
HooVer: A Framework for Verification and Parameter Synthesis in
Stochastic Systems using Optimistic Optimization

Negin Musavi1, Dawei Sun1, Sayan Mitra1, Geir Dullerud1 and Sanjay Shakkottai2

Abstract— This paper provides a new approach for prob-
abilistic verification of control and dynamical systems in the
scenario where there is a finite computational budget that
must be used judiciously; it is based on leveraging multi-
armed bandits theory from machine learning. We present an
algorithm for formal verification and parameter synthesis of
continuous state-space Markov chains, introduce our associated
computational tool HooVer, and demonstrate their use on
example applications. The problem class considered captures
the design and analysis of a wide variety of autonomous and
cyber-physical systems defined by nonlinear and black-box
modules. In order to solve these problems, one has to maximize
certain probabilistic objective functions over all choices of
initial states and parameters. In this paper, we identify the
assumptions that make it possible to view this problem as a
multi-armed bandit problem. Based on this fresh perspective,
we propose an algorithm Hierarchical Optimistic Optimization
algorithm with Mini-batches (HOO-MB) for solving the prob-
lem that carefully instantiates an existing bandit algorithm—
Hierarchical Optimistic Optimization—with appropriate pa-
rameters. As a consequence, we obtain theoretical regret bounds
on sample efficiency of our solution that depend on key problem
parameters like smoothness, near-optimality dimension, and
batch size. The batch size parameter enables us to strike a
balance between the sample efficiency and the memory usage of
the algorithm. Experiments, using our open-source tool HooVer,
suggest that the approach scales to realistic-sized problems
and is often more sample-efficient compared to PlasmaLab—a
leading tool for verification of stochastic systems. Specifically,
HooVer has distinct advantages in analyzing models in which
the objective function has sharp slopes. In addition, HooVer
shows promising behavior in parameter synthesis for a linear
quadratic regulator (LQR) example.

I. INTRODUCTION

In this paper, we present a new verification and parameter
synthesis algorithm of discrete-time Markov chains (MC)
over continuous state-spaces and uncountable sets of initial
states or parameters, where the exact knowledge of prob-
abilistic evolution of states is not known. In other words,
we want to find what choices of initial states or parameters
maximize certain probabilistic objective functions over all
choices of initial states or parameters, without having exact
knowledge of the system dynamics. For instance, predictive
monitoring or runtime verification with worst case state
estimation error bounds (e.g., GPS and senor tolerances)
naturally lead to this problem. Our approach is based on
multi-armed bandit theory, which provides a powerful ideal-
ized model for online decision-making in settings where the

1The authors are with the Coordinated Science Laboratory, University of
Illinois, Urbana, IL 61801, USA

2The author is with the Department of Electrical and Computer Engi-
neering at The University of Texas, Austin, TX 78712, USA

statistics are unknown. By taking advantage of the fact that
multi-armed bandit methods do not rely on exact knowledge
of the system dynamics, we gain not only new algorithms
for verification and parameter synthesis, but also new types
of bounds on the sample efficiency.

A. Main Contributions

The main contributions of our work are as follows:
(i) We formalize the above verification and synthesis

problems so that they can be solved using multi-armed bandit
algorithms (Propositions 1 and 2).

(ii) We present a tree-based algorithm called Hierarchical
Optimistic Optimization algorithm with Mini-Batches (HOO-
MB) for solving the above problems (Algorithm 1). HOO-
MB modifies the hierarchical optimistic optimization (HOO)
algorithm of [1] by taking advantage of batched simulations
and simultaneously reducing the impact of variance from
noisy samples and keeping the tree size small.

(iii) We provide theoretical bound (Theorem 1) on the
difference between the maximum value f(x̄N) computed by
HOO-MB and the actual maximum f(x∗), as a function
of the sampling budget N , the batch size parameter, the
smoothness parameters, and the near-optimality dimension
of f . This bound is fundamentally different from the ex-
isting performance bounds in the statistical model checking
literature. For example, the bounds relevant for tools like
PlasmaLab [2], use Monte Carlo sampling, Chernoff bounds,
or sequential hypothesis testing.

(iv) We have implemented HOO-MB in an open-source
tool called HooVer and we have created a suite of bench-
marks models inspired by typical scenarios used for certifi-
cation of advanced driving assist systems [3]. The tool and
all the benchmarks are available online1. The user only has
to provide a Python class specifying the transition kernel,
the unsafe set, parameter and initial set uncertainties to create
new examples. We show that HOO-MB can help dramatically
reduce the number of nodes in the tree and therefore reduce
the running time and memory usage in these benchmarks. As
expected, the quality of the verification result (in this case,
maximum probability of hitting an unsafe state) improves
with the sampling budget N . HooVer scales to reasonably
large models: It easily handled models with 18-dimensional
state-spaces, and initial uncertainty spanning 8 dimensions,
on a standard computer. Running time and memory usage can
be controlled with the sampling batch sizes, and HooVer is
relatively insensitive to the smoothness parameters.

1https://www.daweisun.me/hoover/.

https://www.daweisun.me/hoover/

B. Comparison with Related Approaches

There is a large body of work on model-based approaches
for verification and parameter synthesis of stochastic sys-
tems [4], [5], [6], [7], [8](and the references therein). These
approaches rely on detailed knowledge of the probability
transition kernel, which may not always be available.

Statistical model checking (SMC) also solves the same
family of verification problems. SMC approaches collect
empirical samples (through executions) and use statistical
tests to determine if there is evidence to determine if the
constraints have/have-not been violated [9], [10], [11], [12].
The notable methods related to this class include MODEST
for probabilistic automata [13], PlasmaLab [2], the learning-
based algorithm of [14], [15] in PRISM [16] and UPPAAL,
and approaches for Markov Decision Processes with re-
stricted classes of schedulers implemented in [17], [18], [19].

Empirical comparison of HooVer with other discrete-
state SMC tools is complicated because the guarantees are
different and platform specific constants are difficult to factor
out. We present a careful comparison with PlasmaLab in
Section IV-C. HooVer generally gets closer to the correct
answer with fewer samples than PlasmaLab. For models
with sharp slopes around the maxima, HooVer is more
sample efficient. This suggests that HOO-MB may work with
fewer samples in verification problems around hard to find
bugs. The approach of [20] uses the original HOO algorithm
of [1] but we could not find this tool online for running
comparative experiments. Our approach differs from [20] in
two important ways: (1) we use a search algorithm spawning
different smoothness parameters and return the result of
the best one; and (2) we exploit batched simulations. Our
preliminary results were presented in a workshop [21]2.
We have also evaluated the performance of HooVer for
parameter synthesis for a linear quadratic regulator (LQR)
example, and the results show the efficiency of HooVer in
tuning controller parameters.

Multi-armed bandits are a class of algorithms that learn
unknown systems through adaptive sampling. These algo-
rithms have a rich history [22], [23], [24], [25], with signif-
icant advances in both algorithmic and application aspects
over the last decade [26], [1]. Most relevant to our work is
their application to blackbox optimization, where the goal is
to maximize an unknown function f(·) to which we only
have noisy query access (i.e. a query of x returns f(x)+
noise). A prominent bandit algorithm is the well-known
Upper Confidence Bound (UCB) [27] that popularized the
Principle of Optimism for adaptive search. This principle has
been successfully applied to blackbox optimization by recast-
ing the problem as a tree search in [28], [29], [1], [26]. These
algorithms use tree-structured queries to adaptively search
over the unknown function’s domain, and can optimize for
the trade-off between exploiting the previously known high-
value regions in the function’s domain and exploring less
sampled regions, to determine close approximations to the
optimal solution for a given sampling budget. To provide

2No workshop proceedings were published.

SLplatoon(𝒎): Platoon of 𝑚 Cars on a Single Lane

… cruise

MLplatoon(𝒎, ℓ): Platoon of 𝑚 Cars on ℓ Lanes

Merging: Platoon of 𝑚 Cars + Lane Merging

𝜽

Pedestrian

cruise

DetectBrake: Single Car Avoiding Hitting Pedestrian

𝒅

Fig. 1. Benchmark scenarios which can be instantiated with
different number of vehicles and initialization.

theoretical guarantees, these works require some smoothness
of the objective function. While [1] requires smoothness with
respect to a semi-metric, [30], [31] relax the requirement
of an exact semi-metric that captures the smoothness of f ,
but instead work with two smoothness parameters. For the
cases where estimating these parameters is not practical, [31]
provides an algorithm to search for different parameters in
parallel, and [30] extends this to multi-fidelity settings.

C. Motivating Examples
We consider several scenarios with platoons of vehicles

on the highway (Figure 1). At each time-step, each vehicle
probabilistically decides to either cruise, brake, or accelerate,
based on the distance to neighboring cars. For example, if
the distance to the leading car falls below a certain threshold
then the following car brakes after a certain “reaction time”
period. In the scenario we call SLplatoon we have a single
lane with m vehicles; MLplatoon has multiple lanes. The
state space of the system includes the positions and the
velocities of all the vehicles. The uncertainty in the initial
state comes from the published standard GPS and IMU
errors. We would like to find the most unsafe initial position
configuration of these cars, where unsafety is defined as
collision. Significant fraction of highway collisions occur
because of rearend accidents [32], a significant fraction of
highway accidents and certification of Automatic emergency
braking (AEB) and adaptive cruise control (ACC) systems
require analyzing precisely these types of scenarios [3], [33],
[34]. Detailed descriptions and Python simulators for our
models are available from the HooVer webpage.

II. MODEL AND PROBLEM STATEMENT

Background and Notations: Let the pair (X ,FX) be a
measurable space, where FX is a σ-algebra over X and
the elements of FX are referred to as measurable sets. Let
P : X × FX → [0, 1] be a Markovian transition kernel on
a measurable space (X ,FX), such that (i) for all x ∈ X ,
P(x, ·) is a probability measure on FX ; and (ii) for all
A ∈ FX , P(·,A) is a FX -measurable function. Also let Pβ
be a Markovian transition kernel that depends on parameter
β ∈ Rm. For a σ > 0, a real-valued random variable X is
σ2-sub-Gaussian, if for all s ∈ R, E [exp(s(X − EX))] ≤
exp(σ2s2/2) holds, where E denotes expectation. For a
matrix z ∈ Rn×m, ‖z‖F denotes its Frobenius norm.

Definition 1. A Nondeterministic Markov chain (NMC)
M is defined by a quadruplet ((X ,FX),Pβ ,B,Θ), with:
(i) (X ,FX), a measurable space over the state space X ;
(ii) Pβ : X × FX → [0, 1], a Markovian transition kernel
depending on parameter β ∈ B; (iii) B ⊆ Rm, a set of
parameters; and (iv) Θ ⊆ X , the set of possible initial states.

In the examples in Section I-C, the state-dependent proba-
bilistic choices are modeled by the Markov transition kernel
Pβ . We reiterate that our analysis algorithm will not rely
on the knowledge of this kernel. Let α, a sequence of
states α = x0x1 · · ·xk, be an execution of M of length
k for any x0 ∈ Θ, for all i, xi ∈ X and any β ∈ B.
Given x0, β and a sequence of measurable sets of states
A1, . . . , Ak ∈ FX , the measure of the set of executions
{α | α0 = x0 and αi ∈ Ai,∀ i = 1, . . . , k} is given by:

Pr({α | α0 = x0 and αi ∈ Ai,∀ i = 1, . . . , k})

=

∫
A1×···×Ak

Pβ(x0, dx1) · · ·Pβ(xk−1, dxk),

which is a standard result from the Ionescu Tulceă theorem
[35][36]. We address two classes of problems:

Verification: Given an NMC M and a measurable
unsafe set U ∈ FX , we are interested in evaluating the
worst-case probability of M hitting U over all possible
nondeterministic choices of an initial state x0 in Θ. Once
an initial state x0 ∈ Θ is fixed, the probability of a set
of paths is determined by the Markovian transition kernel
in the model M, as described above. Circling back to our
motivating examples in Section I-C, x0 would correspond
to an initial configuration of the cars, and Θ would be the
set of all possible initial configurations. We say that an
execution α of length k hits the unsafe set U if there exists
i ∈ {0, . . . , k}, such that αi ∈ U . The complement of U ,
the safe subset of X , is denoted by S. The safe set is also
a member of the σ-algebra FX since σ-algebras are closed
under complementation. From a given initial state x0 ∈ Θ
and a given parameter β ∈ B, the probability of M hitting
U within k steps is denoted by pk,U,β(x0). By definition,
pk,U,β(x0) = 1, if x0 ∈ U . For x0 /∈ U and k ≥ 1,

pk,U,β(x0) = 1−
∫
S×···×S

Pβ(x0, dx1) · · ·Pβ(xk−1, dxk).

(1)
We are interested in finding the worst-case probability of

hitting unsafe states over all possible initial states of the
model M. This can be regarded as solving, for some k and
some β ∈ B, the following optimization problem:

sup
x0∈Θ

pk,U,β(x0). (2)

Parameter Synthesis: Given an execution α of length k
and a β ∈ B, let r(α, β) be a real-valued objective function.
Then, we are interested in evaluating the maximum of ex-
pected objective function over all possible nondeterministic
choices of the parameter β ∈ B. This can be regarded as

solving, the following related optimization problem:

sup
β∈B

E[r(α, β)|β], (3)

where the expectation is over the randomness of the transi-
tion and the initial state (drawn from a given distribution).

III. VERIFICATION AND PARAMETER SYNTHESIS WITH
HIERARCHICAL OPTIMISTIC OPTIMIZATION

We will solve the optimization problems of (2) and (3) by
developing the Hierarchical Optimistic Optimization algo-
rithm with Mini-batches (HOO-MB). This can be regarded as
a variant of the Hierarchical Optimistic Optimization (HOO)
algorithm [1] from the multi-armed bandits literature [26],
[37], [30]. The setup is as follows: suppose we have a
sampling budget of N and want to maximize the function
f : X → R, which is assumed to have a unique global
maximum that achieves the value f∗ = sup

x∈X
f(x). The

algorithm gets to choose a sequence of sample points (arms)
x1, x2, . . . xN ∈ X , for which it receives the corresponding
sequence of noisy observations (or rewards) y1, y2, . . . , yN .
When the sampling budget N is exhausted, the algorithm
has to decide the optimal point x̄N ∈ X with the aim of
minimizing regret, which is defined as:

SN = f∗ − f(x̄N). (4)

We are interested in algorithms that have two key properties:
(I) The algorithm should be adaptive in the sense that the (j+
1)st sample xj+1 should depend on the previous samples and
outputs; and (II) The algorithm should not rely on detailed
knowledge of f but only on the sampled noisy outputs. These
algorithms are called black-box or zeroth-order algorithms.
In order to derive rigorous bounds on the regret, however,
we will need to make some assumptions on the smoothness
of f (see Assumption 2) and on the relationship between
f(xj) and the corresponding observation yj . Assumption 1
formalizes the latter by stating that yj is distributed according
to some (possibly unknown) distribution with mean f(xj)
and a strong tail-decay property.

Assumption 1. There exists a constant σ > 0 such that
for each sampled xj , the corresponding observation yj is
distributed according to a σ2-sub-Gaussian distribution Mxj

satisfying
∫
udMxj

(u) = f(xj).

Next, we present the HOO-MB algorithm. In Section III-B
we present its analysis leading to the regret bound and dis-
cuss smoothness parameters. In Section III-C we discuss how
HOO-MB can be used for solving the optimization problems
of (2) and (3). In Section III-D, we discuss the choice of the
batch size parameter b as well as its implications.

A. Hierarchical tree optimization with mini-batches

HOO-MB (Algorithm 1) is a batched-sampling variant
of HOO [1]. HOO-MB selects the next sample xj+1 by
building a binary3 tree in which each height (or level)

3As we go down the tree the partition is refined via bisection along the
dimension of the coarsest subdivision (ties are broken arbitrarily).

partitions the state space X into a number of regions. The
algorithm samples states to estimate upper-bounds on f over
a region, and based on this estimate, decides to expand
certain branches (i.e., re-partition certain regions) to reduce
the region sizes based on the smoothness of f . HOO-MB
allows us to execute batch simulations of size b to reduce
the variance in the estimate of f(xi) obtained from the noisy
observations yis for any state xi, and more importantly,
maintain a lighter data-structure. In Section III-D, we discuss
the implications of the choice of batch size parameter b.

First, we discuss the tree data-structure. This construction
is the same as that in noisy tree-search algorithms (HOO and
variants) [1], and is discussed here for clarity of exposition.
Each node in the tree is labeled by a pair of integers
(h, i), where h ≥ 0 is the height, and i ∈ {1, . . . , 2h},
is its position within level h. The root is labeled (0, 1).
Each node (h, i) can have two children (h + 1, 2i − 1)
and (h + 1, 2i). Node (h, i) is associated with the region
Ph,i ⊆ X , where Ph,i = Ph+1,2i−1 ∪ Ph+1,2i, and for
each h these disjoint regions satisfy ∪2h

i=1Ph,i = X . Thus,
larger values of h represent finer partitions of X . For each
node (h, i) in the tree, HOO-MB computes the following
quantities: (i) th,i is the number of times the node is chosen
or considered for re-partitioning. (ii) f̂h,i is the empirical
mean of observations over points sampled in Ph,i. (iii) Uh,i
is an initial estimate of the upper-bound of f over Ph,i
based on the smoothness parameters. (iv) Bh,i is a tighter
and optimistic upper bound for the same. The tree starts
with a single root (0, 1), with B-values of its two children
B1,1 and B1,2 initialized to +∞. At each iteration a path
from the root to a leaf is found by traversing the child with
the higher B-value (with ties broken arbitrarily), then a new
node (hnew , inew) is added and all of the above quantities
are updated. The partitioning continues until the sampling
budget N is exhausted. After that the algorithm returns a
point among x1, x2, ..., xN chosen uniformly at random. The
details are provided in Algorithm 1.

B. Analysis of Regret Bound

The notation and analysis of the regret bounds for HOO-
MB closely follows that in [1] (and followups in [31], [30]).

Let ∆h,i denote the sub-optimality gap of node (h, i), that
is, ∆h,i = f∗ − supx∈Ph,i

f(x). A node (h, i) is optimal if
∆h,i = 0 and it is sub-optimal if ∆h,i > 0. We say that
a node (h, i) is ε-optimal if ∆h,i ≤ ε. We will use two
parameters ν and ρ ∈ (0, 1) to characterize the smoothness
of f relative to the partitions (see Assumption 2). Roughly,
these parameters restrict how quickly f can drop-off near
the optimal x∗ within a Ph,i at each node (h, i). We define
Nh(ε) as in [31] as the number of ε-optimal cells at depth
h, that is, the number of nodes with ∆h,i ≤ ε.

From the sampled estimate of f(xi) at a single point,
HOO-MB attempts to estimate the maximum possible value
that f∗ can take over X . This is achieved by assuming
that f is locally smooth around x∗, which is formalized in
Assumption 2. This Assumption is adopted from [30] and

Algorithm 1 HOO-MB with parameters: sampling budget N ,
noise parameter σ, smoothness parameters ν > 0, ρ ∈ (0, 1), batch
size b.

1: tree = {(0, 1)}, B1,1 = B1,2 = +∞
2: while n <= N do
3: (path, (hnew , inew)) ← Traverse(tree)
4: choose x ∈ Phnew,inew
5: query x and get b observations y1, y2, ..., yb
6: tree.Insert((hnew , inew))
7: for all (h, i) ∈ path do
8: th,i ← th,i + 1

9: f̂h,i ← (1− 1
th,i

)f̂h,i +
∑b

j=1 yj

bth,i

10: n← n+ b,
Bhnew+1,2inew−1 ← +∞, Bhnew+1,2inew ← +∞

11: for all (h, i) ∈ tree do leaf up (propagate computa-
tion upward):

12: Uh,i ← f̂h,i +
√

2σ2 ln(n/b)
bth,i

+νρh

13: Bh,i ← min{Uh,i,max{Bh+1,2i+1, Bh+1,2i}}
14: return a point among x1, x2, ..., xN chosen uniformly

at random.

basically ensures that f does not change arbitrarily in a
region near the true maximum.

Assumption 2. There exist ν > 0 and ρ ∈ (0, 1) such that
for all (h, i) satisfying ∆h,i ≤ cνρh (for a constant c ≥ 0),
for all x ∈ Ph,i we have f∗ − f(x) ≤ max{2c, c+ 1}νρh.

Here c is a parameter that relates the variation of f over
all cνρh-optimal cells at all h ≥ 0. For instance, for c = 0,
it implies that there exist smoothness parameters such that
the gap between the f∗ and the value of f over all optimal
cells at all h ≥ 0 is bound by νρh. Hence, for a finite
sampling budget N the final constructed tree has a maximum
height hmax. Therefore it would be sufficient for f to satisfy
the conditions of Assumption 2, for all h ∈ [0, hmax]. This
would allow f to have finite little jumps around x∗.

We now define a modified version of the near-optimality
dimension which plays an important role in the analysis
of black-box optimization algorithms [1], [31]. This is a
measure of closeness with respect to the number of cells that
have function values that are “close” to that of the optimum.

Definition 2. hmax -bounded near-optimality dimension of f
with respect to (ν, ρ) is: dm(ν, ρ) = inf{d′ ∈ R>0 : ∃B >
0, ∀h ∈ [0, hmax],Nh(2νρh) ≤ Bρ−d′h}.

In other words, Nh(2νρh) grow exponentially with h,
and the near-optimality dimension gives the exponential
rate of this growth. Thus, Nh(2νρh) ≤ Bρ−dm(ν,ρ)h. The
modified version of near-optimality dimension is adapted for
a finite sampling budget case, and would allow the theoretical
guarantees in Theorem 1 to hold for any f that satisfies
Assumption 2 with a finite sampling budget. We are now
ready to sketch a regret bound for HOO-MB.

Theorem 1. With the input parameters satisfying Assump-

tions 1 and 2, a batch size parameter b, and a sampling
budget of N , HOO-MB achieves a regret bound of

E[SN] = O

((
B
(
σ2 log

(
N/b

)
+ b
)

N

) 1
dm+2

)
,

where dm = dm(ν, ρ) is the hmax -bounded near-optimality
dimension and B is the constant appearing in Definition 2.

Proof: The proof closely follows the approach in [1]
(see also [31], [30]), however, attention is needed when
batched simulations are used (especially for large batches).
Let RN =

∑N
i=1(f∗ − f(xi)) be cumulative regret at round

N , where xi ∈ X is the point returned by HOO-MB at
iteration i. Let T be the tree constructed by HOO-MB
at the end of N iterations. Let H be a positive integer,
that can be optimized for the best bound. As in [1], we
divide T into three groups: T1 that includes all 2νρh-optimal
arms at h ≥ H , T2 that includes all 2νρh-optimal arms at
h ∈ [0, H − 1], and T3 that includes sub-optimal arms with
sub-optimality gaps greater than 2νρh for h ≥ 0. All nodes
belonging to these groups contribute to the cumulative regret
as E[RN]

≤ O
(
ρHN + bBρ−H(dm+1) +Bσ2 log (N/b)ρ−H(dm+1)

)
,

where the first, second, and the third terms are the contribu-
tions of T1, T2, and T3 to the cumulative regret, respectively.
If b = 1, the third term dominates the second, and we recover
the bound in [1]. However, if b is large, we can optimize H
to get:

E[RN] ≤ O
(
N

dm+1
dm+2

(
B
(
σ2 log (N/b) + b

)) 1
dm+2

)
,

This can be easily converted to the required regret bound by
randomly returning one of the sampled points.

We note that the exact knowledge of smoothness param-
eters in Assumption 2 are not required for implementing
the Algorithm 1; these parameters are required for deriving
the tightest regret guarantees. As we discuss below, if only
bounds are available, these can be used in a parallel search
algorithm. We believe that inferring the best smoothness
parameters for a given verification problem is challenging
and requires further investigations. In general, if only coarse
bounds on these smoothness parameters are known—which
is often the case for physical processes—then the search
for the optimal parameters can be easily parallelized by
the Parallel Optimistic Optimization algorithm developed in
[31] (see Algorithm 2). Their algorithm adaptively searches
for the optimal smoothness parameters by spawning several
parallel HOO-MB instances with various (ν,ρ) values. In
Section IV-A, we discuss how the choice on upper bound of
(ν, ρ) affects the performance of HOO-MB.

Algorithm 2 Parallel search with parameters: sampling budget
N , number of instances K, and maximum smoothness parameters
νmax and ρmax

1: for i = 1 : K do
2: Spawn HOO-MB with (ν = νmax, ρ = ρ

K/(K−i+1)
max)

with budget N/K
3: Let x̄i be the point returned by the ith HOO-MB instance

for i ∈ {1, ..,K}
4: return {x̄i| i = 1, ..,K}

C. Verification and Parameter Tuning with HOO-MB
In order to use HOO-MB for verification, a natural choice

for the objective function would be f(x) := pk,U,β(x) for
any initial state x ∈ Θ and a given β ∈ B. To use HOO-
MB for parameter tuning a natural choice for the objective
function would be f(β) := E[r(α, β)|β] for any parameter
state β ∈ B. Evaluating these functions exactly are infeasible
when the transition kernel Pβ is unknown. Even if Pβ is
known, calculating these functions involves integral over the
state space (as in (1) and (3)). Instead, we take advantage of
the fact that HOO-MB can work with noisy observations.

a) Verification: For any initial state x ∈ Θ, and an
execution α starting from x we define the observation:

y = 1 if α hits U within k steps, and 0 otherwise. (5)

Thus, given an initial state x, y = 1 with probability
pk,U,β(x), and y = 0 with probability 1 − pk,U,β(x). That
is, y is a Bernoulli random variable with mean pk,U,β(x).
A Bernoulli random variable satisfies the conditions of
Assumption 1. Then we have the following proposition.

Proposition 1. Given smoothness parameters (ν, ρ) satis-
fying Assumption 2 for the function f(x) = pk,U,β(x), if
Algorithm 1 returns x̄N ∈ Θ, then pk,U,β(x∗)− pk,U,β(x̄N)
is upper bounded by Theorem 1.

b) Parameter Synthesis: For a parameter β ∈ B, and
an execution α starting from x0 sampled from a given
distribution we receive an observation y. The observation
corresponding to this simulation is y = r(α, β), with
mean E[r(α, β)|β]. Assume each observation y satisfies the
conditions of Assumption 1. Then we have the following
proposition.

Proposition 2. Given smoothness parameters (ν, ρ) satis-
fying Assumption 2 for the function f(β) = E[r(α, β)|β],
if Algorithm 1 returns x̄N ∈ B, then E[r(α, β)|β∗] −
E[r(α, β)|x̄N], is upper bounded by Theorem 1.

Remark 1. Qualitatively, Assumption 2 requires that in a
safety set verification problem, choices of input that are
close to x∗ (the input parameter that makes the system
most unsafe) also lead to unsafeness. This requires a local
Lipschitz property of the probability transition kernel at
x∗ ∈ Θ. For autonomous driving safety examples that we
consider, this assumption implies that the initial car locations
(at the beginning of the simulation) that are close to the
most unsafe configuration are also unsafe, which matches
our intuition of the physical dynamics.

K Instances

HOO-MB HOO-MB…
Trace

generator
model.py

ҧ𝑥1 ҧ𝑥𝐾…

Estimate𝑓(ҧ𝑥𝑖) (with MC simulations, return max ഥ𝒙)

𝑟𝑒𝑤𝑎𝑟𝑑

𝑥0 ∈ Θ 𝑥𝑖

𝑥𝑖+1

Input: 𝜌𝑚𝑎𝑥 , 𝜈𝑚𝑎𝑥 , 𝑏, 𝜎, 𝐾, 𝑁

Output: ҧ𝑥 (estimate of the most unsafe state)

𝛽 ∈ ℬ

Fig. 2. HooVer. Parameters: ρmax, νmax are used to calculate
smoothness parameters. We fix νmax = 1.0 and results are not
sensitive to ρmax (Sec IV-B). Impact of batch size b is discussed
in Sec IV-B. The number of HOO-MB instances K is fixed to 4.

D. Discussions on choice of Batch size b

The difference between HOO-MB and the original
HOO [1] is that each node (h, i) in the HOO-MB is sampled
b times. In other words once a node (arm) is chosen,
instead of a single observation, b ≥ 1 observations are
received (thus modifying the update rules for Uh,i and
Bh,i). Indeed, by setting b = 1 in HOO-MB we recover
the original HOO algorithm and the corresponding simple

regret bound E[SN] = O

(
(Bσ

2 logN
N)

1
dm+2

)
. Comparing

the regret bound in HOO-MB and HOO we observe that
HOO-MB gets worse in terms of regret bound, however, it
has the advantage that the number of nodes in the tree is
reduced by a factor of b. This reduces the running time and
makes memory usage more efficient in HOO-MB compared
to HOO. Finally, as is common in literature, Algorithm 1
can be modified to return the best-scoring input, instead of
a randomly chosen one, to improve empirical performance.

IV. HooVer TOOL, EVALUATION, AND DISCUSSIONS

The components of HooVer are shown in Figure 2. Given
the initial state and/or the parameter, HooVer generates ran-
dom trajectories using the transition kernel simulator and gets
rewards. It runs K instances of HOO-MB with automatically
calculated smoothness parameters (see Algorithm 2). Each
instance returns an estimate x̄i of the optimum, then HooVer
computes the mean of reward for each x̄i using Monte-
Carlo simulations4, and outputs the x̄ that gives the highest
mean reward. Source files and instructions for reproducing
the results are available from the HooVer web page5.

Benchmarks: We use instances of examples in Fig-
ure 1 to evaluate HooVer performance in verification.
Moreover, we evaluate the performance of HooVer on
parameter synthesis tasks using a Linear–quadratic reg-
ulator (LQR) benchmark. Specifically, we consider the
system as xt+1 = Axt + But + wt, where wt ∈
N (0, ε2I) are independent and identically distributed (i.i.d.)
Gaussian noises. We want to search for a state-feedback
gain matrix L such that ut = Lxt minimizes the cost

4Number of simulations used here is included in “#queries” in Fig.3.
5https://www.daweisun.me/hoover. The source code is avail-

able at https://github.com/sundw2014/HooVer

Fig. 3. Results on the verification benchmarks, d:dimensions of Θ,
k: time bound in pk,U,β(x̄N). Mean and standard deviations are
averaged over 10 runs. Hitting probability pk,U,β(x̄N) is estimated
using Monte Carlo method once x̄N is returned from the tool.

J(L) = Ew
[∑T−1

t=0 (xᵀtQxt + uᵀtRut) + xᵀTQx
]
. In the ex-

periments, we consider the case where xt ∈ R2 and ut ∈ R2,
and ε is set to 0.01. The distribution for the initial state is a
Dirac delta function, i.e. the initial state is fixed.

A. HooVer performance on benchmarks and LQR example

Our experiments were conducted on a Linux workstation
with two Xeon Silver 4110 CPUs and 32 GB RAM. Figure 3
shows the performance of HooVer on the benchmarks. For
each benchmark, the plots show the estimated worst safety
violation probability pk,U,β(x̄N) against sampling (query)
budget (N) for a fixed time horizon k. Since the ground
truth for sup

x∈Θ
pk,U,β(x) is not known, we cannot evaluate the

simple regret sup
x∈Θ

pk,U,β(x)− pk,U,β(x̄N). Instead we com-

pare the estimated pk,U,β(x̄N) by HooVer with PlasmaLab’s
estimation. We make two observations: As expected, the
output pk,U,β(x̄N) improves with the budget. Second, though
our implementation is not optimized, the running times are
reasonable. SLplatoon ran at less than 1 millisecond per
simulation, i.e., about 10 minutes for 800K queries.

To evaluate the the performance of HooVer on the pa-
rameter synthesis task in the LQR example, we compare the
estimated optimal parameter L̂ provided by HooVer with
different sampling budgets with the ground truth of optimal
parameter L∗. It is noted that L∗ is obtained by solving the
LQR problem with A, B, Q, and R given explicitly. As
shown in Table I, the accuracy of estimation by HooVer
improves with increasing the sampling budget.

TABLE I
PERFORMANCE OF HooVer ON PARAMETER SYNTHESIS.

#queries 1K 2K 4K 8K 16K 32K

‖L̂− L∗‖F 0.594 0.581 0.222 0.161 0.052 0.022

https://www.daweisun.me/hoover
https://github.com/sundw2014/HooVer

B. Impact of batch size and smoothness parameter

As discussed in Section III-D, the batch size parameter
b of HOO-MB can improve the running time and memory
usage without significantly sacrificing the quality of the final
answer. Table II shows this for SLplatoon with sampling
budget N = 800K. The #Nodes refers to the number of the
nodes in the final tree generated by HooVer. Notice that
the final answer pk,U,β() does not change much when using
reasonable batch sizes (b ≤ 400), while the number of nodes
in the tree is reduced, which in turn can reduce the running
time and the memory usage by orders of magnitude. A very
large batch size (e.g. b ≥ 1600) affect the quality of the
results, which is consistent with Theorem 1.

TABLE II
IMPACT OF BATCH SIZE b ON TREE SIZE, FINAL RESULT, RUN

TIME, MEMORY USAGE, FOR SAMPLING BUDGET OF 800K ON

SLplatoon MODEL. RESULTS ARE AVERAGED OVER 10 RUNS.

b 10 100 400 1600 6400
#Nodes 75996 7596 1900 468 116

Running Time (s) 2568 506 512 573 678
Memory (Mb) 67.16 6.62 1.64 0.38 0.09
Result pk,U,β() 0.9745 0.9756 0.9741 0.9667 0.8942

Smoothness parameter: Table III shows how smooth-
ness parameter ρmax impacts the performance of HooVer.
For large values of ρmax (0.95 and 0.9), the upper confidence
bounds (UCB) computed in HOO-MB force the state space
exploration to be more aggressive, and the algorithm explores
shallower levels of the tree more extensively. As ρmax
decreases, HooVer proceeds to deeper levels of the tree.
Below a threshold (0.8 in this case), the algorithm becomes
insensitive to variation of ρmax. Thus, if the smoothness of
the model is unknown, one can select a small ρmax, and
obtain a reasonably good estimate for result.

TABLE III
IMPACT OF SMOOTHNESS PARAMETER ρmax ON TREE AND

FINAL RESULT. RESULTS ARE AVERAGED OVER 10 RUNS.

ρmax 0.95 0.90 0.80 0.60 0.40 0.16 0.01

Tree depth 11.6 14.3 25.3 25.4 25.6 24.2 24.3

Result pk,U,β() 0.9644 0.9647 0.9740 0.9756 0.9754 0.9728 0.9722

C. Comparison with PlasmaLab

Among the tools that are currently available we found
PlasmaLab [38] to be closest to HooVer in terms of being
able to model check on a continuous state-space; therefore,
we decided to perform a deeper comparison with it. Model
checking tools such as Storm [39] and PRISM [16] do
not support continuous state-space models. It is possible to
compare HooVer with these tools on discrete versions of
these examples, but the comparison would not be on par
as the guarantees given these tools are different. The SMC
approach for stochastic hybrid systems presented in [20] is

Fig. 4. HooVer (solid lines) and PlasmaLab (dashed) output in
optimizing sharp functions.

related, but we could not find an implementation to compare
against.

PlasmaLab uses a smart sampling algorithm [40] to as-
sign the simulation budget efficiently to each scheduler
of an MDP. In order to use this algorithm, one has to
set parameters ε and δ in the Chernoff bound, satisfying
Nmax > ln (2/δ)/(2ε2), where Nmax is per-iteration simu-
lation budget. We set the confidence parameter δ to 0.01, and
given an Nmax, the precision parameter ε is then obtained
by ε =

√
ln (2/δ)/(2× 0.8×Nmax). In order to make a

fair comparison, we developed a PlasmaLab plugin which
enables PlasmaLab to use exactly the same external Python
simulator as HooVer.

HooVer gets better than PlasmaLab as the sampling
budget increases (see Figure 3). It is not surprising that for
small budgets, before a threshold depth in the tree is reached,
HooVer cannot give an accurate answer. Once the threshold
is exceeded, the tree-based sampling of HooVer works more
efficiently than PlasmaLab for the given examples.

A conceptual example.: To illustrate the above behavior,
we consider a conceptual example with hitting probability
given by pk,U,β(x) directly without specifying P, k and U .
Given an initial state x = (x1, x2), pk,U,β(x1, x2) = pmax ·
exp (− (x1−0.5)2+(x2−0.5)2

s), where the parameter s controls
the slope of pk,U,β(·) around the maximum pk,U,β(1

2 ,
1
2) =

pmax. The smaller the value of s, the sharper the slope.
In the experiments, we set Θ = {(x1, x2)|0 < x1 <

1, 0 < x2 < 1} and pmax = 0.3. Results are shown in
Fig. 4. With small query budget, PlasmaLab beats HooVer,
however, as the budget increases HooVer improves swiftly
and becomes better (see Figure 4). For “easy” objective
functions (where fs is smooth, s = 0.1), both tools perform
well. As s decreases, fs becomes sharper and the most unsafe
state become harder to find, the point where HooVer beats
PlasmaLab moves to the right. For sharp objective functions
(e.g., s = 0.0003), HooVer is more sample efficient, sug-
gesting that HooVer might perform better than PlasmaLab in
SMC problems with hard-to-find bugs or unsafe conditions.

V. CONCLUSIONS

We presented HOO-MB, an optimistic mini-batched tree
search algorithm, for verification and parameter synthesis
in class of discrete-time nondeterministic, continuous state,

Markov chains (MC). In this class of problems the un-
certainty is in the initial states or parameters. HOO-MB
sequentially samples executions of the MC in batches and
relies on a mild assumption about the smoothness of the
objective function, to find near-optimal solutions violating
the given safety requirement. We provided theoretical regret
bounds in terms of the sampling budget, smoothness, near-
optimality dimension, and sampling batch size; importantly,
HOO-MB does not require exact parameters or quantities
to run effectively. We created several benchmarks models,
implemented a tool (HooVer), and the experiments show
that our approach is competitive compared to PlasmaLab in
terms of sample efficiency. Detailed comparison with other
verification and synthesis tools and exploration of general
Markov decision processes with this approach would be
directions for further investigation.

ACKNOWLEDGEMENTS

This work was supported by an ONR Science of Security
Grant H98230-18-D-0007.

REFERENCES

[1] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits,”
Journal of Machine Learning Research, vol. 12, no. May, pp. 1655–
1695, 2011.

[2] B. Boyer, K. Corre, A. Legay, and S. Sedwards, “PLASMA-lab: A
flexible, distributable statistical model checking library,” in Proceed-
ings of the 10th International Conference on Quantitative Evaluation
of Systems. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 160–164.

[3] ISO, “ISO 26262:road vehicles–functional safety,” Organizacion In-
ternacional de Normalizacion (ISO), Norm ISO 26262, 2011.

[4] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[5] I. Tkachev and A. Abate, “On infinite-horizon probabilistic properties
and stochastic bisimulation functions,” in 2011 50th IEEE Conference
on Decision and Control and European Control Conference. IEEE,
2011, pp. 526–531.

[6] S. Esmaeil Zadeh Soudjani and A. Abate, “Adaptive and sequential
gridding procedures for the abstraction and verification of stochastic
processes,” SIAM Journal on Applied Dynamical Systems, vol. 12,
no. 2, pp. 921–956, 2013.

[7] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates.” in HSCC, vol. 2993, 2004.

[8] P. Jagtap, S. Soudjani, and M. Zamani, “Formal synthesis of stochastic
systems via control barrier certificates,” IEEE Trans. Auto. Ctrl., 2020.

[9] A. Legay and S. Sedwards, “On statistical model checking with
PLASMA,” in The 8th Intl. Symposium on Theoretical Aspects of
Software Engineering, September 2014.

[10] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of
discrete event systems using acceptance sampling,” in International
Conference on Computer Aided Verification (CAV2002). Springer,
2002, pp. 223–235.

[11] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proceedings of the 17th International
Conference on Computer Aided Verification, ser. CAV’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 266–280.

[12] H. L. S. Younes, “Probabilistic verification for ”black-box” systems,”
in Computer Aided Verification, 17th International Conference, CAV
2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, 2005,
pp. 253–265.

[13] A. Hartmanns and H. Hermanns, “A modest approach to checking
probabilistic timed automata,” in 2009 Sixth Intl. Conference on the
Quantitative Evaluation of Systems. IEEE, 2009, pp. 187–196.

[14] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke,
“Statistical model checking for markov decision processes,” in 2012
Ninth Intl. Conference on Quantitative Evaluation of Systems. IEEE,
2012, pp. 84–93.

[15] A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G.
Sørensen, and J. H. Taankvist, “On time with minimal expected cost!”
in Intl. Symposium on Automated Technology for Verification and
Analysis. Springer, 2014, pp. 129–145.

[16] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A
tool for automatic verification of probabilistic systems,” in Proc. 12th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06), ser. LNCS, H. Hermanns and
J. Palsberg, Eds., vol. 3920. Springer, 2006, pp. 441–444.

[17] R. Lassaigne and S. Peyronnet, “Approximate planning and verification
for large markov decision processes,” Intl. Journal on Software Tools
for Technology Transfer, vol. 17, no. 4, pp. 457–467, 2015.

[18] A. Hartmanns and H. Hermanns, “The modest toolset: An integrated
environment for quantitative modelling and verification,” in Intl.
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2014, pp. 593–598.

[19] C. E. Budde, P. R. D’Argenio, A. Hartmanns, and S. Sedwards, “A
statistical model checker for nondeterminism and rare events,” in Intl.
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2018, pp. 340–358.

[20] C. Ellen, S. Gerwinn, and M. Fränzle, “Statistical model checking for
stochastic hybrid systems involving nondeterminism over continuous
domains,” Intl. Journal on Software Tools for Technology Transfer,
vol. 17, no. 4, pp. 485–504, 2015.

[21] N. Musavi, D. Sun, S. Mitra, G. Dullerud, and S. Shakkottai, “Opti-
mistic optimization for statistical model checking with regret bounds,”
Presented at The 6th Intl. Workshop on Symbolic-Numeric Methods for
Reasoning about CPS and IoT (SNR), August 2020, Vienna, Austria.

[22] W. R. Thompson, “On the theory of apportionment,” American Journal
of Mathematics, vol. 57, no. 2, pp. 450–456, 1935.

[23] ——, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25,
no. 3/4, pp. 285–294, 1933.

[24] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Math. Soc., vol. 58, no. 5, pp. 527–535, 1952.

[25] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[26] R. Munos, “From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning,” 2014.

[27] P. Auer, C.-B. N., and P. Fischer, “Finite-time analysis of the multi-
armed bandit problem,” vol. 47, 2002.

[28] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,”
arXiv preprint cs/0703062, 2007.

[29] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conf. on machine learning. Springer, 2006, pp. 282–293.

[30] R. Sen, K. Kandasamy, and S. Shakkottai, “Noisy blackbox optimiza-
tion using multi-fidelity queries: A tree search approach,” in The 22nd
Intl. Conf. on Artificial Intelligence and Statistics, 2019.

[31] J.-B. Grill, M. Valko, and R. Munos, “Black-box optimization of
noisy functions with unknown smoothness,” in Advances in Neural
Information Processing Systems, 2015, pp. 667–675.

[32] K. Kodaka, M. Otabe, Y. Urai, and H. Koike, “Rear-end collision
velocity reduction system,” SAE Intl., Tech. Rep. 2003-01-0503, 2003.

[33] S. Fabris, “Method for hazard severity assessment for the case of
undemanded deceleration,” TRW Automotive, Berlin, 2012.

[34] C. Fan, B. Qi, and S. Mitra, “Data-driven formal reasoning and their
applications in safety analysis of vehicle autonomy features,” IEEE
Design and Test, vol. 35, no. 3, pp. 31–38, 2018.

[35] C. Ionescu Tulcea, “Mesures dans les espaces produits,” Atti Accad.
Naz. Lincei Rend, vol. 7, pp. 208–211, 1949.

[36] D. Petritis, “Markov chains on measurable spaces,” April 2012, https:
//perso.univ-rennes1.fr/dimitri.petritis/ps/markov.pdf.

[37] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[38] A. Legay, S. Sedwards, and L.-M. Traonouez, “Plasma lab: a modular
statistical model checking platform,” in Tntl. Symposium on Leverag-
ing Applications of Formal Methods. Springer, 2016, pp. 77–93.

[39] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is
coming: A modern probabilistic model checker,” in Intl. Conference
on Computer Aided Verification. Springer, 2017, pp. 592–600.

[40] P. D’Argenio, A. Legay, S. Sedwards, and L.-M. Traonouez, “Smart
sampling for lightweight verification of markov decision processes,”
Intl. Journal on Software Tools for Technology Transfer, vol. 17, no. 4,
pp. 469–484, 2015.

https://perso.univ-rennes1.fr/dimitri.petritis/ps/markov.pdf
https://perso.univ-rennes1.fr/dimitri.petritis/ps/markov.pdf

	I Introduction
	I-A Main Contributions
	I-B Comparison with Related Approaches
	I-C Motivating Examples

	II Model and problem statement
	III Verification and Parameter Synthesis with Hierarchical Optimistic Optimization
	III-A Hierarchical tree optimization with mini-batches
	III-B Analysis of Regret Bound
	III-C Verification and Parameter Tuning with HOO-MB
	III-D Discussions on choice of Batch size b

	IV HooVer tool, evaluation, and discussions
	IV-A HooVer performance on benchmarks and LQR example
	IV-B Impact of batch size and smoothness parameter
	IV-C Comparison with PlasmaLab

	V Conclusions
	References

