
Dione: A protocol verification system built with
Dafny for I/O Automata

Chiao Hsieh and Sayan Mitra

University of Illinois at Urbana-Champaign, Champaign IL 61820, USA
{chsieh16,mitras}@illinois.edu

Abstract. Input/Output Automata (IOA) is an expressive specifica-
tion framework with built-in properties for compositional reasoning. It
has been shown to be effective in specifying and analyzing distributed
and networked systems. The available verification engines for IOA are
based on interactive theorem provers such as Isabelle, Larch, PVS, and
Coq, and are expressive but require heavy human interaction. Motivated
by the advances in SMT solvers, in this work we explore a different
expressivity-automation tradeoff for IOA. We present Dione, the first
IOA analysis system built with Dafny and its SMT-powered toolchain
and demonstrate its effectiveness on four distributed applications. Our
translator tool converts Python-esque Dione language specification of
IOA and their properties to parameterized Dafny modules. Dione au-
tomatically generates the relevant compatibility and composition lemmas
for the IOA specifications, which can then be checked with Dafny on a per
module-basis. We ensure that all resulting formulas are expressed mostly
in fragments solvable by SMT solvers and hence enables Bounded Model
Checking and k-induction-based invariant checking using Z3. We present
successful applications of Dione in verification of an asynchronous leader
election algorithm, two self-stabilizing mutual exclusion algorithms, and
CAN bus Arbitration. We automatically prove key invariants of all four
protocols; for the last three this involves reasoning about arbitrary num-
ber of participants. These analyses are largely automatic with minimal
manual inputs needed, and they demonstrate the effectiveness of this
approach in analyzing networked and distributed systems.

1 Introduction

For modeling and verifying network and distributed systems, compositional ap-
proaches are considered essential in achieving modularity and scalability. A re-
cent study on building verified industrial scale systems highlight the importance
of compositional reasoning and connecting layers of abstractions, especially for
integrating formal methods into software development practices [22]. The In-
put/Output Automata (IOA) [20] framework comes with an expressive modeling
language [8], and a powerful set of simulation and substitutivity results that sup-
port reasoning about compositions, abstractions, and substitutions. The frame-
work has been used to model and analyze a wide variety of distributed systems
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ranging from high-level protocols for mutual exclusion, consensus, leader elec-
tion [20], to implementation-level specifications for shared memory and group
communication services [6,7,4], and communication protocols like TCP [25].

Currently available mechanized verification engines for IOA are mostly based
on interactive theorem provers including Isabelle/HOL [21], Larch Shared Lan-
guage [3], PVS [19], and recently CoqIOA [1]. All of these provide expressive
specification languages based on higher order theories for modeling IOA, but
they require a nontrivial amount of human interactions for constructing proofs1.

In this paper, we aim to achieve higher automation for verification of dis-
tributed systems expressed in IOA, by restricting the specifications to less ex-
pressive theories with established decision procedures. One predominant op-
tion is First Order Theories supported by existing Satisfiability Modulo The-
ories (SMT) solvers. There has been a wave of advancements in SMT solvers,
which in turn has led to the creation of widely diverse program verification en-
gines like CBMC [5], Dafny [16], and SeaHorn [15]. We therefore believe that
theories solvable with SMT solvers can be expressive enough for a broadly useful
class of IOA, and an SMT-based IOA verification engine can advance the design
and analysis of distributed systems.

Specifically, we build a toolchain based on Dafny [16], instead of directly
interfacing with SMT solvers. Dafny provides a higher level of abstraction for
developing both system specifications and for proof strategies [17]. The IronFleet
project [11], for instance, demonstrates how practical consensus protocols can be
modeled and verified in Dafny. The project further develops a Dafny imple-
mentation of the model with formal conformance guarantees, and ultimately gen-
erates correct-by-construction C# source code from the implementation. These
results suggest that Dafny is a good candidate for supporting modeling and
mostly-automatic verification for distributed protocols as IOA.

In this work, we propose Dione—a modeling language and verification sys-
tem built using Dafny for IOA. The Dione workflow is similar to that of [3,19].
First, users model the protocol and specify the desired invariant in the Dione
language. For example in Figure 1, a distributed algorithm from the textbook [9]
can be faithfully modeled in Dione. Dione frontend then translates Dione to
Dafny specification language. Additionally, Dione generates Dafny lemmas
so that proving these lemmas is equivalent to Bounded Model Checking (BMC)
and k-induction based invariant checking for the original IOA. There are three
major contributions in this work:

(i) We have developed a Python-like language, Dione, for naturally specify-
ing distributed systems as compositions of parameterized IOA. We have imple-
mented the supporting tools for (a) translating Dione specifications to Dafny,
and for (b) carrying out automatic proofs for Dione specifications. Our transla-
tor uses modules in Dafny to automatically generate (nontrivial) composition
and compatibility checks for parameterized automata.
(ii) We have demonstrated that Dione can effectively model diverse distributed
protocols: self-stabilizing mutual exclusion algorithms with different network
1 Also, none of the tools appear to be maintained for at least two years.
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# s[0] ∈ {1,3}, s[n -1] ∈ {2, 4}, and N(i) returns neighbors of i #
program StableArray ;
{ program for process i, i=0 or i=n -1}
do
∃j ∈ N(i): (s[j] = s[i]+1 mod 4) → s[i] := s[i]+2 mod 4
od
{ program for process i, 0<i<n -1}
do
∃j ∈ N(i): (s[j] = s[i]+1 mod 4) → s[i] := s[j]
od

Status : type = IntRange [0:4]
@ automaton
def StableArray (N: int ):

where= 2 <= N
class signature :

@ output
def trans(i: int ): where =(0 <= i < N)

class states :
s: Seq[ Status ]

initially = len(s)==N and(s [0]==1 or s [0]==3) and(s[N -1]==0 or s[N -1]==2)
class transitions :

@ output
@pre ((i==0 and s[i+1]== incre(s[i])) or(i==N-1 and s[i -1]== incre(s[i])))
def trans(i): s[i] = incre(incre(s[i]))
@ output
@pre (0 < i < N-1 and s[i -1]== incre(s[i]))
def trans(i): s[i] = s[i -1]
@ output
@pre (0 < i < N-1 and s[i+1]== incre(s[i]))
def trans(i): s[i] = s[i+1]

invariant_of = len(s)==N and(s [0]==1 or s [0]==3) and(s[N -1]==0 or s[N -1]==2)

Fig. 1. Textbook description of a self-stabilizing mutual exclusion algorithm [9, Section
17.3.2] (top) and specification in Dione (bottom).

topologies, leader election algorithms, and the CAN bus Arbitration. These
showcase how protocols and requirements for an arbitrary number of processes
can be modeled with parallel composition and collection types.
(iii) Finally, we have demonstrated that Dione can achieve a promising level of
proof automation. The ratio lengths of Dione specifications to Dafny models
plus proofs is about 1:3 to 1:5. In the worst case only two out of five lemmas
require user specified proof strategies. In particular, (a) for self-stabilization
algorithms, our verifier is able to prove invariants for an arbitrary number of
processes by k-induction with one or two manually added basic facts about a
generic sequence. (b) For the leader election algorithm and CAN bus Arbitration,
we show that auxiliary invariants or over-approximation of transitions can be
easily integrated to fully automate verification, and over-approximation itself
can be automatically validated by the verifier.

Related Work. In addition to the related works mentioned earlier, the translation
by Dione resembles the translation to Larch [3] as both are using First Order
Theories. Dione benefits from the advancement in SMT solving and program
verification. With better understanding on the efficiency and decidability of SMT
solving, Dione is designed to achieve higher automation using Dafny. In return,
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it is difficult to specify user-defined sorts and theories not supported by Dafny
in comparison with [3] and other works.

The design decision to translate IOA to Dafny is greatly influenced by the
modeling techniques in IronFleet [11]. The objective of IronFleet project and
our work however are very different. IronFleet focused on connecting layers of
abstractions from specification to implementation. Their proofs of refinement
based on Temporal Logic of Actions (TLA) were manually written. In compari-
son, our work aims to achieve higher automation on invariant checking for IOA
and provides an IOA language with Dafny translation to reduce user effort.

More broadly, Tuttle and Goel [26] demonstrated how to use the SMT-based
checker, DVF, to verify a consensus protocol. Ivy [23] recently explored using
EPR, a decidable fragment of FOL, to model and verify infinite state transition
systems. However, the DVF model for the protocol explicitly described the global
state transition system instead of the local state of a participant of the protocol,
and Ivy defined the execution of a protocol as one RML program within only
one while loop; it is likely cumbersome to cleanly model parallel composition
in both DVF and Ivy languages. Moreover, it is unclear how to specify which
automaton has control over certain actions. On the other hand, our IOA-based
language provides a language construct to explicitly specify components of a
composition as well as input and output keywords to denote the controlling
automaton of actions. For our purpose of verifying IOA, we believe DVF and
Ivy can be used as alternative back-ends for Dione with proper translations.

Lastly, our work complements existing works in ensuring correct implemen-
tation of distributed protocols. Verdi [27], Chapar [18], Project Everest [2], to
name a few, verified programs in high level language and synthesized low level
implementations. As reported in Verdi [27], the ratio length of verified programs
and manual proofs is at least 1:3. Our proof generation techniques may be used
to reduce manual effort in proving high level programs.

2 Background: Brief overview of IOA

Mathematical Notations. Let X be a finite set of variable names. To model
variables with static types, we assume a function type(x) to return the set of
possible values for x. A valuation, s, is a mapping from x ∈ X to a value
s(x) ∈ type(x), and val(X) denotes the set of all possible valuations of X. For
a valuation s ∈ val(X) and a subset of variable names Y ⊆ X, we use s d Y to
denote the restriction of s to Y .

Input/Output Automata. An IOA [20], A = (Σ,X,Q,Θ, δ), is a tuple where
(i) Σ = ΣI ∪̇ΣO∪̇ΣH is the set of all actions partitioned into ΣI , ΣO, and ΣH

representing input, output, and internal actions, respectively. (ii) X is a finite
set of state variable names. (iii) Q ⊆ val(X) is the set of states (iv) Θ ⊆ Q is the
set of initial states. (v) δ ⊆ Q×Σ ×Q is the transition relation. An important
requirement for an IOA A is that it is input enabled. That is, it cannot block
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input actions. Formally,

∀s ∈ Q, a ∈ ΣI ,∃s′ ∈ Q, (s, a, s′) ∈ δ

A pair of IOA A1 and A2 are compatible if and only if the following holds:
(i) Output actions are disjoint, i.e., ΣO

1 ∩ ΣO
2 = ∅; (ii) Internal actions are

only used by itself, i.e., ΣH
1 ∩ Σ2 = ΣH

2 ∩ Σ1 = ∅; and (iii) Variable names
are disjoint, i.e., X1 ∩ X2 = ∅. This ensures that a composition of compatible
automata (defined next) is also an IOA.

Given two compatible automata A1 and A2, we can construct the parallel
composition automaton A1 ‖ A2 = (Σ,X,Q,Θ, δ) where

(i) ΣI = (ΣI
1 ∪ΣI

2 ) \ (ΣO
1 ∪ΣO

2 ); ΣO = ΣO
1 ∪ΣO

2 ; ΣH = ΣH
1 ∪ΣH

2
(ii) X = X1 ∪X2
(iii) Q = {s ∈ val(X) | s d X1 ∈ Q1 ∧ s d X2 ∈ Q2}
(iv) Θ = {s ∈ Q | s d X1 ∈ Θ1 ∧ s d X2 ∈ Θ2}
(v) The transition δ is defined as follows with shorthand expressions s1 = s d X1,

s2 = s d X2, s′1 = s′ d X1, and s′2 = s′ d X2:

{(s, a, s′) ∈ Q×Σ ×Q | (a ∈ Σ1 ⇒ (s1, a, s
′
1) ∈ δ1) ∧ (a /∈ Σ1 ⇒ s1 = s′1)

∧(a ∈ Σ2 ⇒ (s2, a, s
′
2) ∈ δ2) ∧ (a /∈ Σ2 ⇒ s2 = s′2)}

It can be checked that the composed automaton A1 ‖ A2 is indeed an IOA.
The theory of IOA also defines executions, traces, invariance, abstractions, re-
finements, forward-backward simulation relations, and substitutivity properties.
We refer the interested reader to [20,8] for more complete overview.

IOA with Parameters. To concisely model a distributed protocol, a standard
practice is to use parameterized automaton specifications. Formal parameters
may appear in names of automata, actions, and in all the predicate and transition
definitions. This interdependence of parameters and variables make compatibility
and composition nontrivial to implement.

For example, it is standard to assume that each participating process is dis-
tinguished by a unique address ip, and that messages are tagged with source and
destination ips. We can specify the address as a parameter ip of Addr type and
define a family of automata {Aip}ip∈Addr. The complete behavior of the protocol
is then modeled by composing automata instantiated with distinct ips. For spec-
ifying one output action sending a message, we can use a tuple (src, dst, ...) to
represent a tagged message. However, in order to satisfy compatibility criteria,
the set of output actions ΣO

ip for sending messages has to be constrained by
ip, e.g., ΣO

ip = {(src, dst, ...)|src, dst ∈ Addr ∧ src = ip}, or else the action sets
for different automaton instances may intersect. Consequently, it is not obvious
whether the compatibility criteria are satisfied when the constraints are more
complex, or when a composite automaton is used in another composition. Hence,
it is important to have an automated check of the compatibility criteria.
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3 Overview of Dione

In this section, we discuss the design and features of Dione as well as the
translation from Dione language to Dafny for model checking.

3.1 Dione Language

To provide users a familiar modeling language for IOA while allowing Dione to
be extensible, Dione language borrows the syntax from one of the most popular
programming languages, Python. This design decision allows us to potentially
embed Dione into normal Python programs and use existing Python pack-
ages such as Z3Py for verification. Further, our tools benefit from existing and
advanced compiler/interpreter infrastructure of Python, and in the future an
interpreter for Dione programs could be built on top of Python.

The syntax of Dione is a strict subset of Python 3.7 syntax. We interpret
Dione code as defining an IOA as in [8]. At the top level of a Dione program,
one can only define either a type or an automaton.

Data Types. A type definition is simply an assignment with type hints. The left
hand side is annotated with the built-in base meta-type, type , to indicate the
identifier represents a type. On the right hand side, one can provide an existing
type to create a type synonym, or use a built-in type constructor to build new
types, for example Enum and NamedTuple in Figure 2. The list of built-in
types for Dione can be found in our project website [12].

Automata. An automaton definition uses a Python function definition syn-
tax decorated with either @ automaton or @ composition to define a primi-
tive or a composite automaton. The function parameters naturally serve as the
parameters of the automaton. One can optionally add an assignment to the
where variable to bound the parameter values for the automaton. For a primi-
tive automaton, four Dione program constructs, namely states , initially ,
signature , and transitions , are required to specify state variables, ini-
tial states, the signature, and the transition relation as discussed in Section 2.
For a composition, components is required to specify the component au-
tomata. For either primitive or composite automaton, one can optionally assign
an invariant_of variable to specify the invariant.

States. The states class is to specify variables X and consists of only variables
annotated with types as shown in Figure 2. The initially variable should
be assigned with a Boolean expression over state variables and/or automaton
parameter. An allowed initial state is when initially is evaluated to true.

Signature and Transitions. The signature class is for declaring the set of
actions used in the automaton. It should contain only functions decorated with
@input , @ output , or @ internal , to declare an action in ΣI , ΣO, or ΣH .
Similarly, an assignment to where can be added to bound the parameters of
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1 Loc: type = nat
2 Addr: type = Enum[A, B, C]
3 Msg: type = NamedTuple [src: Addr ,
4 dst: Addr ,
5 val: int]
6 @ automaton
7 def Proc(ip: Addr , b: int ):
8 where = b >=10
9 class states :

10 pc: Loc
11 x: int
12 initially = (pc ==1 and 0<=x<b)

Fig. 2. Dione types and states.

1 type Loc = nat
2 datatype Addr = A | B | C
3 datatype Msg = Msg( s r c : Addr ,
4 d s t : Addr ,
5 v a l : i n t )
6 datatype Parameter = Parameter (
7 i p : Addr , b: i n t )
8 datatype S t a t e = S t a t e ( pc : Loc , x : i n t )
9 p r e d i c a t e aut_where ( p: Parameter )

10 { p . b ≥ 10 }
11 p r e d i c a t e i n i t i a l l y (
12 s : State , p: Parameter )
13 { s . pc = 1 ∧ 0 ≤ s . x < p . b }

Fig. 3. Translated Dafny from Figure 2.

the action. The where clause is crucial for sharing a same action name across
multiple automata. For instance, the output action send defined in Figure 4 is
constrained with messages sent from its own ip. Without the constraint, there
can be no compatible automata using send as an output action because their
output sets of actions are not disjoint. With the constraint, other automata
using send as an output action are still compatible if the source address is not
ip. To define transition relation for the automaton in transitions class, we
follow [8] to specify preconditions and effects for actions. As show in Figure 4,
the action is decorated with @pre as the precondition, and the effect of this
action is specified within the function body. Currently, Dione allows only some
commonly used Python statements and expressions in the effect. An updated
list of supported statements and expressions is available on our website [12].

Composition. The components class is required for specifying a composite
automaton. It is a list of component names annotated by the automaton in-
stantiated with actual parameter values. For Figure 6 as an example, the Sys
automaton is composed of three components, p1, p2, and env. Both p1 and
p2 are instances of automaton Proc , and env is an instance of Env.

3.2 Translating Dione to Dafny

In this section, we informally describe the translation of program constructs
from Dione to Dafny in our implementation. In particular, we illustrate the
insights into systematically translating from notions of sets, subsets, and tran-
sitions in Section 2 to data types and predicates expressible in Dafny. We first
describe translating all constructs for one automaton with parameters and then
we provide the composition of automata with compatibility checks by Dafny.

Data Types. Benefitting from the rich types available in Dafny, a broad class of
types are supported in Dione. Primitive types such as bool , int, str, nat,
real , and bvN (bit-vectors with N bits) are translated to equivalent types in
Dafny. Python type float however is not supported due to the limitation of
Dafny. Collection types including Mapping , Sequence , Set, and Counter
are available as map, seq, set, and multiset respectively. NamedTuple ,



8 Chiao Hsieh and Sayan Mitra

1 class signature :
2 @ output
3 def send(m: Msg ):
4 where = (m.src ==ip)
5 @input
6 def recv(m: Msg ): pass
7 @ internal
8 def hide(k: int ): pass
9

10 class transitions :
11 @ output
12 @pre(m== Msg(ip , B, 10)
13 and pc ==1)
14 def send(m):
15 pc = pc + 1
16 x = x + m.val

Fig. 4. Dione signature and tran-
sitions.

1 datatype Act ion=send (m: Msg ) | r e c v (m: Msg)
2 | h i d e ( k: i n t )
3 p r e d i c a t e Output ( ac t : Act ion , p: Parameter )
4 { ac t . send ? ∧ ac t .m. s r c = p . i p }
5 p r e d i c a t e I n p u t ( ac t : Act ion , p: Parameter )
6 { ac t . r e c v ? }
7 p r e d i c a t e I n t e r n a l ( ac t : Act ion , p: Parameter )
8 { ac t . h i d e ? }
9 p r e d i c a t e S i g n a t u r e ( ac t : Act ion , p: Parameter )

10 { Output ( act , p ) ∨ I n p u t ( act , p )
11 ∨ I n t e r n a l ( act , p )}
12 p r e d i c a t e pre_send ( ac t : Act ion , s : State ,
13 p: Parameter )
14 { ac t . send ? ∧ ac t .m=Msg( p . ip , B, 1 0 ) ∧ s . pc=1 }
15 f u n c t i o n e f f _ s e n d ( ac t : Act ion , s : State ,
16 p: Parameter ) : S t a t e
17 r e q u i r e s pre_send ( act , s ) {
18 var s : S t a t e := s . ( pc := s . pc +1);
19 var s : S t a t e := s . ( x := s . x+ac t .m. v a l ) ; s }

Fig. 5. Translated Dafny from Figure 4.

Enum , and Union are directly modeled with inductive data types in Dafny.
Currently, we do not allow other kinds of user defined types for simplicity.

States and Automaton Parameters. The states class is used to declare vari-
ables of an automaton, or formally val(X). Instead of directly using a function
or map in Dafny for mapping from variable names X to values, we model the
state with a record type, a special case of inductive data types with only one
constructor. Each field of the record type then corresponds to a variable of the
automaton. Similarly, we introduce a new record type Parameter to model
the parameter space of the automaton. For the example in Figure 3, we simply
define a Parameter type (line 6) and a State type (line 8). The bound over
the parameter space is translated into the aut_where predicate (line 9). Ini-
tial set of states specified through (pc ==1 and 0<=x<b) is translated to the
initially predicate below:

predicate initially (s: State ,p: Parameter )
{ s.pc = 1 ∧ 0 ≤ s.x < p.b }

Notice that initially refers to the parameter and bound the value of s.x
with p.b. Hence, checking s ∈ Θp is equivalent to asking initially (s,p).

Actions and Transitions. To model the set of actions for a network of automata,
we collect all actions declared in the signature class from all automata. We
then specify an algebraic data type Action with each action as an individual
constructor. For example, we specify Action with two constructors send and
recv at line 1 in Figure 5 representing sending and receiving messages where the
message m is a parameter of the action. For each automaton, the three predicates
input , output , and internal symbolically represent ΣI

p , ΣO
p , and ΣH

p . Sim-
ilarly, the translation makes sure act ∈ ΣO

p is equivalent to output (act ,p)
and so on. For example, output predicate (line 3) constrains the source m.src
of sent messages with its own ip.



Dione: A protocol verification system built with Dafny for I/O Automata 9

1 @ automaton
2 def Proc(ip: Addr ,
3 b: int ):
4 ...
5
6 @ automaton
7 def Env ():
8 ...
9

10 @ composition
11 def Sys ():
12 class components :
13 env: Env ()
14 p1: Proc(A ,10)
15 p2: Proc(B ,20)
16
17 invariant_of = \
18 0 <= p1.x < 10

Fig. 6. Dione composition.

1 module Type { type Msg = . . . ; type Act ion = . . . }
2 module Proc { import Type
3 type S t a t e = . . . ; datatype Parameter = . . .
4 {: A l l p r e d i c a t e s and f u n c t i o n s } }
5 module Env { import Type ; type S t a t e = . . .
6 {: A l l p r e d i c a t e s and f u n c t i o n s } }
7 module Sys { import Env ; import Proc
8 datatype S t a t e = S t a t e ( env : Env . State ,
9 p1: Proc . State ,

10 p2: Proc . S t a t e )
11 p r e d i c a t e output ( ac t : Act ion ) {
12 Env . output ( ac t )
13 ∨ Proc . output ( act , Proc . Parameter (A, 1 0 ) )
14 ∨ Proc . output ( act , Proc . Parameter (B, 2 0 ) ) }
15 // S i m i l a r f o r input , output , i n t e r n a l , e t c .
16 p r e d i c a t e i n v a r i a n t _ o f ( s : S t a t e )
17 { 0 ≤ s . p1 . x < 10 }
18 } // End Sys

Fig. 7. Translated Dafny from Figure 6.

The precondition @pre for each transition is represented by a predicate ,
and the body of each transition is rewritten to an effect function using LET
expressions (“var . . . ;” in Dafny). The translation for the limited kinds
of statements in Dione, such as assignments and if-conditions, to a function
producing a new state is not specific to Dafny. It has been discussed thoroughly
in other works such as [19] for PVS. We recommend interested readers to refer
to [19] for details. The only major difference is that, we further specify the
precondition of the effect function with requires clause. This instructs Dafny
verifier to only consider states and actions satisfying the precondition.

Lastly, given all pairs of translated (pre_i ,eff_i) for the automaton, the
whole transition relation δ ⊆ Q × Σ × Q is modeled by the transitions
predicate over current state s, a given action act, and next state s’ as follows.

predicate transitions (s: State , act : Action , s’: State)
{ (pre_1(act ,s) ∧ s’=eff_1(act ,s)) ∨ (pre_2(act ,s) ∧ s’=eff_2(act ,s)) ∨ . . . }

Primitive Automaton with Parameters. A primitive automaton is translated
into a Dafny module to group Parameter and State types as well as
functions and predicates defining actions and transitions. Action type
and other types shared across multiple automata are declared as a separate
module and imported to each automaton module. An example layout is shown
in Figure 7. Note that both automata can define its own Parameter and
State types without causing naming collision.

Composition and Invariants. Given all component automata and their cor-
responding modules, we define another module and import those compo-
nent modules. We then can define State for the composition with State
from each component module . The State essentially represents the Carte-
sian product of each component state space. With the new State type, we can
then define the necessary predicates, namely initially , input , output ,
internal , and transitions , according to the composition operation de-
fined in Section 2. For Figure 7 as an example, we can implement output
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predicate (line 11) using the disjunction of output from each component to
represent ΣO

Sys = ΣO
Env ∪ΣO

P roc(A,10) ∪Σ
O
P roc(B,20). Do notice that the parame-

ter value for instantiating each component automaton needs to be passed down
to the predicates from sub-modules. Finally, translating an invariant of an au-
tomaton becomes defining an invariant_of predicate with current state as
the argument and is similar to defining initially .

Checking Compatibility Axioms for IOA. In specifying systems in IOA, several
simple mistakes are easily overlooked when designing larger and more compli-
cated systems. We list three required axioms when specifying IOA and provide
translated lemmas below to detect simple violations with Dafny. For simplicity,
we do not include parameters here. The first lemma simply states ΣI , ΣO, and
ΣH are mutually disjoint. The second lemma checks the IOA is input-enabled,
i.e., ∀s ∈ Q.a ∈ ΣI .∃s′ ∈ Q.(s, a, s′) ∈ δ. The third states that two component
IOAs assigned with concrete parameters are compatible when ΣO

1 ∩ΣO
2 = ∅ and

ΣH
1 ∩Σ2 = ΣH

2 ∩Σ1 = ∅.2

lemma disjoint_actions_proof ?(a: Action )
ensures ¬(input(a) ∧ output (a))

∧ ¬(input(a) ∧ internal (a))
∧ ¬( output (a) ∧ internal (a))

lemma input_enabled_proof ?(a: Action , s: State)
requires input(a)
ensures ∃ s’ • transitions (s,a,s’)

lemma compatibility_proof ?(a: Action )
ensures ¬(P1. output (a) ∧ P2. output (a))

∧ ¬(P1. internal (a) ∧ P2. signature (a))
∧ ¬(P1. signature (a) ∧ P2. internal (a))

3.3 Bounded Model Checking and k-induction with Dafny

With the system automaton with invariant specification translated to Dafny,
we now discuss how to perform Bounded Model Checking (BMC) to detect
violations. Given a bound k, BMC intends to prove that the invariant holds
at any state reachable from initial states in k transitions. Formally, given a
candidate invariant ϕ, we check the validity of following proposition:

∀s0, a1, s1, ..., ak, sk, (s0 ∈ Θ ∧
i<k∧
i=0

δ(si, ai+1, si+1)) =⇒
i<k+1∧

i=0
ϕ(si) (1)

We can ask Dafny to prove the following equivalent lemma :
lemma bmc_proof ?(s0: State ,a1: Action ,s1: State ,. . .,ak: Action ,sk: State)

requires initially (s0 ) ∧ transitions (s0 ,a1 ,s1 ) ∧ . . .∧ transitions (sk−1 ,ak ,sk )
ensures invariant_of (s0 ) ∧ invariant_of (s1 ) ∧ . . .∧ invariant_of (sk )

The underlying engine of Dafny translates the lemma further into formulas
in First Order Theories supported by SMT solver, Microsoft Z3. If the lemma is
2 Question mark ‘?’ and prime symbol ‘’’ are allowed in identifiers in Dafny.
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Table 1. Protocols verified with Dione. #A is the number of primitive and composite
automata. #Ln (resp., #Ty, #Fn, #Lem) is the total number of lines (resp., custom
types, functions, lemmas) in Dione or Dafny code. Numbers inside parentheses indi-
cate manually added items for proving. #k is the number of transitions for BMC and
induction proof. #PO is the number of proof obligations reported by Dafny. Time
and Mem shows the time and peak memory usage to prove with Dafny.

Dione Dafny Time Mem
Protocol #A #Ty #Ln #Ty #Fn #Lem #Ln #k #PO (s) (MB)

StableArray 1 1 24 4 17(0) 4(1) 115 0 32 4 84.5
StableRing 1 1 20 3 13(0) 5(2) 115 0 66 166 377.6
AsyncLCR 2 2 47 7 26(2) 5(0) 159 0 51 3 100.3
CANArb 3 2 62 6 38(5) 6(0) 333 24 60 287 169.7

proven, then it proves no violation within k transitions. Otherwise, Z3 returns
a valuation disproving the formula, and we can use the debugger in the Dafny
tool chain to find the valuation of state and action variables. That is, we can
reconstruct the execution from a counterexample of Proposition 1.

Similarly, to prove invariant ϕ by k-induction, we prove Proposition 1 to
ensure the states reachable in k-steps are within the invariant, and then prove
Proposition 2 to show the invariant is inductive at (k + 1)-th step:

∀s0, a1, s1, ..., ak+1, sk+1, (
i<k+1∧

i=0
ϕ(si) ∧ δ(si, ai+1, si+1)) =⇒ ϕ(sk+1) (2)

Or in Dafny:
lemma induction_proof ?(s0: State ,a1: Action ,s1: State ,. . .,

ak: Action ,sk: State ,ak+1: Action ,sk+1: State)
requires invariant_of (s0 ) ∧ transitions (s0 ,a1 ,s1 ) ∧ . . .

∧ invariant_of (sk ) ∧ transitions (sk ,ak+1 ,sk+1 )
ensures invariant_of (sk+1 )

4 Case Studies with Dione

To study the capability of Dione, we analyze four distributed protocols with
different network topologies, applications, and invariant properties using Dione:
The first two, StableArray and StableRing, are self-stabilizing mutual exclu-
sion algorithms on an array and a ring network, AsyncLCR is a classic leader
election algorithm on a ring, and CANArb is the protocol that arbitrates the ac-
cess to CAN bus. For each case study, we first describe our Dione models and
invariants, then explain necessary auxiliary lemmas and functions added in the
translated Dafny code for verification, and finally discuss verification results
based on BMC and k-induction using the Dafny verifier. All experiments are
conducted with Dafny 2.2.0 on Ubuntu 18.04 LTS running on Intel Xeon CPU
E3-1240 v3 at 3.40GHz with 4 cores and 8 GB RAM. To obtain the verification



12 Chiao Hsieh and Sayan Mitra

results, all invariants for one system are conjuncted together as one big invariant
predicate. Dafny would verify all lemmas specified in a case study including dis-
jointness of actions for primitive automata, compatibility in compositions, BMC,
and k-induction for invariant checking. Each reported time and memory usage
is the average of running Dafny three times. All our code, the Dione transla-
tor, the input specifications for the examples in Dione language,3 their Dafny
translations, and the proofs4 are available at our repository.

4.1 Self-stabilization Protocol on a Bidirectional Array

StableArray in Figure 1 is the self-stabilizing algorithm for mutual exclusion
on a bidirectional array topology from [9, Section 17.3.2]. The system consists
of an array of N processes with at least two processes, i.e., N ≥ 2. All processes
except for process 0 and N − 1 can remain in any of {0, 1, 2, 3} states. Process
0 should stay in {1, 3}, and process N − 1 should stay in {0, 2}. We model the
system with a global state variable, s, of sequence type with the length |s| = N ,
and each process state s[i] is of an enumeration type from 0 to 3, and we also
specify that s[0] should be 1 or 3 and s[N − 1] be 0 or 2. Formally, the following
invariant should trivially hold for StableArray:

Invariant 1. |s| = N ∧ (s[0] = 1 ∨ s[0] = 3) ∧ (s[N − 1] = 0 ∨ s[N − 1] = 2)

A process i is considered holding a token if any of its neighbor process j
satisfies s[j] = incre(s[i]) where incre finds the next value in the enumeration
type, equivalently, incre(n) = (n+ 1)%4. A process i holding a token except for
process 0 and N − 1 can initiate a transition to copy the state from the above
mentioned neighbor j. If process 0 or N − 1 is holding a token, it increments
twice, i.e., s[0] = incre(incre(s[0])). For achieving mutual exclusion, a legal
configuration of the system is when the number of processes holding tokens is
exactly one. A desired invariant is that, once in a legal configuration, the system
continues to be in the legal configuration. Here we prove a relaxed invariant that
the number of processes holding a token is at most one. Formally,

Invariant 2.

∣∣∣∣∣
{
i | 0 ≤ i < N ∧

(
i 6= 0 ∧ s[i− 1] = incre(s[i]) ∨
i 6= N − 1 ∧ s[i+ 1] = incre(s[i])

)}∣∣∣∣∣ ≤ 1

We can specify the conjunction of Invariant 1 and 2 in Dione as below:
(len(s)==N and (s [0]==1 or s [0]==3) and (s[N -1]==0 or s[N -1]==2))

and (len ({i for i in range (0, len(s)) if (i!=0 and s[i -1]== incre(s[i]) or
i!=N-1 and s[i+1]== incre(s[i]))}) <= 1)

Proof Strategy. As shown in Table 1, we are able to automatically prove that
the conjunction of Invariant 1 and 2 is an inductive invariant for arbitrarily
many processes (N) in 4 seconds. We however needed to manually introduce
3 See https://github.com/cyphyhouse/Dione/tree/master/system_tests/ioa_examples
4 See https://github.com/cyphyhouse/Dione/tree/master/system_tests/expected_dafny

https://github.com/cyphyhouse/Dione/tree/master/system_tests/ioa_examples
https://github.com/cyphyhouse/Dione/tree/master/system_tests/expected_dafny
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one auxiliary fact (lemma) in the translated Dafny code to make the proof
go through by induction. The intuition behind this lemma is that, when some
process i makes a transition, only processes i− 1, i, and i+ 1 can either lose or
gain tokens, and all other processes should remain the same. Therefore, the set of
processes holding tokens before and after a transition could only differ for these
three processes. This extra lemma simply enumerates all eight cases where the
size of the set may either increase, decrease, or remain the same, and Dafny
is able to prove this lemma automatically. We then use this lemma over the
two states before and after a transition in specifying the proof strategy, Dafny
verifier further infers that those cases where the size increases are impossible
and successfully proves that the invariant is inductive.

4.2 Self-stabilization Protocol on a Ring

The second case study StableRing is the Dijkstra’s famous self-stabilizing algo-
rithm for mutual exclusion on a ring [9, Section 17.3.1]. The system is parameter-
ized with an arbitrary number of N processes and K states where N < K. Each
process always stays in one of states 0, ...,K− 1. Similarly, we model the system
with a global sequence s as the state variable with |s| = N and 0 ≤ s[i] < K
for each process i; the following invariant should be maintained (we skip Dione
versions from now on):

Invariant 3. |s| = N ∧ ∀i(0 ≤ i < N =⇒ 0 ≤ s[i] < K)

Process i is considered holding a token by checking its predecessor i− 1 and see
if it’s in one of two conditions: (1) i = 0 ∧ s[i] = s[N − 1] or (2) i 6= 0 ∧ s[i] 6=
s[i − 1]. Any process except process 0 holding a token can initiate a transition
to copy the state from its predecessor in the ring, i.e., s[i] = s[i− 1]. If process
0 is holding a token, it can assign itself the value from process N − 1 plus
one, i.e., s[0] = (s[N − 1] + 1)%K. Likewise, a legal configuration is defined as
that only one process is holding a token. For StableRing, we prove the desired
invariant that, once in a legal configuration, the system continues to be in the
legal configuration. Formally, the following invariant should hold:

Invariant 4.

∣∣∣∣∣
{
i | 0 ≤ i < N ∧

(
i = 0 ∧ s[i] = s[N − 1]∨
i 6= 0 ∧ s[i] 6= s[i− 1]

)}∣∣∣∣∣ = 1

Proof Strategy. As reported in Table 1, two of five lemmas are manually written
to prove Invariant 4. Our first lemma is to establish the axiom that, if an element
i is in a set I, then |I| = 1 ⇐⇒ I = {i}. This helps Dafny infer from inductive
hypothesis that only one process i was holding a token in the prestate s before a
transition. Notice that after transition, process i′ = (i+1)%N will replace process
i to hold the token. This leads to only two possible scenarios in the state after
transition s′: (1) i′ = 0 and every process state is the same as its predecessor OR
(2) i′ 6= 0 and only process state s′[i′] is different from its predecessor. Otherwise,
at least two processes will be different from their predecessors and hence holding
tokens. The difficulty for Dafny here is to infer s′[0] = s′[N −1] in scenario 1 to
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show process 0 is holding a token and s′[j] = s′[j− 1] in scenario 2 so that every
other process j does not hold a token. Based on this observation, the second
simple lemma we add asserts that, if every element is equal to its predecessor in
a sequence, then all elements are identical. This lemma can be proven by Dafny
by induction on the length of the sequence. Our proof strategy thus simply splits
into two cases i = N − 1 and i 6= N − 1 and applies the lemma over appropriate
(sub-)sequences of s′. Dafny can then infer the intermediate result mentioned
above and prove the invariant inductively.

4.3 Asynchronous Leader Election on a Ring

Our third case study explores the possibility to use Dione to model parameter-
ized systems via composition and check the correctness. AsyncLCR is a simplified
version of the leader election algorithm from [20, Section 15.1]. In this system,
each process is instantiated with a unique u ∈ UID for voting. The main algo-
rithm flow is the following: Each process maintains a queue q of votes to be sent
to its successor and a status variable initialized as UNKNOWN. When a vote from its
predecessor is delivered, only the vote greater than u is added into the queue. The
leader is decided when a process receives a vote v where v = u and sets its status
to CHOSEN. A process with status = CHOSEN can then report itself as the leader
and set its status to REPORTED. The algorithm guarantees that the reported
leader process should have the maximum UID over all processes. For simplicity,
our model first assumes the vote is delivered instantaneously and removes the
need of channel automata by merging send and receive into one send_recv
action. Second, although it is straightforward to model an arbitrary number of
processes in Dione, we only consider three processes to reduce the verification
effort in this study. Thus, our model for the system is a composition of three
automata {P0, P1, P2}. Each Pi is an instance of the same automaton design
assigned with actual parameters, the index i and the UID value ui. We prove
the key invariant described in [20] that no process other than the process with
the max UID can report itself as the leader. Formally,

Invariant 5.
2∧

i=0
(ui 6= max(u0, u1, u2) =⇒ Pi.status = UNKNOWN)

Proof Strategy. In Table 1, we reported that two functions and no extra lemmas
are needed. These two functions, needed for an auxiliary invariant, are currently
not expressible in Dione. The first required function finds the greatest ui and
returns the index i; here we use a variable imax to represent the return value
for simplicity. The second function between(lo, i, hi) checks if lo must pass thru
i to reach hi in the ring topology where lo 6= i and lo 6= hi. We then use both
functions to build the invariant modified from [20]:

Invariant 6.
2∧

i=0

2∧
j=0∧j 6=i

(i 6= imax ∧ between(i, imax, j)) =⇒ ui /∈ Pj .q
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Fig. 8. Complete CAN data frame structure (Top). Example arbitration with three nodes and CAN
Data observed on bus (Bottom).

This invariant is to prove that, when i must reach imax before reaching j, the
vote ui should have been dropped before reaching j; therefore ui should never
appear in the queue of process j. Dafny is able to prove the conjunction of
Invariant 5 and 6 to be inductive without any additional lemma.

4.4 CAN bus Arbitration

In our last case study, we consider a vastly different communication protocol, the
arbitration protocol for Controller Area Network (CAN bus). CAN bus is a long
lasting and extremely popular communication protocol for Electronic Control
Units (ECUs) in automotive. Specifically, the data link layer of CAN bus im-
plements a Carrier-Sense Multiple Access with Collision Detection (CSMA/CD)
type of protocols to arbitrate between ECUs and grant access to CAN bus to
only one ECU at a certain time. In this section, we first describe this arbitration
protocol, then give our Dione model for the protocol, and finally provide our
proof strategy for checking invariant.

CAN bus Arbitration. According to the ISO standard [13, Section 10.4], it is
assumed that all ECUs (or nodes) are synchronized with a global clock for bit
transmission, and every node implements the same mechanism to serially trans-
mit and receive CAN data frame as shown in Figure 8. The frame starts with a
start of frame (SOF bit) bit that must be DOMINANT value (logical 0) followed
by a 11-bit arbitration field (ID bits) representing the priority of this frame where
a smaller value of ID bits represents a higher priority. Otherwise, a node keeps
sending RECESSIVE value (logical 1) when it is not sending data. Further, all
nodes are connected to the CAN bus. The CAN bus can be considered as a
logical conjunction of an arbitrary number of inputs from all nodes so that it
outputs logical 0 if any node sends logical 0 in a cycle.

Arbitration happens only when multiple nodes simultaneously attempt to
send a data frame. More precisely, multiple nodes simultaneously transmit SOF
and the 11-bit arbitration field of the frames bit by bit in each cycle. Figure 8
shows an arbitration between three nodes, Node 2, 5, and 14, sending CAN
frames with priority 0010101010, 00000100110, and 00000110100. Bus row rep-
resents the bit values monitored on bus. When the bits sent by different nodes
differs, nodes sending logical 0 win over those sending logical 1 such as at ID8
and ID4. Nodes who lost the arbitration then stop transmitting and only send
logical 1 ever after. At the end of the arbitration, the node sending the data
frame with the highest priority wins. For example, node 5 wins and transmits
the rest of frame in Figure 8.

Finally, a major property of CAN bus Arbitration specified in [13, Section
6.3] states the following: “The transmitter with the frame of highest priority
shall gain the bus access”. The standard also explicitly explains that the priority



16 Chiao Hsieh and Sayan Mitra

of different frames are assumed to be distinct. The statement can paraphrased
and formalized as the following equivalent invariant: “The ECU with the frame
of highest priority shall keep transmitting in every cycle”.

Dione Model. Our Dione model is designed following specifications in [13]. The
system is composed of a NodeSeq automaton and a Bus channel automaton.
The NodeSeq automaton is an abstraction of an arbitrary number of nodes. Its
state consists of a pos to indicate which ID bit is currently transmitted and a
sequence of NodeStates for individual nodes. Each node has an arb variable
for the 11-bit arbitration field and a transmit variable to denote if this node is
transmitting. Initially, pos starts at 10 and transmit is True to model that
all nodes start to send at the same time. The Bus automaton simply has one
state variable bus to represent the current bus state at each cycle. This Bus
automaton can be considered as a broadcast channel where all nodes send to
and recv from the Bus automaton.

To model synchronized communication, a cycle is modeled with a send action
followed by a recv action. At the send action, NodeSeq outputs msgs modeling
the sequence of bits with each bit sent from one node. Each node either extracts
the bit from arb at current pos via a built-in function bv_extract , or sends
logical 1 if it already stopped transmitting. Bus automaton then reads msgs ,
computes the logical conjunction via universal quantification, and stores the
result in bus. At the recv action, Bus automaton publishes the value of bus
as msg back to each node. Upon receiving msg from Bus in the recv action,
each node then compares if the received bit is what it transmitted. If a node
observes unequal bit values, then this node will set its transmit to False
to stop transmitting. Notice that this requires an iteration through all nodes.
Here, we choose to support list comprehension syntax in Python and create a
new sequence of NodeState from the old sequence with each node updated
accordingly. This eliminates the need for a loop structure and simplifies the
translation. After all nodes are updated, pos is decremented until it is negative.

Lastly, given the index imin of the node with the highest priority, i.e., the
smallest arbitration field, the invariant simply means the transmit of node
imin should stay True . The invariant is formulated as below:
Invariant 7. |nodes| ≥ 1 ∧ nodes[imin].transmit

Proof Strategy. In order to prove the invariant for this case study, we have to
manually introduce the following code in Dafny. First, to reflect the synchro-
nized communication, one send and one recv action compose a cycle; hence
assumptions over actions are added to consider only the executions composed of
alternating send and recv actions. Second, four auxiliary functions are added
to support translating the aforementioned list comprehension expression. These
functions are for generic type of lists and therefore can be reused in more cases.
Finally, we have to manually figure an over-approximation of one effect of the
recv action, and use this approximation in the transition relation instead. For-
tunately, we can instruct Dafny to automatically check whether the approxi-
mation is indeed an over-approximation.
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With above mentioned manual efforts, Dafny is able to prove both BMC
and induction with k = 24. k = 24 is simply because there are only 11 bits
in arbitration field, and hence the states should stay the same ever after 12
cycles, i.e., 24 transitions. This showcases the potential of Dione in verifying
parameterized system composed with different channel or environment models,
and this can be achieved within a manageable amount of manual effort.

5 Conclusion

We presented Dione, a formal framework for analyzing distributed systems with
specification language based on I/O automata and verification methods powered
by Dafny. The key compatibility conditions for IOA models are encoded as
lemmas that can be automatically discharged by Dafny in all of our cases. Our
case studies show that a range of different distributed protocols can be natu-
rally modeled in Dione for Bounded Model Checking and k-induction invariant
checking. The translated Dafny specifications in the case studies were analyzed
with Dafny verifier automatically, with little extra manual annotations. These
results are encouraging, and suggest several exciting future directions. (1) In
the spirit of [11], IOA specifications could be translated to synthesizable Dafny
code, and hence, to correct-by-construction C# implementations for protocols.
(2) Uniform or parameterized verification for distributed systems using small
model properties [24] or theory of arrays [10]. Finally, (3) Dione could be ex-
tended to support timed, hybrid, and probabilistic I/O Automata [14].
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