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Abstract. In this paper, we investigate how symmetry transformations of equiv-
ariant dynamical systems can reduce the computation effort for safety verifica-
tion. Symmetry transformations of equivariant systems map solutions to other
solutions. We build upon this result, producing reachsets from other previously
computed reachsets. We augment the standard simulation-based verification algo-
rithm with a new procedure that attempts to verify the safety of the system start-
ing from a new initial set of states by transforming previously computed reach-
sets. This new algorithm required the creation of a new cache-tree data structure
for multi-resolution reachtubes. Our implementation has been tested on several
benchmarks and has achieved significant improvements in verification time.

1 Introduction

Symmetry plays an important role in analysis of physical processes by summarizing the
laws of nature independent of specific dynamics [14,25]. Symmetry related concepts
have been used to explain and suppress unstable oscillations in feedback connected
systems [21], show existence of passive gaits under changing ground slopes [26], and
design control inputs for synchronization of neural networks [13,23].

Symmetry has also played an important role in handling the state space explo-
sion in model checking computational processes. The idea of symmetry reduction is
to reduce the state space by considering two global states to be equivalent (bisimilar),
if the states are identical, including permuting the identities of participating compo-
nents [3,7]. Equivalently, symmetry can reduce the number of behaviors to be explored
for verification when one behavior can be seen as a permutation, or a more general
transformation, of another. Symmetry reduction was incorporated in early explicit state
model checkers like Murφ [17], but translating the idea into improved performance of
model checking has proven to be both fruitful and nontrivial as witnessed by the sus-
tained attention that this area has received over the past three decades [2,19].

In this paper, we investigate how symmetry principles could benefit the analysis
of cyberphysical systems (CPS). Not surprisingly, the verification problem for CPS
inherits the state space explosion problem. Autonomous CPS commonly work in multi-
agent environments, e.g., a car in an urban setting—where even the number of sce-
narios to consider explodes combinatorially with the number of agents. This has been
identified as an important challenge for testing and verification [18]. The research pro-
gram on data-driven verification and falsification has recently been met with some
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successes [1,5,6,11]. The idea is to use simulation, together with model-based sen-
sitivity analysis or property-specific robustness margins, to provide coverage guar-
antees or expedite the discovery of counterexamples. Software tools implementing
these approaches have been used to verify embedded medical devices, automotive, and
aerospace systems [1,5,9,11]. In this paper, we examine the question: how can we
reduce the number of simulations needed to verify a CPS utilizing more information
about the model in the form of its symmetries?

Contributions. The paper builds-up on the foundational results in symmetry transfor-
mations for dynamical systems [14,15,25] to provide results that allow us to compute
the reachable states of a dynamical from a given initial set K′, by transforming previ-
ously computed reachable states from a different initial set K. Since the computation
of reachsets from scratch is usually more expensive than applying a transformation to
a set, this reduces the number of reachset computations, and therefore, the number of
simulations. Secondly, we identify symmetries that can be useful for analyzing CPS
including translation, linear transforms, reflections, and permutations.

Third, we present a verification algorithm symCacheTree based on transforming
cached reachtubes using a given symmetry transformation γ of the system instead of
computing new ones. We augment the standard data-driven safety verification algo-
rithm with symCacheTree to reduce the number of reachtubes that need to be com-
puted from scratch. We do that by caching reachtubes as they are computed by the
main algorithm in a tree structure representing refinements. Before any new reachtube
is computed from a given refinement of the initial set, symCacheTree is asked if it can
determine the safety of the system based on the cached reachtubes. It will then do a
breadth-first search (BFS) over the tree to find suitable cached reachtubes that are use-
ful under the transformation, γ . It either returns a decision on safety or says it cannot
determine that. In that case, the main algorithm computes the reachtube from scratch.
We prove that the symmetry assisted algorithm is sound and complete. We further gen-
eralize symCacheTree to use a set of symmetry transformations instead of one. We call
the new algorithm symGrpCacheTree.

Finally, we implemented the algorithms on top of the DryVR tool [10]. We aug-
mented DryVR with symCacheTree and symGrpCacheTree. We tested our approach
on several linear and nonlinear examples with different symmetry transformations. We
showed that in certain cases, by using symmetry, one can eliminate several dimen-
sions of the system from the computation of reachtubes, which resulted in significant
speedups (more than 1000× in some cases).

The paper starts with notations and definitions in Sect. 2. Examples of dynamical
systems and symmetry transformations are given in Sect. 3. The main theorems of
transforming reachtubes appear in Sect. 4. In Sect. 5, we present symCacheTree and
symGrpCacheTree along with the key guarantees. The results of experiments are in
Sect. 6 and conclusions and future directions are in Sect. 7.

2 Preliminaries

For any point x ∈R
n, we denote by xi the ith component of x. For any δ > 0 and x ∈R

n,
B(x,δ ) ⊆ R

n is a closed hypercube of radius δ centered at x. For a hyperrectangle
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S ⊆ R
n and δ > 0, Grid(S,δ ), is a collection of 2δ -separated points along axis parallel

planes such that the δ -balls around these points cover S. Given a positive integer N, we
denote by [N] the set of integers {1, . . . ,N}. Given an operator γ : Rn → R

n and a set
X ⊆ R

n, with some abuse of notation we denote by γ(X) the subset of Rn that results
from applying γ to every element on X . Let D ∈ [N]. We denote by the set X ↓D= {x′ :
∃x ∈ X ,∀ i ∈ D,xi = x′

i and x′
i = 0,otherwise}. A continuous function β : R+ → R

+ is
said to be a class-K function if it is strictly increasing and β (0) = 0.

Consider a dynamical system:

ẋ= f (x), (1)

where x ∈ R
n is the state vector and f : Rn → R

n is a Lipschitz continuous function
which guarantees existence and uniqueness of solutions [4]. The initial condition of the
system is a compact setK ⊆R

n. A solution of the system is a function ξ :Rn×R
+ →R

n

that satisfies (1) and for any initial state x0 ∈ K,ξ (x0,0) = x0. For a bounded time
solution ξ , we denote the time domain by ξ .dom. Given an unsafe set U ⊂ R

n and a
time bound T > 0, the bounded safety verification problem requires us to check whether
there exists an initial state x0 ∈ K and time t ≤ T such that ξ (x0, t) ∈U .

The standard method for solving the (bounded) safety verification problem is to
compute or approximate the reachable states of the system. The set of reachable states
of (1) between times t1 and t2, starting from initial set K ⊂ R

n at time t0 = 0 is defined
as

Reach(K, [t1, t2]) = {x ∈ R
n | ∃ x0 ∈ K, t ∈ [t1, t2] s.t. ξ (x0, t) = x}.

Thus, computing (or over-approximating) Reach(K, [0,T ]) and
checking Reach(K, [0,T ])∩U = /0 is adequate for verifying bounded safety. Instead
of Reach(K, [t, t]) we write Reach(K, t) in short for the set of state reachable from K
after exactly t time units.

Sometimes we find it convenient to preserve the time information of reaching states.
This leads to the notion of reachtubes. Given a time bound T > 0, we define reach-
tube Rtube(K,T ) = {(Xi, ti)} j

i=1 to be a sequence of time-stamped sets such that for
each i, Xi = Reach(K, [ti−1, ti]), t0 = 0 and t j = T . The concatenation of two reachtubes
{(Xi, ti)} j1

i=1
� {(Xi, ti)} j2

i=1 is defined as the sequence {{(Xi, ti)} j1
i=1,{(Xi, ti+ tmax)} j2

i=1},
where tmax is the last time stamp in the first reachtube sequence.

A numerical simulation of system (1) is a reachtube with X0 being a singleton state
x0 ∈K. It is a discrete time representation of ξ (x0, ·). Several numerical solvers provide
such representation of trajectories such as VNODE-LP1 and CAPD Dyn-Sys library2.

In this paper, we will find it useful to transform solutions and reachtubes using oper-
ators γ : Rn → R

n on the state space. Given a solution ξ and a reachtube Rtube(K,T ),
we define the γ-transformed solution γ ·ξ and reachtube γ ·Rtube(K,T ) as follows:

∀ t,(γ ·ξ )(x0, t) = γ(ξ (x0, t)) and γ ·Rtube(K,T ) = {(γ(Xi), ti)} j
i=1.

Notice that this transformation does not alter the time-stamps. Given a reachtube rt,
rt.last is the pair (X , t) with the maximum t in rt.

1 http://www.cas.mcmaster.ca/∼nedialk/vnodelp/.
2 http://capd.sourceforge.net/capdDynSys/docs/html/odes rigorous.html.

http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html
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2.1 Data-Driven Verification

Data-driven verification algorithms answer the bounded safety verification question
using numerical simulation data, that is, sample of simulations. The key idea is to gener-
alize an individual simulation of a trajectory ξ (x0, ·) to over-approximate the reachtube
Rtube(B(x0,δ ),T ), for some δ > 0. This generalization covers a δ -ball B(x0,δ ) of the
initial set K, and several simulations can then cover all of K and over-approximate
Rtube(K,T ), which in turn could prove safety. If the over-approximations turn out to be
too conservative and safety cannot be concluded, then δ has to be reduced, and more
precise over-approximations of Rtube(K,T ) have to be computed with smaller general-
ization radius δ and more simulation data.

Thus far, the generalization strategy has been entirely based on computing sensitiv-
ity of the solution ξ (x0, t) to the initial condition x0. The precise notion of sensitivity
needed for the verification algorithm to have soundness and relative completeness is
formalized as discrepancy function [6].

Definition 1. A discrepancy function of system (1) with initial set of states K ⊆ R
n is a

class-K function in the first argument β : R+ ×R
+ → R

+ that satisfies the following
conditions: (1) ∀ x,x′ ∈ K, t ≥ 0, ‖ξ (x, t)− ξ (x′, t)‖ ≤ β (‖x− x′‖, t), (2) β (‖ξ (x, t)−
ξ (x′, t)‖, t) → 0 as ‖x− x′‖ → 0.

The first condition in Definition 1 says that β upper-bounds the distance between
two trajectories as a function of the distance between their initial states. The second
condition makes the bound shrink as the initial states get closer.

Algorithms have been developed for computing this discrepancy function for linear,
nonlinear, and hybrid dynamical models [5,8,11] as well as for estimating it for black-
box systems [10]. The resulting software tools have been successfully applied to verify
automotive, aerospace, and medical embedded systems [9,16,24].

Algorithm 1 without the boxed parts describes data-driven verification for a dynam-
ical system (1). We refer to this algorithm as ddVer in this paper. Given the com-
pact initial set of states K ⊆ R

n, a time bound T > 0, and an unsafe set U , ddVer
answers the safety verification question. It initializes a stack called coverstack with a
cover of K. Then, it checks the safety from each element in the cover. For a given
B(x0,δ ) in coverstack, ddVer simulates (1) from x0 and bloats to compute an over-
approximation of Rtube(B(x0,δ ),T ). Formally, the set sim⊕ β is a Minkowski sum.
This can be computed by increasing the radius in each dimension of sim at a time
instant t by β (δ , t). The first condition on β ensures that this set is indeed an over-
approximation of Rtube(B(x0,δ ),T ). If this over-approximation is disjoint fromU then
it is safe and is removed from coverstack. If instead, the over-approximation intersects
withU then that is inconclusive and B(x0,δ ) is partitioned into smaller sets and added
to coverstack. The second condition on β ensures that this refinement leads to a more
precise over-approximation of Rtube(B(x0,δ ),T ). On the other hand, if the simulation
hitsU , that serves as a counterexample and ddVer returns Unsafe. Finally, if coverstack
becomes empty, that implies that the algorithm reached a partition of K from which all
the over-approximated reachtubes are disjoint fromU , and then ddVer returns Safe.
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symGrpCacheTree

2.2 Symmetry in Dynamical Systems

Symmetry takes a central place in analysis of dynamical systems [20]. The research
line pertinent to our work develops the conditions under which one can get a solution
by transforming another solution [12,20,22]. Symmetries of dynamical systems are
modeled as groups of operators on the state space.

Definition 2 (Definition 2 in [25]). Let Γ be a group of operators acting onRn. We say
that γ ∈ Γ is a symmetry of (1) if for any solution, ξ (x0, t), γ ·ξ (x0, t) is also a solution.
Furthermore, if γ ·ξ = ξ , we say that the solution ξ is γ-symmetric.

Thus, if γ is a symmetry of (1), then new solutions can be obtained by just applying γ to
existing solutions. Herein lies the opportunity of exploiting symmetries in data-driven
verification.

How can we know that γ is a symmetry for (1)? It turns out that, a sufficient condi-
tion exists that can be checked without finding the solutions (potentially hard problem),
but only by checking commutativity of γ with the dynamic function f . Systems that
meet this criterion are called equivariant.

Definition 3 (Definition 3 in [25]). Let Γ be a group of operators acting on R
n. The

dynamic function (vector field) f : Rn → R
n is said to be Γ -equivariant if f (γ(x)) =

γ( f (x)), for any γ ∈ Γ and x ∈ R
n.

The following theorem shows that for equivariant systems, solutions are symmetric.

Theorem 1 ([14,25]). If (1) is Γ -equivariant and ξ is a solution, then so is γ · ξ ,
∀γ ∈ Γ .
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3 Symmetries in Cyber-Physical Systems

Equivariant systems are ubiquitous in nature and in relevant models of cyber-physical
systems. Below are few examples of simple equivariant systems with respect to different
symmetries. We start with a simple 2-dimensional linear system.

Example 1. Consider the circle system

ẋ1 = −x2, ẋ2 = x1. (2)

where x1,x2 ∈ R. Let Γ be the set of matrices of the form: B = [[a,−b], [b,a]] where
a,b ∈ R and B is not the zero matrix. Let ◦ be the matrix multiplication operator, then
system (2) is Γ -equivariant.

Example 2. Lorenz attractor models the two-dimensional motion of a fluid in a con-
tainer. Its dynamics are as follows:

ẋ= −px+ py, ẏ= −xz+ rx− y, ż= xy−bz. (3)

where p,r, and b are parameters and x,y and z ∈ R. Let Γ be the group that contains
γ : (x,y,z) → (−x,−y,z) and the identity map. Then, system (3) is Γ -equivariant3.

Example 3. Third, a car model is equivariant to the group of all translations of its
position. The car model is described with the following ODEs:

ẋ= vcosθ , ẏ= vsinθ , φ̇ = u, v̇= a, θ̇ =
v
L
tan(φ). (4)

where u and a can be any control signals and x,y,v,θ ,and φ ∈ R. We denote r =
(x,y,v,φ ,θ) = (p, p̄), where p = (x,y). Let Γ be the set of translations of the form
γ : r = (p, p̄) → r′ = (p+ c, p̄), for all c ∈ R

2. Then, system (4) is Γ -equivariant.

Example 4. Consider the system of two cars with states r1 and r2. Let Γ be the set con-
taining the operator γ : (r1,r2) → (r2,r1) and the identity operator. Moreover, assume
that u and a are the same for both cars. Then, the system is Γ -equivariant.

Example 5. Let Γ be the group generated by the set of transformations of the form
γ : (r1,r2) = ((p1, p̄1),(p2, p̄2)) → (r′1,r

′
2) = ((p1 + c1, p̄1),(p2 + c2, p̄2)), where c1

and c2 ∈ R
2, along with the group described in Example 4. Then, the system is Γ -

equivariant. Hence, it is equivariant to translations in the positions and permutation of
both cars.

4 Symmetry for Verification

In this section, we present new results that use symmetry ideas of Sect. 2.2 towards
safety verification. We show how symmetry operators can be used to get new reachtubes
by transforming existing ones. This is important for data-driven verification because

3 http://www.scholarpedia.org/article/Equivariant dynamical systems.

http://www.scholarpedia.org/article/Equivariant_dynamical_systems
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computation of new reachtubes is in general more expensive than transforming ones.
We derived similar theorems for switched systems in the extended version of the paper.
For convenience, we will fix a set of initial states K ⊆ R

n, a time bound T > 0, a group
Γ of operators on R

n, and an operator γ ∈ Γ throughout this section. The following
theorem formalizes transformation of reachtubes based on symmetry. It follows from
Theorem 1.

Theorem 2. If (1) is Γ -equivariant, then ∀γ ∈ Γ , γ(Rtube(K,T )) = Rtube(γ(K),T ).

Proof. By Theorem 1, given any solution ξ (x0, ·) of system (1), where x0 ∈ K,
γ(ξ (x0, ·)) is its solution starting from γ(x0), i.e. γ(ξ (x0, ·)) = ξ (γ(x0), ·).
γ(Rtube(K,T )) ⊆ Rtube(γ(K),T ). Fix any pair (Xi, ti) ∈ Rtube(K,T ) and fix an x ∈
Xi. Then, there exists x0 ∈ K such that ξ (x0, t) = x for some t ∈ [ti−1, ti]. Hence, by
Theorem 1, ξ (γ(x0), t) = γ(x). Therefore, γ(x) ∈ Rtube(γ(K),T ). Since x is arbitrary
here, γ(Rtube(K,T )) ⊆ Rtube(γ(K),T ).
Rtube(γ(K),T ) ⊆ γ(Rtube(K,T )). Fix any pair (Xi, ti) ∈ Rtube(γ(K),T ) and fix an x ∈
Xi. Then, there exists x0 ∈ γ(K) such that ξ (x0, t) = x for some t ∈ [ti−1, ti]. Since x0 ∈
γ(K), there exists x′

0 ∈ K s.t. γ(x′
0) = x0. By Theorem 1, γ(ξ (x′

0, t)) = x. Hence, x ∈
γ(Rtube(K,T )). Again, since x is arbitrary, Rtube(γ(K),T ) ⊆ γ(Rtube(K,T )).

Corollary 1 shows how a new reachtube from a set of initial states K′ ⊆ R
n can be

computed by γ-transforming an existing Rtube(K,T ).

Corollary 1. If system (1) is Γ -equivariant, and K′ ⊆ R
n, then if there exists γ ∈ Γ

such that K′ ⊆ γ(K), then Rtube(K′,T ) ⊆ γ(Rtube(K,T )).

Remark 1. Corollary 1 remains true if instead of Rtube(K,T ), we have a tube that
over-approximates it. Moreover, Theorem 2 and Corollary 1 are also true if we replace
the reachtubes with reachsets.

5 Verification Algorithm

In this section, we add to the ddVer procedure the symCacheTree one for caching,
searching, and transforming reachtubes. The result is the new ddSymVer algorithm.
symCacheTree uses symmetry to save ddVer from computing fresh reachtubes in lines
10–11 in case they can be transformed from already computed and cached reachtubes.
Later we will replace symCacheTree with the more general symGrpCacheTree proce-
dure.

The idea of symCacheTree (and symGrpCacheTree) is as follows: given a tree
cachetree storing reachtubes as they are computed by ddVer, an initial set of states
initsetn that ddVer needs to compute the reachtube for, a symmetry operator γ (or a
group of themΓ ) for system (1) and the unsafe setU , it checks if the safety of the system
starting from initsetn can be decided by transforming reachtubes stored in cachetree.

Before getting into symCacheTree and symGrpCacheTree, we note the simple addi-
tions to ddVer (shown by boxes) that lead to ddSymVer. First, cachetree is initialized
to an empty tree (line 3). Then, symCacheTree (or symGrpCacheTree) is used for the
safety check (lines 6–9) and fresh reachtube computation is performed only if the check
returns inconclusive answer (lines 10–11). In the last case, fresh reachtube rt gets com-
puted in line 11 and inserted as a new node in cachetree (line 12).
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Tree Data Structure. Each node node in symCacheTree stores an initial set initset, a
simulation sim of duration T from the center of initset, and an over-approximation rt of
Rtube(initset,T ). The key invariants of symCacheTree for non Null nodes are:

root.initset = K, (5)

∀ node,node.left.initset ⊆ node.initset, (6)

∀ node,node.right.initset ⊆ node.initset, (7)

∀ node,node.left.initset∩node.right.initset = /0, (8)

∀ node,node.left.initset∪node.right.initset = node.initset. (9)

That is, the initset of the root node is equal to K; each child’s initset is contained in
the initset of the parent; the disjoint union of the initsets of the children partition the
initset of the parent. Hence, by property (2) of the discrepancy function β (Definition 1)
it follows that the union of the reachtubes of children is a tighter over-approximation of
the reachtube of the parent, for the same initial set. Since the refinement in ddSymVer
is done depth-first, symCacheTree is also constructed in the same way.

In brief, symCacheTree (symGrpCacheTree) uses symmetry to save ddVer from
computing the reachtube Rtube(initsetn,T ) afresh in line 11 from initial set initsetn in
the case that safety of Rtube(initsetn,T ) can be inferred by transforming an existing
reachtube in cachetree. That is, given an unsafe set U , a tree cachetree storing reach-
tubes (previously computed), and a symmetry operator γ (a group of symmetries Γ ) for
system (1), symCacheTree (Algorithm 2) or symGrpCacheTree (Algorithm 3) checks if
the safety of the system when it starts from initsetn can be decided by transforming and
combining the reachtubes in cachetree.

5.1 The symCacheTree Procedure

The core of the symCacheTree algorithm is to answer queries of the form: can safety be
decided from a given initial set initsetn, by transforming and combining the reachtubes
in cachetree?

They are answered by performing a breadth first traversal (BFS) of cachetree.
symCacheTree first checks if the γ-transformed initset of root contains initsetn. If not,
the transformation of the union of all initsets of all nodes in cachetree would not con-
tain initsetn. In this case we cannot use Corollary 1 to get an over-approximation of
Rtube(initsetn,T ) and symCacheTree returns SymmetryNotUseful (line 4). If the γ-
transformed initset of the root does contain initsetn, we have at least one tube that
over-approximates it which is γ(root.rt) by Corollary 1. Then, the root is inserted to
the queue traversalQueue that stores the nodes that need to be visited in the BFS.

Then, the algorithm proceeds similar to ddVer. There are two differences: first, it
does not compute new reachtubes, it just uses the transformations of the reachtubes
in cachetree. Second, it refines in BFS manner instead of DFS. In more detail, at
each iteration, a node is dequeued from traversalQueue. If its transformed initial set
initsetc using γ does not intersect with initsetn, that means that γ(Rtube(initsetc,T ))
and Rtube(initsetn,T ) do not intersect. Hence, the node is not useful for this initial set.
Also, if the transformed reachtube γ(node.rt) does not intersects U , the part of initsetn
that is covered by γ(node.initset) is safe and no need to refine it more. In both cases,
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the loop proceeds for the next node (line 10). If the transformed simulation of the node
starts from initsetn and hitsU , then we have a counter example by Theorem 1. Hence, it
returns Unsafe (line 12). If the transformed reachtube γ(node.rt) intersectsU , it cannot
know if that is because of the overapproximation error, or because of a trajectory that
does not start from initsetn or because of one that does. Hence, it needs to refine more.
Before refining, it checks if the union of the transformed initsets of the children of the
current node covers the part of initsetn that was covered by their parent. If that is NOT
the case, then part of initsetn cannot be covered by a node with a tighter reachtube. That
is because γ is invertible and nodes at the same level of the tree are disjoint. Hence,
no node at the same level can cover the missing part. Thus, it returns Compute, asking
ddVer to compute the over-approximation from scratch (line 15). Otherwise, it enqueue
all the children nodes in traversalQueue (line 14).

If traversalQueue gets empty, then we have an over-approximation of the reachtube
starting from initsetn that does not intersect withU . Hence, it returns Safe (line 16).

The following two theorems show the correctness guarantees of symCacheTree.
The proofs are in the extended version of the paper. Theorem 3 shows that if cachetree
has reachtubes that can prove that the system is safe using γ , it will return Safe. If it has
a simulation that can prove that the system is unsafe using γ , it will either ask ddVer
to compute the reachtube from scratch or will return Unsafe. Theorem 4 shows that if
symCacheTree returns Safe, then the reachtube of the system starting from initsetn does
not intersect U . Moreover, if it returns Unsafe, then there exists a trajectory that starts
from initsetn and intersectsU .

Algorithm 2. symCacheTree

1: input: U,γ,cachetree, initsetn
2: initsetc := cachetree.root.initset
3: if initsetn �⊆ γ(initsetc) then
4: return: SymmetryNotUseful
5: traversalQueue := {cachetree.root}
6: while traversalQueue �= /0 do
7: node ← traversalQueue.dequeue()
8: initsetc := node.initset; {(Ri, ti)ki=0} = node.sim
9: if γ(initsetc)∩ initsetn = /0 or γ(node.rt)∩U = /0 then
10: continue
11: if ∃ j | γ(Rj) ∩ U �= /0 and γ(R0) ∈ initsetn then
12: Return Unsafe
13: else if γ(node.initset)∩ initsetn ⊆ ⋃

i γ(node.children[i].initset) then
14: traversalQueue.enqueue({node.left,node.right})
15: else return: Compute
16: return: Safe

Theorem 3 (Completeness). If there exists a set of nodes S in cachetree with

initsetn ⊆ ∪s∈Sγ(s.initset) and U ∩∪s∈Sγ(s.rt) = /0,
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symCacheTree will return Safe. Also, if there exists a node s in cachetree
where γ(s.sim) ∩U �= /0 and starts from initsetn, then symCacheTree will return
SymmetryNotUseful, Unsafe, or Compute.

Theorem 4 (Soundness). symCacheTree is sound: if it returns Safe, then the reach-
tube Rtube(initsetn,T ) does not intersect U and if it returns Unsafe, then there exists a
trajectory starting from initsetn that enters the unsafe set.

In summary, symCacheTree shows that a single symmetry γ could decrease the
number of fresh reachtube computations needed for verification. Next, we revisit Exam-
ple 2 to illustrate the need for multiple symmetry maps.

Circular Orbits and Scaling Symmetry. The linear system in Example 2 has circular
orbits. Consider the initial set K = [[21.5,21.5], [24.5,24.5]], the unsafe set x2 ≥ 32 after
t = 1.4 s, and the time bound T = 1.5 s. Any matrix B that commutes with A, the RHS
of the differential equation, is a symmetry transformation. However, once this matrix is
fixed, we do not change it as per symCacheTree. Any diagonal matrix that commutes
with A has equal diagonal elements. Such a matrix would scale x1 and x2 by the same
factor. Hence, applying B to any axis aligned box would either scale the box up or down
on the diagonal. That means applying B to K wouldn’t contain the upper left or bottom
right partitions, but only possibly the bottom left corner. With B = [[0.95,0], [0,0.95]],
only one out of 7 reachtubes is obtained via transformation (first row of Table 1).

That is because we are using a single transform which leaves symCacheTree useless
in most of the input cases. Figure 1a shows the reachtube (colored green to yellow)
computed using ddVer, unsafe set (brown). Figure 1b shows the reachtube computed
using ddVer and symCacheTree. The part of the reachtube that was computed using
symmetry is colored between blue and violet. The other part is still between yellow and
green. Only the upper left corner has been transformed instead if being computed. Next,
we present symGrpCacheTree, a generalization of symCacheTree that uses a group of
symmetries aiming for a bigger ratio of transformed to computed reachtubes.

(a) (b)

Fig. 1. (a) Reachtube using ddVer. (b) Reachtube using ddSymVer. (Color figure online)
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5.2 The symGrpCacheTree Procedure

Procedure symGrpCacheTree (Algorithm 3) is a generalization of symCacheTree using
a group of symmetries. The symGrpCacheTree procedure still does BFS over cachetree,
keeps track of the parts of the input initial set initsetn that are not proven safe (line 11);
returns Unsafe with the same logic (line 13), and return Compute in case there are parts
of initsetn that are not proven safe nor have refinements in cachetree (line 17).

The key difference from symCacheTree is that different transformations may be
useful at different nodes. This leads to the possibility of multiple nodes in cachetree,
that are not ancestors or descendants of each other, covering the same parts of initsetn
under different transformations. Recall that in symCacheTree, only ancestors cover the
parts of initsetn that are covered by their descendants since γ is invertible. Hence, it was
sufficient to not add the children of a node to traversalQueue to know that the part it
covers, by transforming its initial set, from initsetn is safe (line 10). However, it is not
sufficient in symGrpCacheTree since there may be another node that cover the same
part of initsetn which has a transformed reachtube that intersects U , hence refining
what already has been proven to be safe. The solution is to remove explicitly from
initsetn what has been proven to be safe (line 11). The resulting set may not be convex
but can be stored as a set of polytopes. Moreover, it cannot return Compute when the
transformed reachtube of a visited node intersects U and its children initial sets do not
contain the part it covers from initsetn as in line 15 of symCacheTree. That is because
other nodes may cover that part because of the availability of multiple symmetries.
Hence, it cannot return Compute unless it traversed the whole tree and still parts of
initsetn could not be proven to be safe. We show that symGrpCacheTree has the same

Algorithm 3. symGrpCacheTree

1: input: U, Γ , cachetree, initsetn
2: initsetc := cachetree.root.initset
3: if initsetn �⊆ ∪γ∈Γ γ(initsetc) then
4: return: SymmetryNotUseful
5: leftstates ← initsetn
6: traversalQueue := {cachetree.root}
7: while traversalQueue �= /0 and leftstates �= /0 do
8: node ← traversalQueue.dequeue()
9: initsetc := node.initset; {(Ri, ti)ki=0} = node.sim
10: X = {x : ∃γ ∈ Γ ,x ∈ γ(initsetc) and γ(node.rt)∩U = /0}
11: leftstates ← leftstates\X
12: if ∃γ ∈ Γ , j | γ(Rj) ∩ U �= /0 and γ(R0) ∈ leftstates then
13: Return Unsafe
14: if len(node.children) > 0 then
15: traversalQueue.enqueue(node.children)
16: if leftstates �= /0 then
17: return: Compute
18: return: Safe



Using Symmetry Transformations in Equivariant Dynamical Systems 109

guarantees as symCacheTree in the following two theorems with the proof being in the
extended version of the paper.

Theorem 5 (Completeness). If there exists a set of nodes S in cachetree, where each
s ∈ S has a corresponding set of transformations Γs ⊆ Γ , such that

initsetn ⊆ ∪s∈S,γs∈Γsγs(s.initset) and U ∩∪s∈S,γs∈Γsγs(s.rt) = /0,

symCacheTree will return Safe. Also, if there exists a node s in cachetree and a γ ∈ Γ ,
where γ(s.sim) intersects U and starts from initsetn, then symGrpCacheTree will return
SymmetryNotUseful, Unsafe, or Compute.

Theorem 6 (Soundness). symGrpCacheTree is sound: if it returns Safe, then the
reachtube Rtube(initsetn,T ) does not intersect U and if it returns Unsafe, then there
exists a trajectory starting from initsetn that enters the unsafe set.

The new challenge in symGrpCacheTree is in computing the union at line 3, com-
puting X in line 10 and in the ∃ in line 12. These operations depend on Γ if it is finite or
infinite and on how easy is it to search over it. We revisit the arbitrary translation from
Sect. 3 to show that these operations are easy to compute in some cases.

5.3 Revisiting Arbitrary Translations

Recall that the car model in Example 3 in Sect. 3 is equivariant to all translations in its
position. In this section, we show how to apply symGrpCacheTree not just for it, but
to arbitrary differential equations. Let D be the set of components of the states that do
not appear on the RHS of (1) and Γ be the set of all translations of the components in
D. To check the if condition at line 3, we only have to check if initsetc projected to the
[n]\D contains initsetn projected to the same components. Since if it is true, initsetc can
be translated arbitrarily in its components in D so that the union contains initsetn.

Given two initial sets K and K′ and the reachtube starting from K′, we compute
β ⊆ R

n such that K′ ↓D ⊕β = K ↓D. Then, if K ↓ ([n]\D) ⊂ K′ ↓ ([n]\D), by Corol-
lary 1, we can use that β to compute an overapproximation of Rtube(K,T ) by com-
puting Rtube(K′,T )⊕ β . Then, let β be such that initsetc ↓D ⊕β = leftstates ↓D, in
line 10. We set X to be equal to initsetc ⊕β if node.rt⊕β ∩U = /0 and to /0, otherwise.
To check the ∃ operator in line 12, we can treat the simulation as node.rt and com-
pute β accordingly. Then, compute node.sim⊕ β . The new condition would be then:
if Rj ⊕ β ∩U . Notice that we dropped γ(R0) ∈ leftstates from the condition since we
know that R0 ∈ leftstates and β is bloating it to the extent it is equal to leftstates.

Optimized symGrpCacheTree for Arbitrary Translations. The size of K′ ↓D above does
not matter, i.e. even if it is just a point, one can compute β so that it covers K ↓D.
Hence, instead of computing Rtube(K,T ), we compute only Rtube(K′,T ) and then
compute β from K and K′ and then bloat it. This decreases the number of dimen-
sions that the system need to refine by |D|. This is in contrast with what is done in
symGrpCacheTree where the reachtubes are computed without changing the initial set
structure. This improvement resulted in verifying models in 1s when they take an hour
on DryVR as shown in Sect. 6. We call this algorithm TransOptimized and refer to
it as version 2 of symGrpCacheTree when applied to arbitrary translation invariance
transformations.
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6 Experimental Evaluation

We implemented symCacheTree and symGrpCacheTree in Python 2.7 on top of
DryVR4. DryVr implements ddVer to verify hybrid dynamical systems. We augmented
it and implemented ddSymVer. In our experiments, we only consider the (non-hybrid)
dynamical systems. DryVR learns discrepancy from simulations as it is designed to
work with unknown dynamical models. This learning functionality is unnecessary for
our experiments, as checking equivariance requires some knowledge of the model.
For convenience, we use DryVR’s discrepancy learning instead of deriving discrep-
ancy functions by hand. That said, some symmetries can be checked without com-
plete knowledge of the model. For example, we know that dynamics of vehicles do not
depend on their absolute position even without knowledge of precise dynamics.

In this section, we present the experimental results on several examples using
symCacheTree and symGrpCacheTree. The transformations used are linear. Two of
the systems are linear and one is non-linear. The results of the experiments are shown
in Table 1. The experiments were ran on a computer with specs shown in the extended
version of the paper. In the reachtube plots we use the green-to-yellow colors if it was
computed from scratch, the blue-to-violet colors if it was computed using symmetry
transformations, and the white-to-red colors for the unsafe sets.

Verifying Non-convex Initial Sets. ddVer assumes that the initial set K of (1) is a
single hyperrectangle. However, this assumption hinders the use of some useful trans-
formations such as permutation. For example, consider the two cars system in Exam-
ple 4 moving straight and breaking with the same deceleration, i.e. u is zero and a
is the same for both. Recall that this system is equivariant with respect to switch-
ing r2 with r1. The system is unsafe if the cars are too close to each other. Assume
that initially (y1,y2) belongs to K = [[l1, l2], [u1,u2]]. If the two intervals [l1,u1] and
[l2,u2] do not intersect, γ would not be useful since for any X ⊆ K, γ(X) ∩ K = /0.
However, if K = [[l1, l2], [u1,u2]] ∪ [[l′1, l

′
2], [u

′
1,u

′
2]], where [l′1,u

′
1] ∩ [l2,u2] �= /0 and

[l′2,u
′
2] ∩ [l1,u1] �= /0. Then, the reachtube starting from [l′1,u

′
1]∩ [l2,u2] for the first car

and [l′2,u
′
2]∩ [l1,u1] for the second one can be computed from the one starting from

[l′2,u
′
2]∩ [l1,u1] for the first car and [l′1,u

′
1]∩ [l2,u2] for the second one. This can also be

done for (x1,x2) and a combination of both.
We implemented ddVer for the disjoint initial sets case as follows: We first ran

ddVer to compute the reachtube of the system starting from the first hyperrectangle
and cached all the computed reachtubes in the process in a cachetree. Then, we used
that cachetree in ddSymVer to check the safety of the system starting from the second
hyperrectangle.

Cars and Permutation Invariance. For the car example (Example 4), we ran ddVer
on an initial set where (x1,y1,x2,y2) ∈ [[0,−2.42,0,−22.28], [2,3.93,0.1,−12.82]] and
running for 5s and the unsafe set being |y1 − y2| < 5 and cached all the tubes in
a cachetree and saved it on the hard-drive. It returned Safe. Then, we used it in

4 https://github.com/qibolun/DryVR 0.2.

https://github.com/qibolun/DryVR_0.2
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(a) (b)

Fig. 2. (a) Cars reachtube using ddVer. (b) Cars reachtube using ddSymVer.

symCacheTree to verify the system starting from [[0,−22.28,0,−2.42], [0.1,−12.82,
2,3.93]]. The resulting cachetree was around 20GB, and traversing it while trans-
forming the stored reachtubes takes much longer than computing the reachtube
directly. We halted it manually and tried a smaller initial set: [[0.01,−14.2,0.01,
1.4], [0.1,−13.9,2,3.9]] using the same cachetree which returned Safe from the first
run after 93 s; the output is shown in Figs. 2a and b. Figure 2a shows the tube when
computed by ddVer and Fig. 2b when computed by ddSymVer. Figure 2b has only blue-
to-violet colors since it was all computed using a symmetry transformation.

Lorenz Attractor and Circle Revisited. We used the disjoint initial sets verification
implementation to use the symmetry transformation for the nonlinear lorenz attrac-
tor in its safety verification. Recall from Sect. 3 that its symmetry map is (x,y,z) →
(−x,−y,z). So for any given initial set K = [[lx, ly, lz], [ux,uy,uz]] and a corresponding
overapproxiation of the reachtube, we automatically get an overapproximation of the
reachtube with the initial set [[−ux,−uy, lz], [−lx,−ly,uz]]. We generated the cachetree
from the initial set [[14.9,14.9,35.9], [15.1,15.1,36.1]], unsafe set x ≥ 20 and T = 10 s
that returned Safe and used that cachetree in symCacheTree to verify the system starting
from [[−15.09,−15.09,35.91], [−14.91,−14.91,36.09]]. The resulting statistics are in
Table 1. Lorenz1 is the one corresponding to the first initial set and Lorenz2 to the for
which we use permutation symmetry.

We revisit the circle example from Sect. 5 and test symCacheTree performance
with the transformation being: γ : (x,y) → (−y,x) instead of the scaling one. Then,
we compute the reachtube starting from the same initial set as before and created its
cachetree. After that, we used ddSymVer with symCacheTree to get the one starting
from [[−24.49,21.51], [−21.51,24.49]] and running for 1.5 s. The statistics are shown
in Table 1. The figures of the reachtubes are in the extended version of the paper. Again,
the whole tube is blue-to-violet since it is computed fully by transforming parts of
cachetree.

In all of the previous examples, ddVer was faster than ddSymVer since a single
symmetry was used and the refinements are not large enough so that the ratio of trans-
formed reachtubes to computed ones is large enough to account for the overhead added
by the checks of symCacheTree. This can be improved by using a group of transforma-
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Table 1.Results. Columns 3–5: number of times symCacheTree (or symGrpCacheTree) returned
Compute, Safe, Unsafe, resp. Number of transformed reachtubes used in analysis (SRefs), time
(seconds) to verify with DryVR+symmetry (DryVR+sym), total number reachtubes computed by
DryVR (NoSRefs), time to verify with DryVR.

Model Transformations (Γ ) Compute Safe Unsafe SRefs DryVR+sym NoSRefs DryVR

Circle1 (0.95x1,0.95x2) 5 1 0 6 1.78 7 0.54

Circle2 (−x2,x1) 0 1 0 7 8.23 3 0.21

Lorenz1 (−x,−y,z) N/A N/A N/A N/A N/A 3 4.67

Lorenz2 (−x,−y,z) 0 1 0 1 33.28 1 4.63

bb2 Perm. Inv. subset 0 1 0 467 88.35 120 34.47

bb (v1) Trans. Inv. 10 10 0 165 26.28 12621 4034.55

cc (v1) Trans. Inv. 19 21 0 545 64.36 N/A OOM

bc (v1) Trans. Inv. 24 19 1 639 80.48 3428 1027.18

bb (v2) Trans. Inv. 0 1 0 1 1.16 12620 4034.55

cc (v2) Trans. Inv. 0 1 0 1 1.16 N/A OOM

bc (v2) Trans. Inv. 0 0 1 1 0.39 3428 1027

tions, i.e. using symGrpCacheTree, storing compressed reachtubes, and optimizing the
code.

Cars and General Translation. Finally, we ran ddSymVer with the two versions of
symGrpCacheTree for translation invariance described in Sect. 5.3 on three different
scenarios of the 2-cars Example 4: both are braking (bb), both are at constant speed (cc),
and one is breaking and the other at constant speed (bc). In all of them, the time bound
is T = 5 s and the unsafe set is |y1−y2| < 5. The first two cases were safe while the third
was not. DryVR timed out on the cc case as mentioned previously in the permutation
case while both versions of translation invariance algorithms were able to terminate in
few seconds. The two versions of the algorithm gave the same result as DryVR while
being orders of magnitude faster on the bb and bc cases. Moreover, the second version,
where the initial set is a single point in the components in D, is an order of magnitude
faster than the first version, where symGrpCacheTree is used without modifications.

7 Conclusions

Equivariant dynamical systems have groups of symmetry transformations that map
solutions to other solutions. We use these transformations to map reachtubes to
other reachtubes. Based on this, we presented algorithms (symCacheTree and
symGrpCacheTree) that use symmetry transformations, to verify the safety of the equiv-
ariant system by transforming previously computed reachtubes stored in a tree structure
representing refinements. We use these algorithms to augment data-driven verification
algorithms to reduce the number of reachtubes need to be computed. We implemented
the algorithms and tried them on several examples showing significant improvement in
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running times. This paper opens the doors for more investigation of the role that sym-
metry can help in testing, verifying, and synthesizing dynamical and hybrid systems.
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