reach-avoid specifications. For the discrete-time

linear control system defined as Equation (8.2), the combined controller is

formally defined as follows:

135

Definition 8.1. Given a discrete-time linear system as Equation (8.2), the

combined controller g is a tuple 〈K, xref[0], uref〉 such that the control input

u[t] to the system is

u[t] = uref[t] +K[t](x[t]− xref[t]),with (8.4)

xref[t+ 1] = A[t]xref[t] +B[t]uref[t], (8.5)

where

(1) uref is called the open-loop control sequence, which determines the

value of the reference execution xref[t] at each time step t ∈ N once xref[0]

is fixed, and

(2) K is called the tracking controller, which is a sequence of matrices that

determine the additive component of the input based on the difference

between the current state and the reference execution.

Given the combined feedback controller g as the tuple 〈K, xref[0], uref〉, we

could rewrite the linear system in (8.4) as an augmented system x

xref

 [t+ 1] =

A[t] +B[t]K[t]−B[t]K[t]

0 A[t]


 x

xref

 [t]

+

B[t] 0

0 B[t]


uref

uref

 [t] +

d
0

 [t].

Observe that the above augmented system has the form:

x̂[t+ 1] = Â[t]x̂[t] + B̂[t]û[t] + d̂[t],

and the closed-form solution of the above augmented system is given by

x̂[t] =
(t−1∏
i=0

Â[i]
)
x̂[0] +

t−1∑
i=0

(t−1∏
j=i+1

Â[j]
)
(B̂[i]û[i] + d̂[i]). (8.6)

To synthesize a controller g of this form, therefore, requires findingK, xref[0], uref

such that the closed-form solution meets the reach-avoid specification. This

136

is indeed the approach followed in [145], albeit in the continuous time set-

ting. Observe that in the closed-form solution, Â[t], û, and x̂[0] all depend on

parameters that we need to synthesize. Therefore, solving such constraints

involves polynomials whose degrees grow with the time bound. This is very

expensive, and unlikely to scale to large dimensions and time bounds.

In this dissertation, to achieve scalability, we take a slightly different ap-

proach than the one where K, xref[0], and uref are simultaneously synthesized.

We first synthesize a tracking controller K, independent of xref[0] and uref,

using the standard LQR method. Once K is synthesized, we show that, no

matter what xref[0] and uref are, the state of the system at time t starting

from x0 is guaranteed to be contained within an ellipsoid centered at xref[t]

with shape and radius that depend only on K, the initial distance between

x0 and xref[0], time t, and disturbance set D. Moreover, this radius is only

a linear function of the initial distance (Lemma 8.1). Thus, if we can syn-

thesize an open-loop controller uref starting from some state xref[0], such that

ellipsoids centered around xref satisfy the reach-avoid specification, we can

conclude that the combined controller will work correctly for all initial states

in some ball around the initial state xref[0]. The radius of the ball around

xref[0] for which the controller is guaranteed to work will depend on the radii

of the ellipsoids around xref that satisfy the reach-avoid specification. This

decoupled approach to synthesis is the first key idea in our algorithm.

Synthesizing the tracking controller K still leaves open the problem of syn-

thesizing an open-loop controller for an initial state xref[0]. A straightforward

encoding of the problem could be to find an open-loop controller that works

for all initial states in some ball around xref[0]. That is, finding a satisfying

solution for the formula ∃uref,∃r, such that ∀x[0] ∈ Br(xref[0]),
∧T
t=0 x[t] /∈

O[t]∧x[T] ∈ G. This results in a ∃∀-formula in the theory of real arithmetic.

Unfortunately, solving such formulas does not scale to large dimensional sys-

tems using current SMT solvers. The next key idea in our algorithm is to

simplify these constraints and make the formula quantifier free. We reduce

the problem of deciding whether an ellipsoid (the set of reachable states)

is separated from (or contained in) a polytope (the obstacles or the goal)

to measuring the distances of the center of the ellipsoid to surfaces of the

polytopes in a linearly transformed coordinate. In this way we are able to

reduce the original ∃∀-formula into the quantifier-free fragment of linear real

arithmetic (QF-LRA) (Section 8.4.4).

137

Putting it all together, the overall algorithm (Algorithm 7) works as fol-

lows. After computing an initial tracking controller K, it synthesizes open-

loop controllers for different initial states by solving QF-LRA formulas. After

each open-loop controller is synthesized, the algorithm identifies the set of

initial states for which the combined tracking+open-loop controller is guar-

anteed to work, and removes this set from Θ. In each new iteration, it picks

a new initial state not covered by previous combined controllers, and the

process terminates when all of Θ is covered. Our algorithm is sound (The-

orem 8.1)—whenever a controller is synthesized, it meets the specifications.

Further, for robust systems (defined later in the dissertation), our algorithm

is guaranteed to terminate when the system has a combined controller for all

initial states (Theorem 8.2).

8.4.2 Synthesizing the Tracking Controller K

Given any open-loop controller uref and the corresponding reference execution

xref, by replacing in Equation (8.2) the controller of Equation (8.4), we get:

x[t+ 1] = (A[t] +B[t]K[t])x[t]−B[t]K[t]xref[t] +B[t]uref[t] + d[t]. (8.7)

Subtracting xref[t + 1] from both sides, we have that for any execution x

starting from the initial states x[0] and with disturbance d, the distance

between x and xref changes with time as:

x[t+ 1]− xref[t+ 1] = (A[t] +B[t]K[t]) (x[t]− xref[t]) + d[t]. (8.8)

With Ac[t]
∆
= A[t] +B[t]K[t], y[t]

∆
= x[t]− xref[t], Equation (8.8) becomes

y[t+ 1] = Ac[t]y[t] + d[t].

We want x[t] to be as close to xref[t] as possible, which means K[t] should

be designed to make |y[t]| converge. Equivalently, K[t] should be designed

as a linear feedback controller such that the system y[t + 1] = Ac[t]y[t] is

stable. Such a matrix K[t] can be computed using classical control theoretic

methods. In this work, we compute K[t] as finding a linear state feedback

controller by solving the LQR problem [146], stated as follows.

138

Definition 8.2 (LQR). For a time-varying linear system A as defined in

Section 8.3 with 0 disturbance and a time bound T , the linear quadratic

regulator (LQR) problem is the optimal control problem of finding open

loop control u[0], · · · , u[T − 1], such that the following objective function is

minimized:

J(x[0], u, T)
∆
= x[T]>Q[T]x[T] +

∑T−1
t=0 (x[t]>Q[t]x[t] + u[t]>R[t]u[t]),

where Q and R are sequences of symmetric positive definite matrices.

The optimal control for LQR is given by ∀t = 0, · · · , T − 1, u[t] = K[t]x[t]

where

K[t]
∆
= −

(
B[t]>P [t+ 1]B[t] +R[t]

)−1
B[t]>P [t+ 1]A[t], (8.9)

and P [t] is computed by solving the discrete time Riccati difference equation:

P [t] = A[t]>P [t+ 1]A[t] +Q[t]− A[t]>P [t+ 1]B[t]

(B[t]>P [t+ 1]B[t] +R[t])−1B[t]>P [t+ 1]A[t]

with boundary condition P [T] = Q[T] [185]. The matrices K in Equation

(8.9) can be used as a tracking controller as in Definition 8.1.

When T → ∞ and ∀t ≥ 0, A[t] = A,B[t] = B,Q[t] = Q, andR[t] = R

are all constant matrices, and K[t] computed using Equation (8.9) will also

become a constant matrix K. Furthermore, if the pair (A,B) is controllable

(or stabilizable), the closed-loop system x[t + 1] = (A + BK)x[t] is stable.

That is, the eigenvalues of Ac = A+BK with K given by Equation (8.9) have

magnitudes less than 1. Therefore, when T →∞, the tracking controller K

computed using LQR can guarantee that the any execution x will converge

to xref asymptotically when there is no disturbance.

For most of the experiments presented in Section 8.5, we fix each Q[t] and

R[t] to be identity matrices. Roughly, for a given R, scaling up Q results in a

K that makes an execution x converge faster to the reference execution xref.

In this dissertation, the detailed tradeoffs involved in the choices of Q[t] and

R[t] will not be pursued further.

With the synthesized K, we are able to compute the set of reachable states

for A with an arbitrary reference trajectory xref, as shown in the following

section.

139

8.4.3 Reachable Set Over-approximation with the Tracking
Controller

In this section, we assume that the tracking controller, which is a sequence

of matrices K, computed as in Section 8.4.2, will make A[t] + B[t]K[t] in-

vertible for any time t. We do not need A[t] + B[t]K[t] to be stable for the

analysis of the rest of the section. However, later on we will see that if K

can make the other trajectories x converge to xref, the set of reachable states

will also converge to its center xref, which is desirable for the overall synthesis

algorithm.

Once we fix K, we show that the reachable states of the system A with

an open-loop controller uref (to be computed in Section 8.4.4) can be over-

approximated using a sequence of ellipsoids centered at the corresponding

xref with shapes and radii depending on A,B,K, the initial set, and the

disturbances (Lemma 8.1). Moreover, for systems with 0 disturbances (i.e.,

D = {0}), Corollary 8.1 shows that the set of reachable states can be com-

puted precisely (i.e., there is no over-approximation error).

Lemma 8.1. Consider a linear system A = 〈A,B,Θ, U,D〉 with a controller

defined as in Equation (8.4). Fix

(1) a tracking controller K such that A[t] + B[t]K[t] is invertible for each

time t,

(2) an open-loop controller uref with the corresponding reference execution

xref, and

(3) an ellipsoidal initial set S = Er[0](xref[0],M [0]) ⊆ Θ, where r[0] and M [0]

are the radius and shape of the ellipsoid respectively. Then

Reach(S, t) ⊆ Er[t](xref[t],M [t]),∀ t ≤ T, (8.10)

where M [t] = M [0]
(∏t−1

i=0(A[i] +B[i]K[i])−1
)
, r[t] = r[0] +

∑t−1
i=0 δ[i], and

δ[i] is chosen such that ∀i ≥ 0, Eδ[i](0,M [i+ 1]) ⊇ D.

Proof. We prove this lemma by induction on t.

Base case: When t = 0, from the condition (3) of the Lemma we know

that Reach(S, 0) = S = Er[0](xref[0],M [0]).

Induction step: Assume that at time step t we have Reach(S, t) ⊆
Er[t](xref[t],M [t]).

140

Let Ac[t] = A[t] + B[t]K[t]. At time step t + 1, from Equation (8.8), we

have that

x[t+ 1] = xref[t+ 1] + Ac[t](x[t]− xref[t]) + d[t].

It is easy to check that ∀x[t] ∈ Reach(S, t), x[t] − xref[t] ∈ Er[t](0,M [t]).

Moreover, since d[t] ∈ D, we have that

x[t+ 1] ∈ xref[t+ 1]⊕ Ac[t]Er[t](0,M [t])⊕D. (8.11)

Recall that ⊕ is the addition of all elements of sets, and Ac[t]Er[t](0,M [t])

means multiplying each vector in Er[t](0,M [t]) with Ac[t].

The right-hand side of Equation (8.11) can be computed as follows:

(1) The second item Ac[t]Er[t](0,M [t]), which contains all possible values of

Ac[t](x[t]− xref[t]), can be computed as:

Ac[t]Er[t](0,M [t]) = {Ac[t]x | ‖x‖M [t] ≤ r[t]} = {Ac[t]x | ‖M [t]x‖2 ≤ r[t]}.

Letting y = Ac[t]x, then we have

Ac[t]Er[t](0,M [t]) = {y | ‖M [t]A−1
c [t]y‖2 ≤ r[t]}

= {y | ‖y‖M [t]Ac[t]−1 ≤ r[t]} = Er[t](0,M [t+ 1]).

(2) Then, since D ⊆ Eδ[t](0,M [t+1]), which means ∀d ∈ D, ‖d‖M [t+1] ≤ δ[t].

Therefore, we have

Er[t](0,M [t+ 1])⊕D = {x+ d | ‖x‖M [t+1] ≤ r[t], ‖d‖M [t+1] ≤ δ[t]}.

Using triangular inequality of the M [t+ 1] norm, we have

Er[t](0,M [t+ 1])⊕D ⊆ {y | ‖y‖M [t+1] ≤ r[t] + δ[t]} = Er[t+1](0,M [t+ 1]).

(3) Finally, it is easy to see that

xref[t+ 1]⊕ Er[t+1](0,M [t+ 1]) = Er[t+1](xref[t+ 1],M [t+ 1]).

141

Therefore, we have

Reach(S, t+ 1) ⊆ Er[t+1](xref[t+ 1],M [t+ 1]).

In the above proof, the only over-approximation happened in Step 2, as we

over-approximate the disturbance D using an ellipsoid with shape M [t+ 1].

This is because we want to keep reach sets ellipsoidal all the time. It is

straightforward to check that if there is no disturbance, i.e. D = {0}, we do

not need to conduct Step 2, and Lemma 8.1 can give us exact reach sets:

Corollary 8.1. Consider a linear system A = 〈A,B,Θ, U,D = {0}〉 with a

controller defined as in Equation (8.4). Fix

(1) a tracking controller K,

(2) an open-loop controller uref with the corresponding reference execution

xref, and

(3) an ellipsoidal initial set S = Er[0](xref[0],M [0]) ⊆ Θ, where r[0] and M [0]

are the radius and shape of the ellipsoid respectively. Then,

Reach(S, t) = Er[t](xref[t],M [t]),∀ t ≤ T, (8.12)

where M [t] = M [0]
(∏t−1

i=0(A[i] +B[i]K[i])−1
)
.

In Lemma 8.1, r[0] and M [0] can be chosen arbitrarily as long as the cor-

responding ellipsoid Er[0](xref[0],M [0]) contains (or is equals to) the initial

set S. It follows that given any sequence of uref as the open-loop controller,

which leads to a corresponding reference trajectory xref, the reachable states

from S Reach(S, t) can be over-approximated by an ellipsoid centered at

xref[t+ 1] with shape M [t] = M [0]
(∏t−1

i=0(A[i] +B[i]K[i])−1
)

and radius r[0]

(when there is no disturbance) or r[0] plus an additive term
∑t−1

i=0 δ[i] which

accounts for bounded disturbance. Note that the shapes and radii of the

ellipsoids are all independent of the open-loop controller uref and the refer-

ence trajectory xref. This is the key step to decouple the synthesis of the

tracking controller K and rest of the parameters in the feedback controller

(uref, xref[0]). In the next section, we discuss a novel approach to finding the

latter two efficiently.

142

8.4.4 Synthesis of the Open-loop Controller

In this section, we will discuss the synthesis of the open-loop controller uref

and xref[0] in 〈K, xref[0], uref〉. From the previous section, we know that given

an initial set S, a tracking controller K, and an open-loop controller uref,

the reachable set (under any disturbance) at time t is over-approximated by

Er[t](xref[t],M [t]). Thus, once we fix K, the problem of synthesizing a con-

troller reduces to the problem of synthesizing an appropriate uref and xref[0]

such that the reachset over-approximations meet the reach-avoid specifica-

tion. Indeed, for the rest of the this section, we will assume fixed K.

For synthesizing uref and xref[0], we would like to formalize the problem in

terms of constraints that will allow us to use SMT solvers. In the following,

we describe the details of how this problem can be formalized as a quantifier-

free first-order formula over the theory of reals. We will then lay out specific

assumptions and/or simplifications required to reduce the problem to QF-

LRA theory, which is implemented efficiently in existing state-of-the-art SMT

solvers. Most SMT solvers also provide the functionality of explicit model

generation, and the concrete controller values can be read-off from the models

generated when the constraints are satisfiable.

Constraints for Synthesizing uref The uref synthesis problem can be

stated as finding satisfying solutions for the formula φsynth, where the initial

set of states is S = Br[0](xref[0]).

φsynth
∆
= ∃uref[0], uref[1], . . . uref[T−1], r[0]

∃xref[0], xref[1], . . . xref[T],

φcontrol(uref) ∧ φexecution(uref, xref)

∧φavoid(r[0], uref, xref) ∧ φreach(r[0], uref, xref)

(8.13)

where φcontrol constrains the space of inputs, φexecution states that the sequence

xref is a reference execution following Equation (8.4), φavoid specifies the safety

143

constraint, and φreach specifies that the system reaches G:

φcontrol(uref)
∆
=

T−1∧
t=0

uref[t]⊕
(
K[t]⊗ Er[t](0,M [t])

)
⊆ U

φexecution(uref, xref)
∆
=

T−1∧
t=0

(xref[t+ 1] = A[t]xref[t] +B[t]uref[t])

φavoid(r[0], uref, xref)
∆
=

T∧
t=0

Er[t](xref[t],M [t]) ∩O[t] = ∅

φreach(r[0], uref, xref)
∆
= Er[T](xref[T],M [T]) ⊆ G.

(8.14)

We make a few remarks about this formulation. First, each of the formulas

φcontrol, φavoid and φreach represent sufficient conditions to check for the exis-

tence of uref. Second, the constraints stated above belong to the (decidable)

theory of reals. However, φcontrol, φavoid and φreach, and thus φsynth, are not

quantifier free as they use subset and disjointness checks. This is because for

sets S, T expressed as predicates ϕS(·) and ϕT (·), S ∩ T = ∅ corresponds to

the formula ∀x · ¬(ϕS(x) ∧ ϕT (x)) and S ⊆ T (or equivalently S ∩ T c = ∅)
corresponds to the formula ∀x · ϕS(x) =⇒ ϕT (x).

Reduction to QF-LRA. The central idea behind eliminating the univer-

sal quantification in the disjointness predicates in φavoid, or in the inferred

disjointness predicates in φreach and φcontrol, is to check whether an ellipsoid

is disjointed or contained in a polytope. Lemmas 8.2 and 8.3 state that the

disjointness and containment checks can be done through linear constraints.

Lemma 8.2. For an ellipsoid Er[t](xref[t],M [t]) and a polytope {x ∈ Rk |Ax ≤
b}, if ∨k

i=1

(
A(i)xref[t] > b(i)

)
∧

(
A(i)xref[t]−b(i)
‖Ã(i)‖2

> r[t] ∨ A(i)xref[t]−b(i)
‖Ã(i)‖2

< −r[t]
) (8.15)

where Ã = AM−1[t], then

Er[t](xref[t],M [t]) ∩ {x | Ax ≤ b} = ∅.

Proof. Take an affine coordinate transformation y = M [t]x and let x̃ref[t] =

M [t]xref[t]. Under the transformed coordinate, the ellipsoid Er[t](xref[t],M [t])

144

becomes a ball:

Er[t](M [t]xref[t], I) = Br[t](x̃ref[t]),

and the polytope also becomes Ãy ≤ b. Affine transformation preserves the

disjointness between objects. As long as the ball Br[t](x̃ref[t]) is disjointed

from the polytope Ãy ≤ b, the original ellipsoid and polytope are disjointed.

Consider the ball Br[t](x̃ref[t]) in the transformed coordinate, if the center

x̃ref[t] is outside the polytope Ãy ≤ b and its distance to any surface of the

polytope is greater than r[t], then the ball Br[t](x̃ref[t]) is not intersecting with

any surfaces of the polytope, and therefore is disjointed from the polytope.

Equivalently, this means that there exists an i ≤ k, such that Ã(i)x̃ref[t] > b(i),

and the distance from x̃ref[t] to any surface, which is a hyperplane Ã(i)x =

b(i), is greater than r[t]. Recall that A(i) and b(i) are the ith row of A and b

respectively.

The distance from x̃ref[t] to a hyperplane Ã(i)x = b(i) is |Ã(i)x̃ref[t]−b(i)|
‖Ã(i)‖2

.

Therefore, the ball Br[t](x̃ref[t]) is disjointed from the polytope Ãy ≤ b if the

following is true:

∨k
i=1

(
Ã(i)x̃ref[t] > b(i)

)
∧
(
Ã(i)x̃ref[t]−b(i)
‖Ã(i)‖2

> r[t] ∨ Ã(i)x̃ref[t]−b(i)
‖Ã(i)‖2

< −r[t]
)
,

which is equivalent to Equation (8.15).

In Lemma 8.2, to check whether an ellipsoid is disjointed from a poly-

tope (obstacle) with k surfaces using Equation (8.15), the formula contains

3k linear inequalities with conjunctions and disjunctions. In [27] the reach

set over-approximations are represented using hyper-rectangles. The hyber-

rectangle is disjointed from the polytope if there is a surface of the polytope

such that the vertices of the hyber-rectangle lie on the other side of the sur-

face. Such a formula has 2nk linear inequalities, where n is the dimensionality

of the state space. Compared with the methods used in [27], Lemma 8.2 re-

duces the number of constraints in φavoid from 2nk to 3k, which is the key

fact that makes the proposed approach scale to systems with large n. We

will also see the same improvement in φreach and φcontrol.

Similar to Lemma 8.2, as long as the center of the ball Br[t](x̃ref[t]) is

inside the polytope Ãy ≤ b, and the distances from x̃ref[t] to all surfaces of

145

the polytope Ã(i)x = b(i) are greater than the radius r[t], the ball is entirely

contained in the polytope:

Lemma 8.3. For any ellipsoid Er[t](xref[t],M [t]) and a polytope {x ∈ Rk |Ax ≤
b}, if ∧k

i=1

(
A(i)xref[t] ≤ b(i)

)
∧

(
A(i)xref[t]−b(i)
‖Ã(i)‖2

≥ r[t] ∨ A(i)xref[t]−b(i)
‖Ã(i)‖2

≤ −r[t]
) (8.16)

where Ã = AM−1[t], then

Er[t](xref[t],M [t]) ⊆ {x | Ax ≤ b}.

With Lemma 8.2 and 8.3, we can rewrite φavoid and φreach in Equation 8.14

as:

φavoid(r[0], uref, xref)
∆
=

T∧
t=0

∧
{x|Ax≤b}∈O[t]

∨k
i=1

(
A(i)xref[t] > b(i)

)
∧
(
A(i)xref[t]−b(i)
‖Ã(i)‖2

> r[t] ∨ A(i)xref[t]−b(i)
‖Ã(i)‖2

< −r[t]
)
,

φreach(r[0], uref, xref)
∆
=
∧k
i=1

(
A(i)

G
xref[T] ≤ bG(i)

)
∧
(
AG

(i)xref[T]−bG(i)

‖ÃG

(i)‖2
≥ r[T] ∨ AG

(i)xref[T]−bG(i)

‖ÃG

(i)‖2
≤ −r[T]

)
,

(8.17)

where in φreach, the goal set G is represented as an ellipsoid {x|AGx ≤ bG}.
Once the tracking controller K is fixed, the matrices Ã (or ÃG) are constants.

Moreover, r[t] = r[0] +
∑t−1

i=0 δ[i] and δ are also constants. Therefore, φavoid

and φreach are linear expressions of r[0], uref, xref with disjunctions. In the

expression φcontrol of Equation 8.14, uref[t] ⊕
(
K[t] ⊗ Er[t](0,M [t])

)
is essen-

tially also an ellipsoid Er[t](uref[t],M [t]K−1[t]). Therefore, φcontrol can also be

represented as a linear expression of uref and r[0].

As discussed above, the constraints as in φcontrol, φexecution, φavoid, and φreach

only give rise to linear constraints, do not have the ∀ quantification over

states, and are sound transformations of φsynth into QF-LRA. Moreover, the

number of linear inequality constraints in φsynth is only linear to the time

146

steps T , the number of obstacles in O and the number of surfaces in each

obstacle and goal set. In Section 8.4.5 we will see that as the reach set is exact

when the disturbance is 0 (Corollary 8.1), these checks will also turn out to

be sufficient to ensure that if there exists a controller, φsynth is satisfiable.

Lemma 8.4. If the formula φsynth is satisfiable, then there is a control se-

quence uref such that for every x ∈ Br[0](xref[0]) and for every d ∈ DT , the

unique execution x defined by the controller 〈K, xref[0], uref〉 and d, starting

at x, satisfies x[T] ∈ G ∧ ∀t ≤ T · x[t] 6∈ O[t].

We remark that a possible alternative for eliminating the ∀ quantifier is the

use of Farkas’ lemma, but this gives rise to nonlinear constraints.1 Indeed,

in our experimental evaluation, we observed the downside of resorting to

Farkas’ lemma in this problem.

8.4.5 Synthesis Algorithm Putting It All Together

Section 8.4.4 describes how to formalize constraints to generate a control

sequence that works for S, which could be a subset of the initial set Θ. The

overall synthesis procedure (Algorithm 7), first computes a tracking controller

K, then generates open-loop control sequences and reference executions in

order to cover the entire set Θ.

The procedure bloatParams computes the tracking controller K, based

on which it further computes a sequence of shape matrices M and distur-

bance bounds δ using Lemma 8.1, for the system A and time bound T with

Q,R for the LQR method. Given any reference execution xref and initial

set Br[0](xref[0]), the parameters computed by bloatParams can be used to

over-approximate Reach(Br[0](xref[0]), t) with the ellipsoid Er[t](xref[t],M [t]),

where r[t] = r[0] +
∑t−1

i=0 δ[i].

The procedure getConstraints constructs the logical formula ψsynth (Equa-

tion (8.18)). Whenever ψsynth holds, we can find an initial radius r[0] that is

above some threshold r∗, a center xref[0] in the set Θ \ cover, and a control

sequence uref, such that any controlled execution starting from Br[0](xref[0])

1Farkas’ lemma introduces auxiliary variables that get multiplied with existing variables
xref[0], . . . , xref[T], leading to nonlinear constraints.

147

Algorithm 7: Algorithm for Synthesizing Combined Controller

input : A, T, O[0], . . . , O[T], G,Q,R
initially: r∗ ← Rad(Θ) ;
K,M, δ ← bloatParams(A, T,Q,R) ;
cover← ∅;
controllers← ∅

1 while Θ 6⊆ cover do
2 ψsynth ← getConstraints(A, T, F [0], . . . , F [T], G,M, δ, r∗, cover)

;
3 if checkSat(ψsynth) = SAT then
4 r, uref, xref ← model(ψsynth) ;
5 cover← cover ∪Br(xref[0]);
6 controllers←

controllers ∪ { (〈K, xref[0], uref〉 , Br(xref[0])) } ;

7 else
8 r∗ ← r∗/2 ;
9 end

10 end
11 return controllers ;

satisfies the reach-avoid requirements.

ψsynth
∆
= φsynth ∧ xref[0] ∈ Θ ∧ xref[0] 6∈ cover ∧ r[0] > r∗ (8.18)

Line 3 checks for the satisfiability of ψsynth. If satisfiable, we extract the

model generated to get the radius of the initial ball, the control sequence

uref and the reference execution xref in Line 4. The generated controller

〈K, xref[0], uref〉 is guaranteed to work for the ball Br[0](xref[0]), which can be

marked covered by adding it to the set cover. In order to keep all the con-

straints linear, one can further under-approximate Br[0](xref[0]) with a hyper-

cube {x ∈ Rn | ∧ni=1 xref[0](i)− r[0](i)/
√
n ≤ x ≤ xref[0](i) + r[0](i)/

√
n}. If

ψsynth is unsatisfiable, then we reduce the minimum radius r∗ (Line 8) and

continue to look for controllers, until we find that Θ ⊆ cover.

The set controllers is the set of pairs (〈K, xref[0], uref〉, S), such that the

controller 〈K, xref[0], uref〉 drives the set S to meet the desired specification.

Each time a new controller is found, it is added to the set controllers

together with the initial set for which it works (Line 6).

The following theorem asserts the soundness of Algorithm 7, and it follows

from Lemmas 8.1 and 8.4.

148

Theorem 8.1. If Algorithm 7 terminates, then the synthesized controller

is correct. That is, (a) for each x ∈ Θ, there is a (〈K, xref[0], uref〉, S) ∈
controllers, such that x ∈ S, and (b) for each (〈K, xref[0], uref〉, S) ∈
controllers, the unique controller 〈K, xref[0], uref〉 is such that for every

x ∈ S and for every d ∈ DT , the unique execution defined by 〈K, xref[0], uref〉
and d, starting at x, satisfies the reach-avoid specification.

Algorithm 7 ensures that, upon termination, every x ∈ Θ is covered, i.e.,

one can construct a combined controller that drives x to G while avoiding

O. However it may find multiple controllers for a point x ∈ Θ. This non-

determinism can be easily resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions on the system A,

G and the sets O, and in the absence of disturbance, Algorithm 7 terminates.

Definition 8.3 (Robustly controllable systems). A systemA = 〈A,B,Θ, U,D〉
is said to be ε-robustly controllable (ε > 0) with respect to the reach-avoid

specification (O, G) and matrices K, if (a) D = {0}, and (b) for every ini-

tial state θ ∈ Θ there is an open loop-controller uref ∈ UT such that the

unique execution starting from θ using the open-loop controller uref satis-

fies the reach-avoid specification. Moreover, with the controller 〈K, θ, uref〉
defined as in Equation (8.4), ∀x ∈ Bε(θ), the unique trajectory x defined

by the controller 〈K, θ, uref〉 starting from x also satisfies the reach avoid

specification.

Theorem 8.2. If A is an ε-robust controllable system with respect to the

reach-avoid specification (O,G), the tracking controller K, and an arbitrarily

small ε > 0, then Algorithm 7 terminates.

Proof. As seen in Corollary 8.1, when the system is robust, then (in the

absence of any disturbance i.e., D = {0}), the computed ellipsoids are exact

reach sets starting from Br[0](xref[0]). Moreover, as r∗ approaches 0, r[0]

can also approach 0. From Corollary 8.1 we know that ∀t ≥ 0, r[t] = r[0],

so the radii of the reach sets’ ellipsoids all converge to 0. With r[t] →
0, Equation (8.15) and Equation (8.16) in Lemmas 8.2 and 8.3 (therefore

Equation (8.17)) also become satisfiable whenever there is a controller. The

correctness of Theorem 8.2 then follows from the above observations.

149

We remark that an alternative approach to solve the bounded controller

synthesis problem is to synthesize an open-loop control sequence uref for a

single initial condition xref[0] first, and then find the maximum cover such

that there exists a tracking controller K to make every execution starting

from the cover also satisfy the reach-avoid specification. However, when

implemented this approach, we observed that the synthesized reference tra-

jectory xref always got very close to the obstacles. Therefore, the maximum

initial cover for which this reference trajectory works would be minuscule,

and result in a very large number of partitions in the initial set. In contrast,

Algorithm 7 asks the SMT solver to search for a reference that works for

an initial cover with the size of at least r∗ with any disturbance (and r∗ is

adjusted iteratively), resulting in a much smaller solution space.

8.5 RealSyn Implementation and Evaluation

We have implemented our new synthesis algorithm in a tool called RealSyn,

which first appeared in [27]. We implement the proposed new algorithm in

this dissertation and compare it with the algorithms used in [27]. RealSyn

is written in Python. For solving Equation (8.18) it can interface with any

SMT solver through Python APIs. We present experimental results with

Yices (version 2.5.4) [186], as Yices outperformed the other solvers in [27].

We use 10 benchmark examples to evaluate the performance of the pro-

posed algorithm in RealSyn on a standard laptop with Intel Core i7 pro-

cessor, 16GB RAM, running Ubuntu 16.04. The results are reported in

Table 8.1. The results are encouraging and demonstrate the effectiveness

of our approach and the feasibility of scalable controller synthesis for high

dimensional systems and complex reach-avoid specifications.

Comparison with Other Tools. We considered other controller synthe-

sis tools for possible comparison with RealSyn. In summary, CoSyMa [172],

Pessoa [173], and SCOTS [155] do not explicitly support discrete-time sytems.

LTLMop [174, 175] is designed to analyze robotic systems in the (2-dimensional)

Euclidean plane and thus is not suitable for most of our examples. TuLiP [164,

176] comes closest to addressing the same class of problems. TuLip relies on

discretization of the state space and a receding horizon approach for synthe-

150

Table 8.1: Controller synthesis using RealSyn with original and improved
synthesis algorithms.

Model n m
CAV Algorithm [27] Algorithm 7
#iter time(s) #iter time(s)

1 1-robot 2 1 7 0.06 7 0.03
2 2-robot 4 2 183 2.26 1 0.04
3 Example 8.1 4 2 1 319.97 1 104
4 1-car dynamic avoid 4 2 12 8.49 12 8.12
5 1-car navigation 4 2 17 6.73 15 1.14
6 2-car navigation 8 4 1 4.07 1 1.86
7 3-car navigation 12 6 1 741.73 1 159.38
8 4-car platoon 8 4 1 0.15 1 0.03
9 8-car platoon 16 8 1 0.62 1 0.10
10 10-car platoon 20 10 1 7.74 1 0.12

sizing controllers for more general GR(1) specifications. However, we found

that TuLip succumbs to the state space explosion problem when discretizing

the state space, and it did not work on most of our examples. For instance,

TuLiP was unable to synthesize a controller for the 2-dimensional system ‘1-

robot’ (Table 8.1), and returned unrealizable. On the benchmark ‘2-robot’

(n = 4), TuLip did not return any answer within 1 hour.

Benchmarks. Our benchmarks are mainly vehicle motion planning exam-

ples from [27] with reach-avoid specifications. Benchmarks 1-2 model robots

moving on the Euclidean plane, where each robot is a 2-dimensional system

and admits a 1-dimensional input. Starting from some initial region on the

plane, the robots are required to reach the common goal area within the given

time steps, while avoiding certain obstacles. For ‘2-robot’, the robots are also

required to maintain a minimum separation. Benchmarks 3-7 are discrete ve-

hicular models adopted from [140]. Each vehicle is a 4-dimensional system

with 2-dimensional input. Benchmark 3 is the running example in [27], which

describes a mobile robot that needs to accomplish a reach-avoid goal in an

apartment. Benchmark 4 describes one ego vehicle running on a two-lane

road, trying to overtake a vehicle in front of it. The second vehicle serves as

the obstacle. Benchmarks 5-7 are similar to Benchmark 2 where the vehi-

cles are required to reach a common goal area while avoiding collision with

the obstacles and with each other (inspired by a merge). The velocities and

accelerations of the vehicles are also constrained in each of these benchmarks.

Benchmarks 8-10 model multiple vehicles trying to form a platoon by main-

taining the safe relative distance between consecutive vehicles. The models

151

are adopted (and discretized) from [145]. Each vehicle is a 2-dimensional

system with 1-dimensional input. For the 4-car platoon model, the running

times reported in Table 8.1 are much smaller than the time (5 minutes)

reported in [145]. This observation aligns with our analysis in Section 8.4.1.

Synthesis Performance. In Table 8.1, columns ‘n’ and ‘m’ stand for the

dimensions of the state space and input space. For each background solver,

‘#iter’ is the number of iterations Algorithm 7 required to synthesize a con-

troller, and ‘time’ is the respective running times. All benchmarks are syn-

thesized for a specification with 10− 20 steps.

In general, the proposed algorithm improves the performance of Real-

Syn with the running time 2 to 65 times faster than the original algorithm

as in [27]. The only exception is Benchmark 4 where the running time stays

almost the same. This is because in Benchmark 4, all obstacles, goal set,

and reach set over-approximations in [27] were represented as axis-aligned

hyper-rectangles. To check the disjointness and containment of axis-aligned

hyper-rectangles, [27] used a much simpler method with O(n) linear inequal-

ities, instead of enumerating all the vertices of the hyper-rectangles, which

introduces O(2n) linear inequalities. Therefore, the improvement of the pro-

posed algorithm in this dissertation on Benchmark 4 is minor.

However, for the rest of the benchmarks where the obstacles are not axis-

aligned hyper-rectangles, the proposed new algorithm can reduce the number

of linear constraints in the final SAT problem (Equation (8.18)) from O(2n)

to O(1) with respect to the dimensionality of the system. The results in

Table 8.1 verify our analysis in Section 8.4.

8.6 Summary

In this chapter, we proposed a novel technique for synthesizing controllers

for systems with time-varying discrete-time linear dynamics, operating un-

der bounded disturbances, and for reach-avoid specifications. Our approach

relies on generating controllers that combine an open-loop controller with a

tracking controller, thereby allowing a decoupled approach for synthesizing

each component independently. Experimental evaluation using our tool Re-

alSyn demonstrates the value of the approach when analyzing systems with

complex dynamics and specifications.

152

Chapter 9

Conclusions

Verification and synthesis for safety-critical autonomous systems are impor-

tant but hard problems. The undecidability results for very simple systems

(e.g. rectangular hybrid automaton) have led researchers to focus on methods

to compute conservative approximations of the behaviors for various types

of systems. However, we are still facing profound challenges like scalability,

high computation cost, and the lack of precise mathematical models.

In this dissertation, we took a novel data-driven approach that combined

the advantages of simulation data and sensitivity. The former is computa-

tionally inexpensive and easily accessible, while the latter can provide cov-

erage guarantees through rigorous analysis. We explored several techniques

that advance the data-driven verification and synthesis of different models

of autonomous systems. All of the techniques rely on numerical or symbolic

executions of the underlying model and on sensitivity analysis of the model.

Sensitivity analysis gives probabilistic or worst-case bounds on how much the

states or outputs of a system will change, with small changes in the input.

For different formalisms of autonomous systems, including discrete transition

systems, dynamical systems, and hybrid systems, we showed how to compute

the bounds on sensitivity and used them to generalize a single execution of

the system to over-approximate all neighboring executions. Such generalized

over-approximations can be used in two ways. For data-driven verification,

they can be used in a semi-decision procedure to prove safety or invariance of

the system. For controller synthesis, the sensitivity can be computed symbol-

ically to simplify the formula of finding a correct-by-construction controller.

We used different mathematical tools to address different challenges that

arise in different models. In Chapter 5, we discussed how to use matrix

measures to find locally tightest over-approximations of reachable states for

nonlinear systems. As a result, we could use fewer simulations to establish

safety or find counter-examples for nonlinear hybrid systems. Our approach

153

also opened the gate to reason about sample complexity of the verification

problem. In Chapter 6, we overcame the hurdle that complete mathematical

models of hybrid systems could be unavailable by developing a new semantic

framework that combines the known and unknown parts of hybrid systems.

The resulting tool, DryVR, implemented a probabilistic sensitivity analysis

algorithm and narrowed the gap between sound and practical verification for

control systems. In Chapter 7, we introduced an approximate partial order

reduction method to analyze the sensitivity of nondeterministic, infinite state

discrete transition systems. It reduced the number of explored executions by

a factor of O(n!), for a time horizon of n, compared with exhaustive enu-

meration. Finally in Chapter 8, we showed that for linear systems to meet

reach-avoid specification, we could use a controller that combined an open-

loop controller with a tracking controller. Once again, sensitivity analysis

of the tracking controller allowed us to show that neighboring trajectories

stay close to the reference. Using that, we were able to reduce the synthe-

sis of this type of controller to computationally efficient problems: finding

LQR controllers and solving satisfiability problems over quantifier-free linear

arithmetic.

Using the above techniques, we were able to implement tools and tackle

real-world challenging systems like Toyota powertrain control systems, space-

craft rendezvous control systems, and risk analysis of automatic braking

systems. These applications were initial attempts of the the data-driven ap-

proach but showed the promise of the technique for bridging rigorous analysis

and practical systems. Nevertheless, there are still many relevant problems

be to solved.

The techniques proposed in this dissertation could be further explored to

solve problems related to large-scale, multi-agent autonomous systems. A

summary of possible future work follows.

Synthesize controllers for nonlinear systems Following the concepts

in Chapter 8, we could use a combined open-loop and tracking controller

to make nonlinear systems meet reach-avoid specifications. The open-loop

controller generates a reference trajectory while the tracking controller can

force the other trajectories with disturbed inputs to converge to the reference

trajectory. For nonlinear systems, it is difficult to decouple the synthesis of

these two controllers since one may influence the behavior of the other. One

154

idea is to use Lyapunov functions to generate the tracking controller, then use

the Lyapunov level sets to bound the divergence of other trajectories. Then

we can explore path-planing techniques to generate the reference trajectory.

Parallelize data-driven verification for online reachability Formal

methods are usually performed off-line and ask for specific models and re-

quirements. However, in reality, there are always unforeseen circumstances,

so the model and requirements for autonomous systems are always evolving.

One future extension is to parallelize the data-driven verification approach

to expedite the computation of reachable sets. The data-driven verification

technique is naturally parallelizable to offer online reachability analysis: we

can generate the representative simulations and perform corresponding sen-

sitivity analysis independently. However, with the representative simulations

being generated simultaneously, we need to optimize the trade-off between

the quality and efficiency. That is, the algorithm will need to figure out the

optimal sampling strategy so the simulations can best represent the reachable

states to hit the answer for the verification problem.

Use partial order reduction on nonlinear hybrid systems In Chap-

ter 7, we ignored the continuous evolution of the system inside each mode

but only considered the ordering issues brought by discrete actions. One

natural extension of the approximate POR work is to extend the method to

handle nonlinear hybrid systems. When we take into account continuous dy-

namical behaviors, we need to analyze trajectories inside and across different

modes of the hybrid system, where trajectories are (nonlinear, continuous)

functions of the initial states, inputs, and time. Therefore, the notion of ap-

proximately commutable action pairs need to be extended to approximately

commutable continuous functions. Moreover, because hybrid systems have

guards and reset functions, the transition time might be shifted and the en-

abled transitions might be changed by swapping the order of transitions. In

this case, we will have to analyze possible consequences of such time shifting

and transition enabling/disabling.

155

References

[1] P. Koopman and M. Wagner, “Autonomous vehicle safety: An inter-
disciplinary challenge,” IEEE Intelligent Transportation Systems Mag-
azine, vol. 9, no. 1, pp. 90–96, 2017.

[2] P. Koopman and F. Fratrik, “How many operational design domains,
objects, and events?” in Workshop on Artificial Intelligence Safety
2019 co-located with the Thirty-Third AAAI Conference on Artificial
Intelligence 2019 (AAAI-19), Honolulu, Hawaii, January 27, 2019.,
2019.

[3] B. Cook, “Formal reasoning about the security of Amazon web ser-
vices,” in International Conference on Computer Aided Verification.
Springer, 2018, pp. 38–47.

[4] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan, “Meeting
a powertrain verification challenge,” in International Conference on
Computer Aided Verification. Springer, 2015, pp. 536–543.

[5] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[6] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of Con-
trol, Robotics, and Autonomous Systems, vol. 1, no. 1, 2018.

[7] C. Fan, Y. Meng, U. Maier, E. Bartocci, S. Mitra, and U. Schmid,
“Verifying nonlinear analog and mixed-signal circuits with inputs,” in
IFAC Conference on Analysis and Design of Hybrid Systems, 2018.

[8] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[9] D. Liberzon, Switching in Systems and Control. Springer, 2012.

[10] P. J. Antsaklis, J. A. Stiver, and M. Lemmon, “Hybrid system modeling
and autonomous control systems,” in Hybrid Systems. Springer, 1992,
pp. 366–392.

156

[11] “Autonomous system,” https://www.encyclopediaofmath.org/index.
php/Autonomous system, accessed: 2019-09-30.

[12] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Hybrid Systems II.
Springer, 1995, vol. 999.

[13] T. A. Henzinger, “The theory of hybrid automata,” in Verification of
Digital and Hybrid Systems. Springer, 2000, pp. 265–292.

[14] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[15] D. M. Gabbay, I. Hodkinson, and M. Reynolds, Temporal Logic: Math-
ematical Foundations and Computational Aspects. Clarendon Press,
1994.

[16] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s de-
cidable about hybrid automata?” in ACM Symposium on Theory of
Computing. ACM, 1995, pp. 373–382.

[17] V. Vladimerou, P. Prabhakar, M. Viswanathan, and G. E. Dullerud,
“STORMED hybrid systems,” in International Colloquium on Au-
tomata, Languages, and Programming, vol. 5126. Springer, 2008, pp.
136–147.

[18] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: scalable ver-
ification of hybrid systems,” in International Conference on Computer
Aided Verification, S. Q. Ganesh Gopalakrishnan, Ed. Springer, 2011.

[19] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech.” in International Conference on Hybrid Systems: Computa-
tion and Control, 2005, pp. 258–273.

[20] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reach-
ability analysis of piecewise-linear dynamical systems,” in Hybrid Sys-
tems: Computation and Control, B. Krogh and N. Lynch, Eds., vol.
1790, 2000, pp. 20–31.

[21] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-reachability
analysis for hybrid systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2015, pp. 200–205.

[22] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An ana-
lyzer for non-linear hybrid systems,” in International Conference on
Computer Aided Verification. Springer, 2013, pp. 258–263.

157

https://www.encyclopediaofmath.org/index.php/Autonomous_system
https://www.encyclopediaofmath.org/index.php/Autonomous_system

[23] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic
in CORA 2016,” in International Workshop on Applied Verification of
Continuous and Hybrid Systems, 2016, pp. 91–105.

[24] C. Fan, J. Kapinski, and X. Jin, “Locally optimal reach set over-
approximation for nonlinear systems,” in International Conference on
Embedded Software. ACM Press, 2016, pp. 1–10.

[25] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-driven
verification and compositional reasoning for automotive systems,” in
International Conference on Computer Aided Verification, vol. 10426
LNCS. Springer, 2017, pp. 441–461.

[26] C. Fan, Z. Huang, and S. Mitra, “Approximate partial order reduc-
tion,” in International Symposium on Formal Methods. Springer, 2018,
pp. 588–607.

[27] C. Fan, U. Mathur, S. Mitra, and M. Viswanathan, “Controller syn-
thesis made real: reach-avoid specifications and linear dynamics,” in
International Conference on Computer Aided Verification. Springer,
2018, pp. 347–366.

[28] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Auto-
matic reachability analysis for nonlinear hybrid models with C2E2,” in
International Conference on Computer Aided Verification. Springer,
2016, pp. 531–538.

[29] P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan, and C. Muñoz,
“Temporal precedence checking for switched models and its application
to a parallel landing protocol,” in Formal Methods. Springer, 2014,
pp. 215–229.

[30] N. Chan and S. Mitra, “Verified hybrid LQ control for autonomous
spacecraft rendezvous,” in Decision and Control (CDC), 2017 IEEE
56th Annual Conference on. IEEE, 2017, pp. 1427–1432.

[31] N. Chan and S. Mitra, “Verifying safety of an autonomous spacecraft
rendezvous mission,” in International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems, 2017, pp. 20–32.

[32] Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Kwiatkowska,
“Simulation-based verification of cardiac pacemakers with guaranteed
coverage,” IEEE Design and Test, vol. 32, no. 5, pp. 27–34, 2015.

[33] Z. Huang, “Compositional analysis of networked cyber-physical sys-
tems: safety and privacy,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, 2016.

158

[34] B. Qi, C. Fan, M. Jiang, and S. Mitra, “DryVR 2.0: A tool for verifica-
tion and controller synthesis of black-box cyber-physical systems,” in
International Conference on Hybrid Systems: Computation and Con-
trol. ACM Press, 2018, pp. 269–270.

[35] M. J. Kearns and U. V. Vazirani, An Introduction to Computational
Learning Theory. MIT Press, 1994.

[36] C. Fan, B. Qi, and S. Mitra, “Data-driven formal reasoning and their
applications in safety analysis of vehicle autonomy features,” in IEEE
Design and Test, vol. 35, 2018, pp. 31–38.

[37] N. Chan and S. Mitra, “Verified hybrid LQ control for autonomous
spacecraft rendezvous,” in Decision and Control (CDC), 2017 IEEE
56th Annual Conference on. IEEE, 2017, pp. 1427–1432.

[38] J. P. Hespanha, Linear Systems Theory. Princeton University Press,
2009.

[39] P. J. Antsaklis and A. N. Michel, A Linear Systems Primer.
Birkhäuser Boston, 2007.

[40] J. Ding and C. J. Tomlin, “Robust reach-avoid controller synthesis for
switched nonlinear systems,” in Decision and Control (CDC), 2010
IEEE 49th Annual Conference on, 2010, pp. 6481–6486.

[41] Z. Huang, Y. Wang, S. Mitra, G. E. Dullerud, and S. Chaudhuri, “Con-
troller synthesis with inductive proofs for piecewise linear systems: An
smt-based algorithm,” in Decision and Control (CDC), 2015 IEEE 54th
Annual Conference on, 2015, pp. 7434–7439.

[42] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid
problems with time-varying dynamics, targets and constraints,” in In-
ternational Conference on Hybrid Systems: Computation and Control,
2015, pp. 11–20.

[43] P. M. Esfahani, D. Chatterjee, and J. Lygeros, “The stochastic reach-
avoid problem and set characterization for diffusions,” Automatica,
vol. 70, pp. 43–56, 2016.

[44] Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Kwiatkowska, “In-
variant verification of nonlinear hybrid automata networks of cardiac
cells,” in International Conference on Computer Aided Verification,
vol. 8559 LNCS. Springer, 2014, pp. 373–390.

[45] Z. Huang, C. Fan, A. Mereacre, S. Mitra, and M. Z. Kwiatkowska, “In-
variant verification of nonlinear hybrid automata networks of cardiac
cells,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 373–390.

159

[46] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam, “Modeling
and verification of a dual chamber implantable pacemaker,” in Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2012, pp. 188–203.

[47] A. El-Guindy, D. Han, and M. Althoff, “Formal analysis of drum-boiler
units to maximize the load-following capabilities of power plants,”
IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–12, 2016.

[48] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[49] J. Maidens and M. Arcak, “Reachability analysis of nonlinear systems
using matrix measures,” IEEE Transactions on Automatic Control,
vol. 60, no. 1, pp. 265–270, 2015.

[50] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. SIAM, 1975.

[51] E. D. Sontag, “Contractive systems with inputs,” in Perspectives
in Mathematical System Theory, Control, and Signal Processing.
Springer, 2010, pp. 217–228.

[52] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specifi-
cation of hybrid systems in CHARON,” in International Workshop on
Hybrid Systems: Computation and Control. Springer, 2000, pp. 6–19.

[53] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid au-
tomata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid Systems. Springer, 1992, pp. 209–229.

[54] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[55] N. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg, “Hybrid
I/O automata,” in International Hybrid Systems Workshop. Springer,
1995, pp. 496–510.

[56] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,” IEEE Transac-
tions on Automatic Control, vol. 43, no. 1, pp. 31–45, 1998.

[57] S. Mitra, “A verification framework for hybrid systems,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2007.

160

[58] L. Fang and P. J. Antsaklis, “Information consensus of asynchronous
discrete-time multi-agent systems,” in American Control Conference.
IEEE, 2005, pp. 1883–1888.

[59] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in ACM Workshop on Privacy in the Elec-
tronic Society. ACM, 2012, pp. 81–90.

[60] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “The theory
of timed I/O automata,” Synthesis Lectures on Distributed Computing
Theory, vol. 1, no. 1, pp. 1–137, 2010.

[61] C. Fan and S. Mitra, “Bounded verification with on-the-fly discrepancy
computation,” in International Symposium on Automated Technology
for Verification and Analysis, vol. 9364. Springer, 2015, pp. 446–463.

[62] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic et al., Nonlinear and
Adaptive Control Design. Wiley New York, 1995, vol. 222.

[63] S. Mitra, Verifying Cyberphysical Systems. MIT Press (to be pub-
lished).

[64] E. Hainry, “Reachability in linear dynamical systems,” in Logic and
Theory of Algorithms. Springer, 2008, pp. 241–250.

[65] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid sys-
tems,” Mathematics of Control, Signals and Systems, vol. 13, no. 1,
pp. 1–21, 2000.

[66] K. Makino and M. Berz, “Taylor models and other validated functional
inclusion methods,” International Journal of Pure and Applied Math-
ematics, vol. 4, no. 4, pp. 379–456, 2003.

[67] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[68] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for
hybrid systems (system description),” in International Joint Confer-
ence on Automated Reasoning. Springer, 2008, pp. 171–178.

[69] A. Platzer, “Quantified differential dynamic logic for distributed hy-
brid systems,” in International Workshop on Computer Science Logic.
Springer, 2010, pp. 469–483.

[70] Z. Chaochen, W. Ji, and A. P. Ravn, “A formal description of hybrid
systems,” in International Hybrid Systems Workshop. Springer, 1995,
pp. 511–530.

161

[71] P. W. Kopke, “The theory of rectangular hybrid automata,” Ph.D.
dissertation, Cornell University, 1996.

[72] E. Bartocci, F. Corradini, M. R. Di Berardini, E. Entcheva, S. A.
Smolka, and R. Grosu, “Modeling and simulation of cardiac tissue using
hybrid i/o automata,” Theoretical Computer Science, vol. 410, no. 33-
34, pp. 3149–3165, 2009.

[73] A. Fehnker, F. Vaandrager, and M. Zhang, “Modeling and verifying a
lego car using hybrid I/O automata,” in International Conference on
Quality Software. IEEE, 2003, pp. 280–289.

[74] S. Mitra, Y. Wang, N. Lynch, and E. Feron, “Safety verification of
model helicopter controller using hybrid input/output automata,” in
International Workshop on Hybrid Systems: Computation and Control.
Springer, 2003, pp. 343–358.

[75] C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for
hybrid control and estimation,” in Decision and Control (CDC), 2016
IEEE 55th Conference on. IEEE, 2016, pp. 3300–3305.

[76] K. L. Man and M. P. Schellekens, “Analysis of a mixed-signal circuit
in hybrid process algebra ACPsrt

hs ,” Engineering Letters, vol. 15, no. 2,
2007.

[77] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model
checker for hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 1997, pp. 460–463.

[78] C. Yan and M. R. Greenstreet, “Verifying an arbiter circuit,” in Formal
Methods in Computer-Aided Design. IEEE, 2008, pp. 7:1–7:9.

[79] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verifi-
cation of analog designs,” in International Conference On Computer
Aided Design, 2004, pp. 210–217.

[80] S. Bak and P. S. Duggirala, “Hylaa: A tool for computing simulation-
equivalent reachability for linear systems,” in International Conference
on Hybrid Systems: Computation and Control. ACM, 2017, pp. 173–
178.

[81] S. Schupp, E. Abraham, I. Ben Makhlouf, and S. Kowalewski, “HyPro:
A C++ library for state set representations for hybrid systems reach-
ability analysis,” in NASA Formal Methods Symposium, vol. 10227.
Springer, 2017, pp. 288–294.

[82] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques,” in Formal Methods in
Computer-Aided Design, 2004, pp. 21–36.

162

[83] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reacha-
bility analysis of discrete-time linear systems,” IEEE Transactions on
Automatic Control, vol. 52, no. 1, pp. 26–38, 2007.

[84] T. Dang, C. Le Guernic, and O. Maler, “Computing reachable states
for nonlinear biological models,” in International Conference on Com-
putational Methods in Systems Biology, vol. 5688. Springer, 2009, pp.
126–141.

[85] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Ef-
ficient solving of large non-linear arithmetic constraint systems with
complex Boolean structure,” Journal on Satisfiability, Boolean Model-
ing and Computation, vol. 1, no. 3-4, pp. 209–236, 2007.

[86] F. Immler, “Verified reachability analysis of continuous systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 37–51.

[87] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of anno-
tated models from executions,” in International Conference on Embed-
ded Software. IEEE Press, 2013, pp. 26:1–26:10.

[88] P. S. Duggirala, “Dynamic analysis of cyber-physical systems,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 2015.

[89] X. Chen, “Reachability analysis of non-linear hybrid systems using
taylor models,” Ph.D. dissertation, RWTH Aachen University, 2015.

[90] S. Bak and P. S. Duggirala, “Rigorous simulation-based analysis of
linear hybrid systems,” in International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer,
2017, pp. 555–572.

[91] S. Bak and P. S. Duggirala, “Simulation-equivalent reachability of large
linear systems with inputs,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 401–420.

[92] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and
C. Schilling, “Reach set approximation through decomposition with
low-dimensional sets and high-dimensional matrices,” in International
Conference on Hybrid Systems: Computation and Control. ACM,
2018, pp. 41–50.

[93] G. Frehse, “Reachability of hybrid systems in space-time,” in Inter-
national Conference on Embedded Software. IEEE Press, 2015, pp.
41–50.

163

[94] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu,
“XSpeed: Accelerating reachability analysis on multi-core processors,”
in Haifa Verification Conference, vol. 9434, 2015, pp. 3–18.

[95] A. Donzé and O. Maler, “Systematic simulation using sensitivity anal-
ysis,” in International Conference on Hybrid Systems: Computation
and Control. Springer, 2007, pp. 174–189.

[96] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar sym-
bolic models for incrementally stable switched systems,” IEEE Trans-
actions on Automatic Control, vol. 55, no. 1, pp. 116–126, 2010.

[97] A. A. Julius and G. J. Pappas, “Trajectory based verification using lo-
cal finite-time invariance,” in International Conference on Hybrid Sys-
tems: Computation and Control. Springer, 2009, pp. 223–236.

[98] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Continuity and ro-
bustness of programs,” Communications of the ACM, vol. 55, no. 8,
pp. 107–115, 2012.

[99] R. Samanta, J. V. Deshmukh, and S. Chaudhuri, “Robustness analysis
of string transducers,” in Automated Technology for Verification and
Analysis. Springer, 2013, pp. 427–441.

[100] R. Majumdar and I. Saha, “Symbolic robustness analysis,” in IEEE
Real-Time Systems Symposium. IEEE, 2009, pp. 355–363.

[101] D. Angeli, “A Lyapunov approach to incremental stability properties,”
IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 410–421,
2002.

[102] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models
for nonlinear control systems without stability assumptions,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1804–1809, 2012.

[103] V. Boichenko and G. Leonov, “Lyapunov’s direct method in estimates
of topological entropy,” Journal of Mathematical Sciences, vol. 91,
no. 6, pp. 3370–3379, 1998.

[104] H. Abbas and G. Fainekos, “Linear hybrid system falsification through
local search,” in International Symposium on Automated Technology
for Verification and Analysis. Springer, 2011, pp. 503–510.

[105] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel, “Veri-
fication of automotive control applications using S-TaLiRo,” in Amer-
ican Control Conference. Citeseer, 2012, pp. 3567–3572.

164

[106] S. Sankaranarayanan, S. A. Kumar, F. Cameron, B. W. Bequette,
G. Fainekos, and D. M. Maahs, “Model-based falsification of an ar-
tificial pancreas control system,” ACM SIGBED Review, vol. 14, no. 2,
pp. 24–33, 2017.

[107] G. Fainekos, “Automotive control design bug-finding with the S-
TaLiRo tool,” in American Control Conference. IEEE, 2015, pp.
4096–4096.

[108] N. Nedialkov, “VNODE-LP: Validated solutions for initial value prob-
lem for ODEs,” McMaster University, Tech. Rep., 2006.

[109] CAPD, “Computer assisted proofs in dynamics,” 2002. [Online].
Available: http://www.capd.ii.uj.edu.pl/

[110] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-
linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[111] Y. B. Pesin, “Characteristic Lyapunov exponents and smooth ergodic
theory,” Uspekhi Matematicheskikh Nauk, vol. 32, no. 4, pp. 55–112,
1977.

[112] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[113] S. Gao, J. Avigad, and E. M. Clarke, “Delta-decidability over the re-
als,” in IEEE/ACM Symposium on Logic in Computer Science. IEEE
Computer Society, 2012, pp. 305–314.

[114] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and ro-
bustness analysis of nonlinear systems via contraction metrics and sos
programming,” Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.

[115] A. Balkan, J. V. Deshmukh, J. Kapinski, and P. Tabuada, “Simulation-
guided contraction analysis,” in Indian Control Conference, 2015, pp.
71–75.

[116] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Ma-
trix Inequalities in System and Control Theory, ser. Studies in Applied
Mathematics. Philadelphia, PA: SIAM, 1994, vol. 15.

[117] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-
quadratic-linear programs using SDPT3,” Mathematical Programming,
vol. 95, no. 2, pp. 189–217, 2003.

[118] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in International Symposium on Computer-Aided Control
System Design, 2004.

165

http://www.capd.ii.uj.edu.pl/

[119] D. Angeli, E. D. Sontag, and Y. Wang, “A characterization of inte-
gral input-to-state stability,” IEEE Transactions on Automatic Con-
trol, vol. 45, no. 6, pp. 1082–1097, 2000.

[120] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Aréchiga,
“Simulation-guided Lyapunov analysis for hybrid dynamical systems,”
in International Conference on Hybrid Systems: Computation and
Control. ACM, 2014, pp. 133–142.

[121] R. Testylier and T. Dang, “NLTOOLBOX: A library for reachabil-
ity computation of nonlinear dynamical systems,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2013, pp. 469–473.

[122] J. Anderson and A. Papachristodoulou, “Dynamical system decompo-
sition for efficient, sparse analysis,” in Decision and Control (CDC),
2010 IEEE 49th Annual Conference on. IEEE, 2010, pp. 6565–6570.

[123] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Power-
train control verification benchmark,” in International Conference on
Hybrid Systems: Computation and Control. New York, NY, USA:
ACM, 2014, pp. 253–262.

[124] T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin, “Satel-
lite rendezvous and conjunction avoidance: Case studies in verification
of nonlinear hybrid systems,” in International Symposium on Formal
Methods. Springer, 2012, pp. 252–266.

[125] Mathworks, “Modeling an Automatic Transmission and Con-
troller,” http://www.mathworks.com/videos/modeling-an-automatic-
transmission-and-controller-68823.html.

[126] “Road vehicles — Functional safety,” International Organization for
Standardization (ISO), Geneva, Switzerland, Standard, Nov. 2011.

[127] K. Kodaka, M. Otabe, Y. Urai, and H. Koike, “Rear-end collision ve-
locity reduction system,” SAE Technical Paper, Tech. Rep., 2003.

[128] S. Fabris, “Method for hazard severity assessment for the case of un-
demanded deceleration,” TRW Automotive, Berlin, 2012.

[129] J. Piao and M. McDonald, “Low speed car following behaviour from
floating vehicle data,” in Intelligent Vehicles Symposium, June 2003,
pp. 462–467.

[130] B. P. Malladi, R. G. Sanfelice, E. Butcher, and J. Wang, “Robust hy-
brid supervisory control for rendezvous and docking of a spacecraft,” in
Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE,
2016, pp. 3325–3330.

166

[131] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2011.

[132] J. Ouaknine and J. Worrell, “On the language inclusion problem for
timed automata: Closing a decidability gap,” in IEEE Symposium on
Logic in Computer Science. IEEE, 2004, pp. 54–63.

[133] K. Čerāns, “Decidability of bisimulation equivalences for parallel timer
processes,” in International Conference on Computer Aided Verifica-
tion. Springer, 1992, pp. 302–315.

[134] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 1999.

[135] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Raja-
mani, “Partial-order reduction in symbolic state space exploration,” in
International Conference on Computer Aided Verification. Springer,
1997, pp. 340–351.

[136] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient
stateful dynamic partial order reduction,” in International SPIN Work-
shop on Model Checking of Software. Springer, 2008, pp. 288–305.

[137] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” in ACM SIGPLAN Notices, vol. 49, no. 1.
ACM, 2014, pp. 373–384.

[138] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in ACM Sigplan Notices, vol. 40, no. 1.
ACM, 2005, pp. 110–121.

[139] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking.
MIT Press, 2008.

[140] A. Fehnker and F. Ivančić, “Benchmarks for hybrid systems verifica-
tion,” in International Workshop on Hybrid Systems: Computation and
Control. Springer, 2004, pp. 326–341.

[141] M. Vitus, V. Pradeep, G. Hoffmann, S. Waslander, and C. Tomlin,
“Tunnel-milp: Path planning with sequential convex polytopes,” in
AIAA Guidance, Navigation and Control Conference and Exhibit, 2008,
p. 7132.

[142] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in In-
ternational Conference on Hybrid Systems: Computation and Control.
ACM, 2015, pp. 239–248.

167

[143] J. M. Filho, E. Lucet, and D. Filliat, “Real-time distributed receding
horizon motion planning and control for mobile multi-robot dynamic
systems,” in International Conference on Robotics and Automation.
IEEE, 2017, pp. 657–663.

[144] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for au-
tonomous vehicles using model predictive control,” in IEEE Intelligent
Vehicles Symposium. IEEE, 2017, pp. 174–179.

[145] B. Schürmann and M. Althoff, “Optimal control of sets of solutions to
formally guarantee constraints of disturbed linear systems,” in Ameri-
can Control Conference, (ACC), 2017, pp. 2522–2529.

[146] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, 2011.

[147] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Tem-
poral logic motion planning for dynamic robots,” Automatica, vol. 45,
no. 2, pp. 343–352, 2009.

[148] M. A. Rami and F. Tadeo, “Controller synthesis for positive linear
systems with bounded controls,” IEEE Transactions on Circuits and
Systems, vol. 54-II, no. 2, pp. 151–155, 2007.

[149] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[150] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[151] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Transactions on Automatic Control,
vol. 51, no. 12, pp. 1862–1877, 2006.

[152] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control
based on linear programming - The explicit solution,” IEEE Transac-
tions on Automatic Control, vol. 47, no. 12, pp. 1974–1985, 2002.

[153] M. N. Zeilinger, C. N. Jones, and M. Morari, “Real-time suboptimal
model predictive control using a combination of explicit MPC and on-
line optimization,” IEEE Transactions on Automatic Control, vol. 56,
no. 7, pp. 1524–1534, 2011.

[154] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 6, pp. 1491–1504, 2012.

168

[155] M. Rungger and M. Zamani, “Scots: A tool for the synthesis of
symbolic controllers,” in International Conference on Hybrid Systems:
Computation and Control. ACM, 2016, pp. 99–104.

[156] P. Tabuada, Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer, 2009.

[157] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[158] A. Abate, S. Amin, M. Prandini, J. Lygeros, and S. Sastry, “Computa-
tional approaches to reachability analysis of stochastic hybrid systems,”
in International Workshop on Hybrid Systems: Computation and Con-
trol,, 2007, pp. 4–17.

[159] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization
of linear systems,” IEEE transactions on Automatic Control, vol. 45,
no. 7, pp. 1279–1289, 2000.

[160] D. Liberzon, “Observer-based quantized output feedback control of
nonlinear systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp.
8039–8043, 2008.

[161] A. Girard, “Controller synthesis for safety and reachability via approx-
imate bisimulation,” Automatica, vol. 48, no. 5, pp. 947–953, 2012.

[162] A. Abate, I. Bessa, D. Cattaruzza, L. C. Cordeiro, C. David, P. Kesseli,
D. Kroening, and E. Polgreen, “Automated formal synthesis of digital
controllers for state-space physical plants,” in International Conference
on Computer Aided Verification, 2017, pp. 462–482.

[163] K. Mallik, A.-K. Schmuck, S. Soudjani, and R. Majumdar, “Compo-
sitional synthesis of finite-state abstractions,” IEEE Transactions on
Automatic Control, vol. 64, no. 6, pp. 2629–2636, 2018.

[164] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“Tulip: A software toolbox for receding horizon temporal logic plan-
ning,” in International Conference on Hybrid Systems: Computation
and Control. ACM, 2011, pp. 313–314.

[165] E. A. Gol, M. Lazar, and C. Belta, “Language-guided controller syn-
thesis for linear systems,” IEEE Transactions on Automatic Control,
vol. 59, no. 5, pp. 1163–1176, 2014.

[166] P. Bouyer, L. Bozzelli, and F. Chevalier, “Controller synthesis for mtl
specifications,” in International Conference on Concurrency Theory.
Springer, 2006, pp. 450–464.

169

[167] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, 2014, pp. 81–87.

[168] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” in Automatica, vol. 50, no. 12. Pergamon, 2014, pp.
2967–2986.

[169] Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267–278, 2009.

[170] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Johansson,
“Real-time trajectory generation using model predictive control,” in
IEEE International Conference on Automation Science and Engineer-
ing. IEEE, 2015, pp. 942–948.

[171] A. Alessio and A. Bemporad, “A survey on explicit model predictive
control,” in Nonlinear Model Predictive Control: Towards New Chal-
lenging Applications, vol. 384. Springer, 2009, pp. 345–369.

[172] S. Mouelhi, A. Girard, and G. Gössler, “CoSyMA: A tool for controller
synthesis using multi-scale abstractions,” in International Conference
on Hybrid Systems: Computation and Control. ACM, 2013, pp. 83–88.

[173] P. Roy, P. Tabuada, and R. Majumdar, “Pessoa 2.0: A controller syn-
thesis tool for cyber-physical systems,” in International Conference on
Hybrid Systems: Computation and Control. ACM, 2011, pp. 315–316.

[174] K. W. Wong, C. Finucane, and H. Kress-Gazit, “Provably-correct robot
control with LTLMoP, OMPL and ROS,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, p. 2073.

[175] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, p. 1370–1381, 2009.

[176] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with tulip: The temporal logic
planning toolbox,” in IEEE Conference on Control Applications, 2016,
pp. 1030–1041.

[177] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

170

[178] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 2000, pp. 995–1001.

[179] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion plan-
ning in many dimensions,” International Journal of Robotics Research,
vol. 34, no. 7, pp. 883–921, 2015.

[180] H. Ravanbakhsh and S. Sankaranarayanan, “Robust controller synthe-
sis of switched systems using counterexample guided framework,” in
International Conference on Embedded Software. ACM, 2016, pp.
8:1–8:10.

[181] T. Koo, G. J. Pappas, and S. Sastry, “Mode switching synthesis for
reachability specifications,” in International Workshop on Hybrid Sys-
tems: Computation and Control, 2001, pp. 333–346.

[182] A. Taly, S. Gulwani, and A. Tiwari, “Synthesizing switching logic us-
ing constraint solving,” International Journal on Software Tools for
Technology Transfer, vol. 13, no. 6, pp. 519–535, 2011.

[183] S. Jha, S. A. Seshia, and A. Tiwari, “Synthesis of optimal switching
logic for hybrid systems,” in International Conference on Embedded
Software, 2011, pp. 107–116.

[184] H. Zhao, N. Zhan, and D. Kapur, “Synthesizing switching controllers
for hybrid systems by generating invariants,” in Theories of Program-
ming and Formal Methods - Essays Dedicated to Jifeng He on the Oc-
casion of His 70th Birthday, 2013, pp. 354–373.

[185] S. Bittanti, A. J. Laub, and J. C. Willems, The Riccati Equation.
Springer Science & Business Media, 2012.

[186] B. Dutertre, “Yices 2.2,” in International Conference on Computer
Aided Verification, vol. 8559. Springer, 2014, pp. 737–744.

171

	List of Abbreviations and Math Notations
	Chapter 1 Introduction
	Locally Optimal Guaranteed Reachability for Nonlinear Dynamics
	Verification of Black-box Components with Probabilistic Guarantees
	Approximate Partial Order Reduction for Distributed Autonomous Systems
	Control Synthesis of Large-dimensional Systems
	Summary of Contributions
	Dissertation Structure

	Chapter 2 Mathematical Preliminaries
	Vectors and Matrices
	Vectors and Vector Norms
	Matrices and Matrix Norms
	Interval Matrices
	Matrix Measures

	Sets
	Functions

	Chapter 3 Models of Autonomous Systems
	Discrete-time Transition Systems
	Trajectories and Closures
	Dynamical Systems
	Hybrid Systems

	Chapter 4 Data-driven Verification
	Introduction
	Related Work on Verification
	Simulation and Reachtube
	Discrepancy Function
	Verification Algorithm
	Summary

	Chapter 5 Computing Discrepancy
	Introduction
	Linear Models
	Nonlinear Models: Optimization-based Approaches
	Nonlinear Models: Local Discrepancy
	Compute Discrepancy Function with Matrix Measures
	Algorithm to Compute Local Optimal Reach Set
	Advantages of the Generalize Algorithm
	Experimental Evaluation of Algorithm Generalize

	Reachtube Computation for Hybrid System
	C2E2

	Summary

	Chapter 6 Verification of Models with Black-box Components
	Introduction
	Hybrid Systems with Black-box Modules
	Learning Discrepancy from Simulations
	Discrepancy Functions as Linear Separators
	Learned Discrepancy and Guarantees in Practice
	DryVR

	Example: ADAS and Autonomous Driving Control
	Example: Analyzing Risk in Automatic Emergency Braking Systems
	Overview
	Determining Severity of Collisions using Reachability
	Risk Analysis for ASIL
	Integrated Safety Analysis

	Other Examples: Powertrain, Spacecraft, and Gear Transmission
	Powertrain Control Model
	Spacecraft Rendezvous
	Automatic Transmission Control

	Formal Reasonings on Hybrid Systems with Black-box Modules
	Behavior Containment of Hybrid Systems

	Experiments on Behavior Containment Reasoning
	Trace Containment
	Sequential Composition

	Summary

	Chapter 7 Approximate Partial Order Reduction
	Introduction
	Background
	Independent Actions and Neighboring Executions
	Approximately Independent Actions
	aTrace Equivalent Discrepancy for Action Pairs

	Effect of aIndependent Traces
	eEquivalent Traces
	tTrace Equivalent Discrepancy for Traces (on the Same Initial States)

	Reachability with Approximate Partial Order Reduction
	Earliest Equivalent Position of an Action in a Trace
	Reachability using (,)-Trace Equivalent Discrepancy

	Experimental Evaluation of Approximate POR
	Iterative Consensus
	Platoon
	Building Heating System

	Summary

	Chapter 8 Controller Synthesis for Linear Systems with Reach-avoid Specification
	Introduction
	Related Work on Synthesis
	Bounded Controller Synthesis Problem on Discrete-time Linear Control Systems
	Synthesis Algorithm
	Algorithm Overview
	Synthesizing the Tracking Controller K
	Reachable Set Over-approximation with the Tracking Controller
	Synthesis of the Open-loop Controller
	Synthesis Algorithm Putting It All Together

	RealSyn Implementation and Evaluation
	Summary

	Chapter 9 Conclusions
	References

