
© 2021 Yangge Li

SOFTWARE TOOLS FOR SCENARIO VERIFICATION OF
AUTONOMOUS SYSTEMS EXPLOITING DYNAMICAL SYMMETRIES

BY

YANGGE LI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Adviser:

Professor Sayan Mitra

ABSTRACT

In this thesis, we discuss using formal verification techniques to ensure the

safety of autonomous systems. We present a particular type of verification

problem called scenario verification, which involves vehicles executing com-

plex plans in large cluttered workspaces.

To solve the scenario verification problem, we present the tool SceneChecker.

SceneChecker converts the scenario verification problem to a standard hybrid

system verification problem and solves it effectively by exploiting structural

properties in the plan and the vehicle dynamics. SceneChecker implements

symmetry abstractions, a novel refinement algorithm, and is built to enhance

the performance of existing reachability analysis tools as a plug-in subrou-

tine. We evaluated SceneChecker on several complicated scenarios with dif-

ferent types of agents. Compared to two leading tools, DryVR and Flow*,

SceneChecker shows 20x speedup in verification time, even while using those

tools as reachability subroutines.

We further look into a variation of the scenario verification problem, with

multiple agents running independently in the shared workspace. In addition,

the plan is generated as the agent executing the scenario, which requires

safety checking to be performed during runtime. To solve this problem, we

present Swerve, an open-source cloud computing toolkit for efficient run-

time collision checking for multi-agent autonomous systems. Swerve imple-

ments a remote server to check safety for different agents by using bounded-

time reachability analysis. In addition, Swerve implements a cache to store

already computed reachable sets and reuses them to avoid repeated com-

putations. We evaluate Swerve on several scenarios and are able to show

that Swerve is able to properly detect potential collisions between agents

and static obstacles. In addition, we show that with symmetry and caching,

Swerve is able to obtain 16x average speedup in service response time.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First, I would like to express my most sincere gratitude to my advisor Pro-

fessor Sayan Mitra. I started working in the group in early 2018 as an

undergraduate research assistant and, in the past three years, he patiently

guided me to apply the knowledge that I learned in the classroom to solve

real-world problems in safe autonomy. Professor Mitra not only taught me

how to do research but also helped me with my difficulties in life. All the

work in this thesis wouldn’t be possible without his generous and patient

guidance and encouragement.

I would like to sincerely thank my labmate Hussein Sibai for his enlightened

insights and generous help that solved many difficulties in my research. I am

also grateful to all other members of the Reliable Autonomy Group for their

continuous support.

Last but not least, I would like to express my deepest gratitude to my

parents for their financial and moral support since 2015. Their love, support

and encouragement, are essential for my life.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Formal Verification Approach to Safe Autonomy 2
1.3 Thesis Contributions . 6
1.4 Thesis Structure . 8

CHAPTER 2 SCENECHECKER: BOOSTING SCENARIO VER-
IFICATION USING SYMMETRY ABSTRACTIONS 9
2.1 Overview . 9
2.2 Related Works . 10
2.3 Background . 12
2.4 SceneChecker: Algorithm Overview 17
2.5 Experimental Evaluation . 21
2.6 Conclusions and Future Work 26

CHAPTER 3 SWERVE: EFFICIENT RUNTIME VERIFICATION
OF MULTI-AGENT SYSTEMS USING DYNAMICAL SYM-
METRIES AND CLOUD COMPUTING 27
3.1 Overview . 27
3.2 Related Works . 28
3.3 Toolkit Architecture . 29
3.4 Verification Server . 32
3.5 Experimental Evaluation . 36
3.6 Discussion and Future Work 41

CHAPTER 4 CONCLUSION AND FUTURE WORK 43

APPENDIX A NN-CONTROLLED QUADROTOR CASE STUDY . 45

REFERENCES . 47

v

CHAPTER 1

INTRODUCTION

1.1 Motivation

Autonomous systems have gained significant attention and have been success-

fully deployed in various environments. Waymo has already opened a driver-

less robo-taxi service in Phoenix [1]. It is predicted that by the year 2050,

more than 50% of all vehicles on the road will be fully autonomous [2]. How-

ever, Uber’s fatal accident in 2018 and several other incidents have sharply

raised the question: Can autonomous systems be assured safe in the vast

number of scenarios that arise in the real world?

A large body of research exists in checking safety for autonomous sys-

tems [3, 4, 5, 6, 7, 8, 9, 10]. One essential and common practice is through

real-world test driving. For example, Waymo reported driving around 0.8

million miles in 2020 [11] and a total of 20 million miles of real-world testing

[12]. Real-world testing is necessary to validate the whole autonomous sys-

tems in their actual operating environments. However, real-world testing can

become expensive. In addition, it can be hard to create extreme scenarios

that can rarely happen in the real world.

An alternative to real-world testing is to perform high-fidelity simulations

using photo-realistic simulators. For example, the authors of [13] use the

flight simulator X-Plane to find environmental conditions that can cause an

autonomous aircraft taxiing system to fail and help improve the system.

However, as argued by Shalev-Shwartz [14], “It will require us to drive 30

billion miles to have enough statistical evidence to argue that the probability

of the AV making an unsafe decision that will lead to a fatality per one

hour of driving is 109”. The set of behaviors of most interesting autonomous

systems can be too large to the extent that it can even be uncountably

infinite. Indeed, we believe that it is not feasible for a reasonable number of

1

tests, either on the road or in simulations, to establish the absence of bugs.

1.2 Formal Verification Approach to Safe Autonomy

In contrast to testing, a verification method mathematically shows that a

model of the system meets the requirements. Currently, formal verifica-

tion techniques are widely used in the semiconductor design community, also

known as the electronic design automation (EDA) community [15]. The

EDA community believes that the verification approach can reduce the cost

and delays incurred by labor-intensive manual testing. In addition, formal

verification methods are used to eliminate bugs that can be hard to find

by testing. Besides the EDA community, formal verification has also been

used extensively in many areas, including aerospace [16, 17, 18, 19] and avion-

ics [20, 21, 22]. Researchers from NASA [19] use formal verification, especially

model checking techniques, to perform various tasks, including verification

of Remote Agent Executive (RA EXEC), searching for the Remote Agent

Experiment (RAX) anomaly, verification of remote agent planner/scheduler

models and consistency checking of remote agent traces. Honeywell [20] uses

model-based approaches for the automated verification of complex avionics

applications, including flight controls and engine controls.

With all these successes of formal verification, researchers are beginning

to explore how formal methods can help assure the safety of autonomous

systems. Currently, the researchers are focusing on verifying the software

of the autonomous systems with physical constraints from those systems.

People are hoping that with the help of formal verification techniques, they

can not only detect bugs in the systems but also gain a better understanding

of the autonomous systems to improve the design with better efficiency, less

energy use, or better performance. In the following subsections, we discuss

various approaches that the verification community used to prove the safety

of autonomous systems and to understand them better.

1.2.1 Falsification

One common practice for finding bugs in autonomous systems is through

falsification. The goal of falsification is to search for a configuration of the

2

environment and an input to the autonomous system so that the given safety

property will be violated. Various tools and algorithms are developed to help

finding counter examples [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

In [31, 32], the authors create a toolkit VerifAI for the formal design and

analysis of artificial intelligence-based systems. The authors designed Scenic,

a probabilistic programming language, to write environment models. With

Scenic, people can specify distributions encoding interesting types of inputs

to the autonomous system and also the environment that the autonomous

system is running. Then by using algorithms from [34, 35, 36, 37, 38, 39],

the toolkit can efficiently search for inputs and environments that will make

the autonomous systems violate the specified safety requirements. In [13],

the toolkit is applied to an experimental autonomous aircraft taxiing system,

which uses a neural network to track the centerline of a runway. By using the

toolkit, they are able to automatically find environment conditions causing

the system to violate its specification by deviating significantly from the

centerline. The counterexamples found through falsification are then used to

identify distinct failure cases and their root causes, which enables them to

improve the performance of the autonomous system.

1.2.2 Controller Synthesis

Another approach for assuring the safety of autonomous systems is through

controller synthesis. Controller synthesis aims to provide correct-by-construc-

tion controllers that can guarantee that the system under control meets cer-

tain requirements. Many algorithms are developed to perform controller

synthesis [40, 41, 42, 43, 44].

In [42], the authors address the problem of synthesizing a controller for

various systems with reach-avoid requirements. They treated the controller

as a reference controller and a tracking controller that drives the actual tra-

jectory to follow the reference trajectory. In addition, they find the bound

of tracking error between the actual trajectory of the autonomous system

following the reference trajectory and use this bound on the tracking er-

ror to identify reference trajectories that are guaranteed safe by solving a

satisfiability problem over linear constraints.

3

1.2.3 Reachability Analysis

One common practice for performing formal verification on autonomous sys-

tems is through reachability analysis. Reachability analysis is able to gener-

ate over-approximations of the set of possible behaviors of the autonomous

systems starting from initial conditions given inputs and is able to use this

set of possible behaviors to prove that they all satisfy a given property. In the

past decades, various tools and algorithms have been developed to perform

reachability analysis for both linear [45, 46, 47] and nonlinear [48, 49, 50, 51,

52, 53] hybrid systems.

In addition to proving properties for autonomous systems, reachability

analysis can also be used in the falsification [54, 55, 56] and controller syn-

thesis [43, 42, 40, 57] techniques discussed in the previous sections.

1.2.4 Neural Network Verification

Since neural networks are now widely used in various autonomous systems,

especially the perception module of those systems, the researchers want to

automatically prove that a given network satisfies a specific property of in-

terest, such as robustness to certain perturbations or pre/post conditions.

Currently, many research projects focus on verifying behaviors of neural

networks with respect to the input adversarial region. State-of-the-art works

in neural network verification include methods based on SMT solving [58],

linear approximations [59], and abstract interpretation [60, 61, 62, 63].

In addition, in [64], the author successfully verified neural networks with

respect to more complex types of perturbation such as rotation.

1.2.5 Verification of Autonomous Systems with Neural
Networks

With the progress in verifying the neural networks, the researchers are di-

recting their attention to verifying the safety properties of closed-loop au-

tonomous systems with neural network components. Verifying autonomous

systems with neural network components can be more complicated than ver-

ifying the neural networks themselves because the interaction between the

4

neural network and other components of the system, as well as the nonlin-

earity of plant dynamics, can introduce extra complexity.

In [65], the authors transform the neural network into an equivalent hybrid

system. In this case, they are able to verify the safety properties of systems

with neural network controllers using reachability analysis.

In [66], the authors present a method for creating a sound abstraction of

the neural network function by abstracting the feedback of the neural network

by a polynomial of a given degree plus some error bound. The algorithm is

able to verify benchmark with up to 17 dimensions and networks involving

around 500 neurons and six layers deep.

In [67], the authors designed a technique for inferring intelligible and safe

abstractions for neural network based perception models from system-level

safety requirements, data, and program analysis of the modules that are

downstream from perception. The technique is applied to various case stud-

ies, including a vision-based lane-keeping controller with LaneNet [68] and a

corn-row following agriculture robot (AgBot).

1.2.6 Challenges in Formal Verification

Despite all these success stories, applying formal verification techniques to

autonomous systems persists as a challenging problem. In this section, we

will discuss several challenges that people face while verifying autonomous

systems and how people are trying to overcome these challenges.

Hard to Create Specifications One challenge for formal verification to

be implemented for autonomous systems is the reliance of most techniques

on expressively weak and hard-to-use formal specification languages. In fact,

creating correct specifications is challenging. In many cases, a violation of a

specification is due to a mistake in the formalization of the specification and

not in the actual algorithm or implementation [15]. To address this issue,

Chong et al. [69] believe that making specifications explicit in source code,

writing proofs-harness in declarative styles, and integrating proof artifacts

into the development workflow can help developers correctly and efficiently

create specifications.

5

Sim2Real Gap Because verification of autonomous systems relies on math-

ematical models that describe the systems, the sim2real gap, which is the

difference between a system’s model and real performance, becomes a prob-

lem for verifying real systems. Overcoming this challenge allows developers

to design and test software in simulations with the guarantee that safety

properties that hold in the simulation would still hold in real world. Cur-

rently, researchers are analyzing the sim2real gap [70, 71, 72] and developing

sophisticated simulators [73, 74] and algorithms [75, 76] to close this gap.

Scalability Another major challenge in verifying autonomous systems is

scalability with respect to the complexity of the system itself, the operating

environment of the system, and the complexity of the property under verifi-

cation. One effort to overcome this scalability problem is through exploring

symmetric properties in agent dynamics. Sibai et al., in work Multi-agent

Safety Verification Using Symmetry Transformations [77], uses symmetries

to avoid computing reachable sets by transforming previously computed ones

to improve the performance of reachability analysis.

1.3 Thesis Contributions

In this thesis, we will look at a particular type of verification problem, the

scenario verification problem, which is specified by a set of obstacles, a plan,

and an agent. The agent is supposed to execute the plan through the complex

environment. The verification task has to ensure that the plan can indeed be

safely executed by the vehicle with all the dynamics constraints and the state

estimation uncertainties. An example of such problems is shown in Figure

1.1. Verifying such problems with existing techniques can be challenging.

First, specifying such scenario verification problems in existing tools presents

some practical hurdles. More importantly, analyzing such scenarios can be

challenging as the over-approximation errors and the analysis times grow

rapidly as the scale of the scenario increases.

On the other hand, scenario verification problems can have lots of rep-

etitions and symmetries, which suggest new opportunities. This thesis in-

troduces SceneChecker [79] and Swerve [80] that we designed to solve the

scenario verification problem.

6

Figure 1.1: This picture shows an example scenario verification problem.
The ego vehicle (marked by the red box) is trying to overtake the NPC
vehicle stopped in the middle of the lane following the plan specified by the
black arrow. We want to show the ego car is able to execute the plan
without colliding with obstacles. The scenario is rendered in CARLA [78].

SceneChecker: Boosting Scenario Verification Using Symmetry Ab-

stractions In this work, we present SceneChecker [79], a tool that imple-

ments a symmetry abstraction-refinement algorithm for efficient scenario ver-

ification. We treat the scenario as a hybrid automaton with the modes defined

by the segments of the planner, and symmetry abstractions significantly re-

duce the number of modes and edges of the automaton H representing the

scenario by grouping all modes that share symmetric continuous dynam-

ics [81]. SceneChecker offers an easy interface to specify scenarios and is able

to use any existing reachability analysis tool as a subroutine.

We evaluated SceneChecker on several scenarios and compared the verifica-

tion time of SceneChecker with DryVR and Flow* as reachability subroutines

against Flow* and DryVR as standalone tools. SceneChecker is faster than

both tools in all scenarios considered, achieving up to 20× speedup in veri-

fication time.

Swerve: Efficient Runtime Verification of Multi-Agent Systems

Using Dynamical Symmetries and Cloud Computing In this work,

we extend the scenario verification problem by having multiple agents run-

7

ning independently in the shared scenario. In addition, instead of having

access to the whole plan, the plan is generated as each agent moves in the

workspace. Therefore the safety checking has to happen during runtime. In

the rest of this thesis, we will denote this variation of scenario verification

problem as the runtime multi-agent verification problem.

We present Swerve [80], which is an open-source cloud computing toolkit

for efficient runtime collision checking of multi-agent autonomous systems.

Given a scenario with multiple autonomous systems operating in the same en-

vironment, Swerve utilizes a remote server to perform bounded-time reach-

ability analysis-based verification of safety by checking the absence of col-

lisions for the different agents at runtime. More importantly, building on

results demonstrating the effectiveness of symmetries in improving offline

verification [79, 82, 77, 83, 84, 85, 86], our Verification Server implements a

cache to store reachable sets and reuse them to avoid repeated computations.

The toolkit offers an easy interface for the user to specify the static obsta-

cles in the environment and can check if the reachable sets of the different

agents intersect with each other or with other obstacles to check if a collision

might happen.

We test Swerve on several scenarios where more than 20 cars and drones

follow independent plans in realistic environments with hundreds of static

obstacles. Swerve is able to properly detect collision among agents and

between the agents and the statics obstacles. For 20 closely flying agents, for

example, the collision check for a time horizon of 15 s typically takes 0.25

s. This suggests that this client-server approach with caching is a feasible

strategy for online collision detection.

1.4 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 introduces

the scenario verification problem and talks about how we explore symme-

try in dynamical systems to solve this problem. This chapter also presents

SceneChecker, the tool we implemented to solve the scenario verification prob-

lem. Chapter 3 discusses the online multi-agent verification problem and in-

troduces Swerve, the tool kit we developed to solve this problem. Chapter

4 concludes this thesis and discusses potential research directions.

8

CHAPTER 2

SCENECHECKER: BOOSTING SCENARIO
VERIFICATION USING SYMMETRY

ABSTRACTIONS

In this chapter, we describe the scenario verification problem and the diffi-

culties in solving this type of problem. Then, we talk about how we explore

symmetry in dynamical systems to help solve this problem. In addition, we

present SceneChecker, the tool we implemented to help solve the scenario ver-

ification. In the last section, we talk about the experimental evaluation and

some observations we have about SceneChecker. The content of this chapter

is based on joint work with Sibai et al. in [79].

2.1 Overview

SceneChecker is a tool that implements a symmetry abstraction-refinement

algorithm for efficient scenario verification. Symmetry abstractions signifi-

cantly reduce the number of modes and edges of an automatonH by grouping

all modes that share symmetric continuous dynamics [81]. SceneChecker im-

plements a novel refinement algorithm for symmetry abstractions and is able

to use any existing reachability analysis tool as a subroutine. Our current

implementation comes with plug-ins for using Flow* [87] and DryVR [49].

SceneChecker’s verification algorithm is sound, i.e., if it returns safe, then the

reachset of H indeed does not intersect the unsafe set. The algorithm is loss-

less in the sense that if one can prove safety without using abstraction, then

SceneChecker can also prove safety via abstraction-refinement, and typically

much faster.

SceneChecker offers an easy interface to specify plans, agent dynamics,

obstacles, initial uncertainty, and symmetry maps. SceneChecker checks if a

fixed point has been reached after each call to the reachability subroutine,

avoiding repeating computations. First, SceneChecker represents the input

scenario as a hybrid automaton H, where modes are defined by the plan’s

9

segments. It uses the symmetry maps provided by the user to construct an

abstract automaton Hv. Hv represents another scenario with fewer segments,

each representing a group of symmetric segments in H. A side effect of the

abstraction is that upon reaching waypoints in Hv, the agent’s state resets

non-deterministically to a set of possible states. For example, in the case

of rotation and translation invariance, the abstract scenario would have a

single segment for any group of segments with a unique length in the original

scenario. SceneChecker refines Hv by splitting one of its modes into two

modes. That corresponds to representing a group of symmetric segments

with one more segment in the abstract scenario, capturing more accurately

the original scenario.

We evaluated SceneChecker on several scenarios where car and quadrotor

agents with nonlinear dynamics follow plans to reach several destinations in

2D and 3D workspaces with hundreds of waypoints and polytopic obstacles.

We considered different symmetries (translation and rotation invariance)

and controllers (Proportional-Derivative (PD) and Neural Networks (NN)).

We compared the verification time of SceneChecker with DryVR and Flow*

as reachability subroutines against Flow* and DryVR as standalone tools.

SceneChecker is faster than both tools in all scenarios considered, achieving

up to 20× speedup in verification time (Table 2.1). In certain scenarios where

Flow* timed out (executing for more than 120 minutes), SceneChecker is able

to complete verification in as fast as 12 minutes using Flow* as a subroutine.

SceneChecker, when using abstraction-refinement, achieved 13× speedup in

verification time over not using abstraction-refinement in scenarios with the

NN-controlled quadrotor (Section 2.5).

2.2 Related Works

The idea of using symmetries to accelerate verification has been exploited in a

number of contexts, such as probabilistic models [88, 89], automata [90, 91],

distributed architectures [92], and hardware [93, 94, 95]. Some symmetry

utilization algorithms are implemented in Murϕ [84] and Uppaal [83].

In our context of cyber-physical systems, Bak et al. [85] suggested using

symmetry maps, called reachability reduction transformations, to transform

reachsets to symmetric reachsets for continuous dynamical systems modeling

10

non-interacting vehicles.

Maidens et al. [96] proposed a symmetry-based dimensionality reduction

method for backward reachable set computations for discrete dynamical sys-

tems. Majumdar et al. [97] proposed a safe motion planning algorithm that

computes a family of reachsets offline and composes them online using sym-

metry. Bujorianu et al. [86] presented a symmetry-based theory to reduce

stochastic hybrid systems for faster reachability analysis and discussed the

challenges of designing symmetry reduction techniques across mode transi-

tions.

In a more closely related research work, Sibai et al. [82] presented a mod-

ified version of DryVR that utilizes symmetry to cache reachsets aiming to

accelerate simulation-based safety verification of continuous dynamical sys-

tems. The related tool CacheReach implements a hybrid system verifica-

tion algorithm that uses symmetry to accelerate reachability analysis [77].

CacheReach caches and shares computed reachsets between different modes

of non-interacting agents using symmetry. SceneChecker is based on the the-

ory of symmetry abstractions of hybrid automata presented in [81]. They

suggested computing the reachset of the abstract automaton instead of the

concrete one then transforming it to the concrete reachset using symmetry

maps to accelerate verification. SceneChecker is built based on this line of

work with significant algorithmic and engineering improvements. In addition

to the abstraction of [81], SceneChecker (1) maps the unsafe set to an abstract

unsafe set and verifies the abstract automaton instead of the concrete one,

and (2) decreases the over-approximation error of the abstraction through re-

finement. SceneChecker does not cache reachsets and thus saves cache-access

and reachset-transformation times and does not incur over-approximation

errors due to caching that CacheReach suffers from [77]. At the implementa-

tion level, SceneChecker accepts plans that are general directed graphs and

polytopic unsafe sets, while CacheReach accepts only single-path plans and

hyperrectangle unsafe sets. We show more than 30× speedup in verifica-

tion time while having more accurate verification results when comparing

SceneChecker against CacheReach (Table 2.1 in Section 2.5).

11

2.3 Background

In this section, we formally define the scenario verification problem. We

discuss how to construct a hybrid automaton through the scenario to convert

the scenario verification problem to a hybrid automaton verification problem.

We introduce reachability analysis, a popular method for performing hybrid

automaton verification, and the challenges of using reachability analysis to

solve scenario verification problems. In the last part of this section, we discuss

the definition of symmetry of dynamical systems and how it can help boost

performance for verifying scenarios.

2.3.1 Scenario Verification Problem

We are attempting to solve the scenario verification problem. A scenario is

defined by a set of obstacles, a plan, and an agent executing the plan. An

example scenario is shown in Figure 2.1. The plan, which can be generated

by any planner, is defined by a directed graph G = ⟨V, S⟩, where the vertices
V in the graph are the waypoints in the workspace and the edges S in the

graph are segments formed by consecutive waypoints.

The agent is a control system that can execute the plan by following seg-

ments in the plan. Let the state space of the agent be X, with initial un-

certainty Θ ∈ X. Let sinit be the initial segment to follow. Given the

state of the vehicle x ∈ X and the segment s ∈ S, the vehicle is able to

follow the segment along some trajectory ξ. The trajectory is a function

ξ : X × S × R≥0 → X under certain dynamic constraints. The dynamics of

the agent can be specified either by black-box simulators or through ordinary

differential equations (ODE). When the agent dynamics is defined by ODE,

ξ will be a solution of differential equation dξ
dt
(x, s, t) = f(ξ(x, s, t), s), for

any t ≥ R≥0, ξ(x, s, 0) = x and f : X × S → X is Lipschitz continuous with

respect to the state. We denote ξ.fstate as the initial state, ξ.lstate the last

state, and ξ.dom the time domain of the trajectory ξ.

The obstacles can be viewed as a set of unsafe states O : S → 2X . The

map tbound : S → R≥0 defines the maximum time that the agent follows

a given segment. For any pair of segments (segments that share a common

waypoint in graph G), guard((s, s′)) defines a set of states that the agent can

transit from following segment s to s’.

12

Figure 2.1: An example scenario, the plan is represented by the graph
defined by waypoints v0 to v6 and segments s0 to s5. The obstacle is
specified by the gray rectangle. The set of the initial state for the agent is
specified by the blue rectangle.

2.3.2 Converting Scenarios to Hybrid Automata

The scenario can be converted to a hybrid automaton. Here we present the

definition of hybrid automaton that SceneChecker constructs for the given

scenario [79].

Definition 1 A hybrid automaton is a tuple

H := ⟨X,P,Θ, pinit , E, guard , reset , f⟩ (2.1)

1. X ⊆ Rn is the continuous state space, or simply the state space, and

P ⊆ Rd is the discrete state space, which we call the parameter or mode

space (it is equal to S in the scenario verification problem).

2. ⟨Θ, pinit⟩ ⊆ X × P is a pair of a compact set of possible initial states

and an initial mode (pinit = sinit in our setting).

13

3. E ⊆ P × P is a set of edges that specify possible transitions between

modes.

4. guard : E → 2X defines the set of states at which a mode transition

over an edge is possible.

5. reset : X × E → 2X defines the possible updates of the state after a

mode transition over an edge.

6. f : X × P → X is the dynamic function that defines the continuous

evolution of the state in each mode. It is Lipschitz continuous in the

first argument.

In our case, the agent following a plan in the workspace can be easily modeled

as a hybrid automaton H. The discrete modes of the hybrid automaton are

defined by the segments S in the plan G. The set of possible initial states

and the initial mode are defined by Θ, the set initial position of the agent,

and sinit, the initial segment that the agent is going to follow. The set of

edges of H E ⊆ S × S can be defined by a pair of consecutive segments in

the original plan G. The guard function for each edge e ∈ E, guard(e) for

H will be the same as that for the original scenario, which can be the agent

arriving at the end waypoint of the segment. The reset for H, in this case,

will be the identity map. The dynamic function f will be the agent dynamics

specified by either a black-box simulator or ODE. By converting the scenario

to a hybrid automaton, we can formally formulate the verification problem.

Verification problem A definition of the verification problem [79] can be

the following. An execution of length k is a sequence σ := (ξ0, s0), . . . , (ξk, sk),

which models the behavior of the agent following a particular path in the plan

G. An execution σ must satisfy:

1. ξ0.fstate ∈ Θ and s0 = sinit , for each i ∈ {0, . . . , k − 1},

2. (si, si+1) ∈ E,

3. ξi.lstate ∈ guard((si, si+1))

4. ξi.lstate = ξi+1.fstate,

5. for each i ∈ {0, . . . , k}, ξi.dom ≤ tbound(si).

14

The set of reachable states is ReachH := {σ.lstate | σ is an execution}. The
restriction of ReachH to states with mode s ∈ S (i.e., agent following segment

s) is denoted by ReachH(s). Thus, the hybrid system verification problem

requires us to check whether ∀s ∈ S, ReachH(s) ∩O(s) = ∅.

2.3.3 Reachability Analysis

Such a problem can be solved with reachability analysis. Reachability anal-

ysis can determine the set of states ReachH(s), s ∈ S that the agent can

reach starting from a set of initial states while executing the plan. There-

fore, as mentioned in the previous section, if the computed reachset does not

intersect with any of the obstacles, we can show that all possible executions

of the agent in this scenario starting from possible initial states will not col-

lide with obstacles. Many different reachability analysis algorithms and tools

have been developed. The key challenge in analyzing autonomous systems

using reachability analysis is scalability. The current existing algorithms and

tools may have difficulty solving complicated scenarios with a large number

of obstacles, complex plans, or highly nonlinear dynamics.

2.3.4 Symmetry for Dynamical Systems

A solution we proposed to overcome the scalability issue is to use the sym-

metry property of agent dynamics. The symmetry we are using is a pair of

maps Φ = {(γs : X → X, ρs : S → S)} which satisfies the condition

∀t ≥ 0, x ∈ X, s ∈ S, γs(ξ(x, s, t)) = ξ(γs(x), ρs(s), t) (2.2)

where ∀s ∈ S, the map γs is differentiable and invertible.

When the dynamics of the system are defined by ODE as ẋ = f(x, s), a

map Φ is a symmetry map if ∀x ∈ X, ∀s ∈ S

∂γs
∂x

f(x, s) = f(γs(x), ρs(s)) (2.3)

This definition of symmetry allows us to transform the agent’s trajectories

to other symmetric ones starting from symmetric initial states. An example

of how symmetry map Φ = {(γ, ρ)} can work is shown in Figure 2.2, where

15

ρ can translate the endpoint of the segment to the origin and rotate the

direction of the segment to align with positive x-direction and γ will trans-

form the trajectory of agent accordingly. Note that, in order for a map to

satisfy Equation 2.2, the dynamics of the agent have to be invariant under

such transformation, which is expected for many vehicle dynamics since the

behavior of the vehicle will not be changed under a translation/rotation of

lanes. With this definition of symmetry, we want to transform the computed

trajectories and reuse them to reduce the total amount of computation.

Figure 2.2: The picture shows an example of the symmetry of agent
dynamics. The planned segment s (green dashed line on the left) is first
rotated and then translated so that its direction is aligned with the positive
x and end waypoint at origin to obtain the transformed segment ρs(s). The
trajectory of the quadrotor ξ(x0, s, t) is transformed correspondingly to
γs(ξ(x0, s, t)).

16

2.4 SceneChecker: Algorithm Overview

A tool that we built using the idea of symmetry is SceneChecker [79]. The

tool is able to verify scenarios involving vehicles starting from uncertain ini-

tial states and executing complicated plans in large cluttered workspaces

with fixed obstacles. The tool is built to improve the performance of existing

reachability analysis tools by using them as subroutines. The architecture of

the tool is shown in Figure 2.3. The inputs to SceneChecker are a scenario

JSON file that specifies the scenario and a dynamics python file that contains

the symmetry map and the dynamics of the agent. The output of the tool

is the verification result (safe or unknown). SceneChecker is also able to vi-

sualize various computed reachsets. The output from SceneChecker is sound,

which means if SceneChecker returns safe, then the scenario is indeed safe.

SceneChecker implements a symmetry abstraction refinement algorithm [98].

The detail about this algorithm will be discussed in the following section.

Figure 2.3: High-level architecture of SceneChecker.

2.4.1 Symmetry Abstraction of Hybrid Automaton

The symmetry abstraction part of the algorithm will construct an abstraction

hybrid automatonHv from the original hybrid automatonH created from the

scenario using the symmetry map Φ user provided. The mapping between

H and Hv works as follows.

1. The mode s ∈ S for H will now be mapped to sv = ρs(s) in Hv.

2. ⟨Θ, sinit⟩, the set of initial states and initial segment the agent should

follow in H will be mapped to ⟨γsinit
(Θ), ρsinit

(sinit)⟩.

17

3. The edges e = (s, s′) in H will now be mapped to ev = (ρs(s), ρs′(s
′)).

4. The guard guard(e) for edge e = (s, s′) in H will now be mapped to

γs(guard(e)), which will be part of guardv(ev) where ev = (ρs(s), ρs′(s
′)).

5. The reset map resetv(x, ev) for ev = (ρs(s), ρs′(s
′)) in Hv will now

return γs′(γ
−1
s (x)) instead of the identity map in H.

6. The dynamic function of the agent in each mode will not be changed.

The unsafe set O will be mapped to Ov, following the rule specified in Equa-

tion 2.4.

∀sv ∈ Sv, Ov(sv) = ∪s∈S,ρs(s)=svγs(O(s)) (2.4)

In this case, obstacles of an abstract mode sv in Hv will be the union of

obstacles of each concrete mode s that can be mapped to sv.

With this mapping, the modes in H that share the same symmetric contin-

uous dynamics can be grouped together in the abstract automaton Hv. An

example of this mapping is shown in Figure 2.4. We can show that if Hv is

safe, then H is safe, or more formally, if ∀sv ∈ Sv, ReachHv(sv)∩Ov(sv) = ϕ,

then ∀s ∈ S, ReachH(s) ∩ O(s) = ϕ. In this case, we can verify the ab-

stract automaton Hv which may have fewer modes instead of the concrete

automaton H.

2.4.2 SceneChecker Algorithm Overview

A sketch of the core abstraction-refinement algorithm is shown in Algo-

rithm 1. It constructs a symmetry abstraction Hv of the concrete automaton

H resulting from the Hybrid constructor. SceneChecker attempts to verify

the safety of Hv using traditional reachability analysis. SceneChecker uses a

cache to store per-mode initial sets from which reachsets have been computed

and thus avoids repeating computations.

The core algorithm verify (Algorithm 2) is called iteratively. If verify returns

(safe,⊥) or (unknown,⊥), SceneChecker returns the same result. If verify

instead results in (refine, s∗v), splitMode is called to refine Hv by splitting s∗v

into two modes s1v and s2v. Each of the two modes would represent part of

the set of the segments of S that were originally mapped to sv in rv . Then

18

Figure 2.4: Scenario in 2.1 after symmetry abstraction. All the segments in
the original scenario are now transformed to align with the x-axis with
their endpoints at origin through symmetry mapping. Segments s1 to s5
have the same length, so they are mapped to a single mode s1v. The
obstacles in the transformed scenario will be the union of obstacles of the
original segments where Ov(s

0
v) = {O0

v} and Ov(s
1
v) = {O1

v, O
2
v, O

3
v, O

4
v, O

5
v}.

the edges, guards, resets, and the unsafe sets related to sv are split according

to their definitions.

The function verify executes a depth-first search (DFS) over the mode graph

of Hv. For any mode sv being visited, computeReachset computes Rv, an

over-approximation of the agent’s reachset starting from initset following

segment sv for time tbound v(sv). If Rv ∩ Ov(sv) = ∅, verify recursively calls

sv’s children continuing the DFS in line 6. Before calling each child, its initial

set is computed, and the part for which a reachset has already been computed

and stored in cache is subtracted. If all calls return safe, then initset is added

to the other initial sets in cache[sv] (line 18) and verify returns safe. Most

importantly, if verify returns (refine, s∗v) for any of sv’s children, it directly

returns (refine, s∗v) for sv as well (line 7). If any child returns unknown or

Rv intersects Ov(sv), verify will need to split sv. In that case, it checks if

19

Algorithm 1 SceneChecker(Φ = {(γs, ρs)}s∈S, H,O)

1: Hv,Ov ← abstract(H,O ,Φ)
2: ∀s ∈ S, rv [s]← ρs(s)
3: while True do
4: cache ← {sv 7→ ∅ | sv ∈ Sv}
5: result , s∗v ← verify(rv [sinit],Θv, cache, rv , Hv,Ov)
6: if result = safe or unknown then return: result
7: else rv , Hv,Ov ← splitMode(s∗v, rv , Hv,Ov, H,O)
8: end if
9: end while

rv−1[sv] is not a singleton set and thus amenable to splitting (line 14). If sv

can be split, verify returns (refine, sv). Otherwise, verify returns (unknown,⊥)
implicitly asking one of sv’s ancestors to be split instead.

One side effect of the symmetry abstraction algorithm is spurious coun-

terexamples. Spurious counterexamples are executions of Hv that do not

correspond to any of H that are intersecting Ov(s
∗
v). Thus these intersec-

tions are results of the abstraction instead of a real counterexample. Since

according to the definition of abstract automaton Hv, the guard for edge ev

that corresponds to sv will be the union of transformed guards for all edges

that is mapped to ev. Therefore, if the guards for coming into a mode s∗v

become too large, the initial set for the abstract mode s∗v can be too large

which may cause over-approximation for the reachset computed for mode s∗v.

In addition, the unsafe set for mode s∗v will be the union of unsafe sets of

all modes that map to s∗v. Therefore, the more the concrete mode get map

to s∗vthe larger the unsafe set of s∗v. These two factors together may cause a

high chance of spurious counterexamples.

To solve this problem, we introduce the refinement algorithm [79] that is

implemented by function splitMode. If verify function in line 5 in Algorithm

1 results in (refine, s∗v), splitMode is called to refine Hv by splitting s∗v into

two modes s1v and s2v. Each of s1v and s2v will represent part of the set of

concrete modes that represent sv. The edges, guards, resets, and the unsafe

sets related to sv will also be split according to their definition. By doing

this, the initial set for each of s1v and s2v will be reduced compared with s∗v and

the unsafe set of s∗v will also be divided between s1v and s2v. This will reduce

the over-approximation of the behaviors of H by Hv, and the safety checking

result will be less conservative. splitMode can happen until the mode cannot

20

be split further, i.e., only a single concrete mode is mapped to the current

abstract mode. In this case, SceneChecker will return the result unknown.

Correctness SceneChecker ensures that all the refined automata Hv’s are

abstractions of the original hybrid automaton H. For any mode with a

reachset intersecting the unsafe set, SceneChecker keeps refining that mode

and its ancestors until safety can be proven or Hv becomes H.

Theorem 1 (Soundness) If SceneChecker returns safe, then H is safe.

If verify is provided with the concrete automaton H and unsafe set O , it will

be the traditional safety verification algorithm having no over-approximation

error due to abstraction. If such a call to verify returns safe, then SceneChecker

is guaranteed to return safe. That means that the refinement ensures that

the over-approximation error of the reachset caused by the abstraction is

reduced to not alter the verification result.

Counterexamples SceneChecker currently does not find counterexamples

to show that the scenario is unsafe. There are several sources of over-

approximation errors, namely, computeReachset and guard intersections. Even

after all the over-approximation errors from symmetry abstractions are elim-

inated, as refinement does, it still cannot infer unsafe executions or coun-

terexamples because of the other errors.

2.5 Experimental Evaluation

Agents and Controllers In our experiments, we consider two types of

nonlinear agent models: a standard three-dimensional car (C) with bicycle

dynamics and two inputs and a six-dimensional quadrotor (Q) with three

inputs. For each of these agents, we developed a PD controller and a NN

controller for tracking segments. The NN controller for the quadrotor is

from Verisig’s paper [65] (Appendix A for more details) but modified to be

rotation symmetric. Similarly, the NN controller for the car is also rotation

symmetric. Both NN controllers are translation symmetric as they take as

input the difference between the agent’s state and the segment being followed.

The PD controllers are translation and rotation symmetric by design.

21

Algorithm 2 verify(sv, initset , cache, rv , Hv,Ov)

1: Rv ← computeReachset(initset , sv)
2: if Rv ∩Ov(sv) = ∅ then
3: for s′v ∈ children(sv) do
4: initset ′ ← resetv(guard v((sv, s

′
v)) ∩Rv)ncache[s

′
v]

5: if initset ′ ̸= ∅ then
6: result , s∗v ← verify(s′v, initset

′, cache, rv , Hv,Ov)
7: if result = refine then return: refine, s∗v
8: else if result = unknown then break
9: end if

10: end if
11: end for
12: end if
13: if Rv ∩Ov(sv) ̸= ∅ or result is unknown then
14: if |rv−1[sv]| > 1 then return: refine, sv
15: else return: unknown,⊥
16: end if
17: end if
18: cache[sv]← cache[sv] ∪ initset
19: return: safe,⊥

Symmetries We experimented with two different collections of symmetry

maps Φs: (1) translation symmetry (T), where for any segment s in G, γs

maps the states so that the coordinate system is translated by a vector that

makes its origin at the end waypoint of s, and (2) rotation and translation

symmetry (TR), where instead of just translating the origin, Φ rotates the xy-

plane, so that s is aligned with the x-axis, which we described in Section 2.4.1.

For each agent and one of its controllers, we manually verified that condition

(2.2) is satisfied for each of the two Φs using the sufficient condition for ODEs

in Section 2.4.1.

Scenarios We created four scenarios with 2D workspaces (S1-4) and one

scenario with a 3D workspace (S5) with corresponding plans. We generated

the plans using an RRT planner [42] after specifying the number of goal sets

that should be reached. We modified S4 to have more obstacles but still

have the same plan and named the new version S4.b and the original one

S4.a. When the quadrotor was considered, the waypoints of the 2D scenarios

(S1-4) were converted to 3D representation by setting the altitude for each

waypoint to 0. Scenario S5 is the same as S2, but S5’s waypoints have

22

varying altitudes. The scenarios have different complexities ranging from

a few segments and obstacles to hundreds of them. All scenarios are safe

when traversed by any of the two agents. We verify these scenarios using

two instances of SceneChecker, one with DryVR and the other with Flow*,

implementing computeReachset. SceneChecker is able to verify all scenarios

with PD controllers.

The results are shown in Table 2.1. In Table 2.1, both SceneChecker and

CacheReach use reachability tools as subroutines. The subroutines used are

specified after the ‘+’ sign. The symmetry Φ used is TR. The table shows

the number of mode-splits performed (Nrefs), the total number of calls to

computeReachset (Rc), the total time spent in reachset computations (Rt),

and the total computation time in minutes (Tt). In scenarios where a tool

ran over 120 minutes, we marked the Tt column as ‘Timed out’ (TO), and

when it errored, we marked it as ‘Not Available’ (NA).

Observation 1: SceneChecker offers fast scenario verification and

boosts existing reachability tools Looking at the two total time (Tt)

columns for the two instances of SceneChecker with the corresponding columns

for Flow* and DryVR, it becomes clear that symmetry abstractions can boost

the verification performance of reachability engines. For example, in C-S4.a,

SceneChecker with DryVR was around 20× faster than DryVR. In C-S3,

SceneChecker with Flow* was around 16× faster than Flow*. In scenario Q-

S5, SceneChecker timed out at least in part because a computeReachset call to

Flow* timed out. Even when many refinements are required and thus causing

several repetitions of the verification process in Algorithm 1, SceneChecker is

still faster than DryVR and Flow* (C-S4.b). All three tools resulted in safe

for all scenarios when completed executions.

Observation 2: SceneChecker is faster and more exact than CacheReach

Since CacheReach only handles single-path plans, we only verify the longest

path in the plans of the scenarios in its experiments. CacheReach’s instance

with Flow* resulted in unsafe reachsets in C-S1 and C-S4.b scenarios likely

because of the caching over-approximation error. In all scenarios where

CacheReach completed verification besides C-S4.b, it has more Rc and longer

Tt (more than 30× in C-S2) while verifying simpler plans than SceneChecker

using the same reachability subroutine. In all Q scenarios, CacheReach’s in-

23

Table 2.1: Comparison between SceneChecker, DryVR (DR), Flow* (F*),
and CacheReach (CacheR).

SceneChecker+DR CacheR+DR DR

Sc. |S| Nrefs Rc Rt Tt Rc Tt Tt

C-S1 6 1 4 0.14 0.15 46 1.75 1.34
C-S2 140 0 1 0.04 0.66 453.86 37.42 11.25
C-S3 458 0 1 0.04 4.26 398.26 33.32 75.35
C-S4.a 520 2 7 0.26 4.52 276.64 23.23 95.02
C-S4.b 520 10 39 1.48 8.90 277.10 23.17 95.05
Q-S1 6 1 4 0.05 0.06 NA NA 0.25
Q-S2 140 0 1 0.04 0.88 NA NA 4.93
Q-S3 458 0 1 0.06 5.9 NA NA 45.03
Q-S4.a 520 0 1 0.06 3.32 NA NA 55.99
Q-S5 280 0 36 0.85 3.06 NA NA 4.91

(a) Comparison between SceneChecker, DryVR (DR), and CacheReach.

SceneChecker+F* CacheR+F* F*

Sc. |S| NRefs Rc Rt Tt Rc Tt Tt

C-S1 6 1 4 0.51 0.52 52 8.20 2.11
C-S2 140 0 1 0.18 0.79 192 30.95 17.52
C-S3 458 0 1 0.11 4.34 176 28.64 73.06
C-S4.a 520 2 7 0.80 4.96 160 25.98 61.53
C-S4.b 520 10 39 2.83 31.73 160 26.07 60.67
Q-S1 6 1 4 13.85 14.13 NA TO 30.17
Q-S2 140 0 1 3.38 12.62 NA TO TO
Q-S3 458 0 1 4.98 62.66 NA TO TO
Q-S4.a 520 0 1 4.8 34.89 NA TO TO
Q-S5 280 NA NA NA TO NA TO TO

(b) Comparison between SceneChecker, Flow* (F*), and CacheReach.

24

stance with Flow* timed out, while its instance with DryVR terminated with

an error.

Observation 3: More symmetric dynamics result in faster verifi-

cation time SceneChecker usually runs slower in 3D scenarios compared

to 2D ones (Q-S2 vs. Q-S5) in part because there is no rotational symme-

try in the z-dimension to exploit. That leads to larger abstract automata.

Therefore, many more calls to computeReachset are required.

We only used SceneChecker’s instance with DryVR for agents with NN-

controllers. We tried different Φs. The results are shown in Table 2.2. In

addition to the statistics of Table 2.1, this table reports the number of modes

and edges in the initial and final (after refinement) abstractions (|Sv|i, |Ev|i;
|Sv|f , and |Ev|f , respectively).
When not using abstraction-refinement, SceneChecker took 11, 132, and 73

minutes for the QNN-S2, QNN-S3, and QNN-S4 scenarios, while DryVR took

5, 46, and 55 minutes for the same scenarios, respectively. Comparing these

results with those in Table 2.2 shows that the speedup in verification time

of SceneChecker is caused by the abstraction-refinement algorithm, achieving

more than 13× in certain scenarios (QNN-S4 using Φ = T). SceneChecker’s

instance with DryVR was more than 10× faster than DryVR in the same

scenario.

Table 2.2: Comparison between Φs.

Sc. NRef Φ |S| |Sv|i |Ev|i |Sv|f |Ev|f Rc Rt Tt

CNN-S2 7 TR 140 1 1 8 20 35 2.83 5.64
CNN-S4 10 TR 520 1 1 11 32 68 5.57 36.66
QNN-S2 3 TR 140 1 1 4 9 9 0.61 4.01
QNN-S3 7 TR 458 1 1 8 23 21 2.11 13.98
QNN-S4 6 TR 520 1 1 7 20 15 1.51 8.11
QNN-S2 0 T 140 7 19 7 19 9 0.62 1.85
QNN-S3 4 T 458 7 30 11 58 29 2.85 16.72
QNN-S4 0 T 520 7 30 7 30 13 1.3 5.32

Observation 4: Choice of Φ is a trade-off between over-approx-

imation error and number of refinements The choice of Φ affects the

number of refinements performed and the total running times (e.g., QNN-

S2, QNN-S3, and QNN-S4). Using TR leads to a more succinct Hv but

25

larger over-approximation error causing more mode splits. On the other

hand, using T leads to a larger Hv but less over-approximation error and

thus fewer refinements. This trade-off can be seen in Table 2.2. For example,

QNN-S4 with Φ =T resulted in zero mode splits leading to |Sv|i = |Sv|f = 7,

while Φ = TR resulted in six mode splits, starting with |Sv|i = 1 modes and

ending with |Sv|f = 7, and longer verification time because of refinements.

On the other hand, in QNN-S3, Φ = TR resulted in Nref= 7, |Sv|f = 8, and

Tt= 13.98 min while Φ =T resulted in Nref= 4, |Sv|f = 11, and Tt= 16.72

min.

Observation 5: Complicated dynamics require more verification

time Different vehicle dynamics affect the number of refinements performed

and consequently the verification time (e.g., QNN-S2, QNN-S4, CNN-S2, and

CNN-S4). The car appears to be less stable than the quadrotor leading to

a longer verification time for the same scenarios. This can also be seen by

comparing the results of Tables 2.1 and 2.2. The PD controllers lead to more

stable dynamics than the NN controllers requiring less total computation

time for both agents. More stable dynamics lead to tighter reachsets and

fewer refinements.

2.6 Conclusions and Future Work

The idea of exploiting symmetries in dynamics has proven to be feasible and,

as mentioned in the previous section, can really boost the performance of

reachability analysis. However, there still exists room for improvement. One

possible future direction is to work on better strategies for eliminating the

spurious counterexamples and returning actual counterexamples while the

scenario is indeed unsafe. Another possible direction is to introduce more

uncertainty into the scenarios, including dynamic obstacles or interactive

agents. Currently, SceneChecker only explores translation and rotation sym-

metry, and in the future, we can try to explore more types of symmetries,

including permutation or time scaling. Last but not least, it would be valu-

able to connect SceneChecker with one of the common road simulators, such

as CARLA [78], to verify more photo-realistic scenarios.

26

CHAPTER 3

SWERVE: EFFICIENT RUNTIME
VERIFICATION OF MULTI-AGENT
SYSTEMS USING DYNAMICAL

SYMMETRIES AND CLOUD COMPUTING
In this section, we discuss how we extend the idea of exploring symmetry in

dynamical systems to help solve the online multi-agent verification problem.

We present Swerve, a toolkit we implemented to help solve the runtime

multi-agent verification problem. In the last part of this chapter, we apply

the toolkit to several experiment scenarios and discuss the observations we

had during the experiments. The content of this chapter will be based on

joint work with Sibai et al. in [80].

3.1 Overview

Swerve is an open-source cloud computing toolkit for efficient runtime col-

lision checking of multi-agent autonomous systems. Given a scenario with

multiple autonomous systems operating in the same environment, Swerve

utilizes a remote server to perform bounded-time reachability analysis-based

verification of safety by checking the absence of collisions for the different

agents at runtime. Swerve uses ROS-based communication between the

agents and the server. We use the Robot Operating System (ROS) as it

has a community of users, interfaces to simulators like Gazebo [99], CARLA

[78], and NVIDIA ISAAC [100], many industrial applications [101], and buy-

in from the industry (see for example Baidu’s Apollo [102], BlueRobotics’

BlueROV2 [103]).

The Swerve can use any existing reachability algorithm as a subroutine

to compute reachable sets, which can then be used to check inter-agent colli-

sions. More importantly, building on results demonstrating the effectiveness

of symmetries in improving offline verification [79, 82, 77, 83, 84, 85, 86], our

Verification Server implements a cache to store reachable sets and reuse them

to avoid repeated computations. The idea behind Verification Server is the

27

same as that of the tool CacheReach [82, 77]. Swerve implement symmetry

transformation and caching to store already computed reachable sets and

reuse those reachable sets for later computation.

The toolkit offers an easy interface for the user to specify the static ob-

stacles in the environment for the Verification Server, for example, 3D city

maps. The Verification Server checks if the reachable sets of the different

agents intersect with each other or with other obstacles to check if a collision

might occur.

We test Swerve on several scenarios where more than 20 cars and drones

follow independent plans in realistic environments with hundreds of static

obstacles. Swerve is able to properly detect collision among agents and

between the agents and the statics obstacles. With symmetry and caching,

Swerve is able to obtain 16x speed up in average response time. For 20

closely flying agents, for example, the collision check for a time horizon of 15

s typically takes 0.25 s. The results suggest that this client-server approach

with caching is a feasible strategy for online collision detection

3.2 Related Works

Significant research has been conducted to develop efficient algorithms and

frameworks for runtime verification of autonomous systems [104, 105, 106,

107, 108, 109, 110]. Rozier and Schumann developed the framework R2E2 for

runtime verification of autonomous systems [107]. R2E2 focused on the hard-

ware and software components instead of the agent’s continuous dynamics.

In [111], Majumdar and Tedrake used a previously computed set of reach-

able sets for safe online motion planning. They used translation and rotation

symmetries to compose the offline computed reachable sets in an online man-

ner to over-approximate future behavior and avoid collisions. They did not

compute new reachable sets at runtime, nor did they consider multi-agent

systems. The closest work to this chapter is CacheReach, developed by Sibai

et al. in [77]. They utilize symmetries to accelerate offline safety verifica-

tion of scenarios with multiple agents. The symmetries are used, as in the

CacheReach paper, to avoid computing reachable sets by transforming previ-

ously computed ones. A follow-up to CacheReach is SceneChecker [79] which

implements a symmetry-based abstraction refinement for efficient offline ver-

28

ification for an agent following a predefined plan. However, SceneChecker

does not consider multi-agent systems. None of the aforementioned works

utilize cloud computing for faster reachability analysis computations. In a re-

cent work, Khaled and Zamani presented the tool pfaces that utilizes parallel

cloud computing to accelerate formal methods, but not runtime verification

[112].

3.3 Toolkit Architecture

Swerve is aimed to help online collision checking for multiple agents in

a shared workspace. The workspace is a three-dimensional (3D) zone with

a map that defines static obstacles such as buildings and unsafe corridors,

as shown in Figure 3.1. An agent is an entity independently moving in

this space. Each agent has a local planner that periodically generates a

path for the agent to move from its current position to its next destination.

However, the planner does not take into account the positions or the plans

of other agents. The agent’s actual motion following the plan is governed

by its dynamics, and it is affected by various disturbances and uncertainties

such as positioning error and wind. The role of the collision checker is to

check whether any two such agents in the workspace are likely to collide

with each other or with the static obstacles. This collision checking is the

key functionality needed in smart intersections [113, 114, 115] and urban

air-traffic management (UTM) [116, 117].

Architecture The architecture of Swerve is shown in Figure 3.2. It con-

sists of the following components: the Verification Server, a set of agents,

and the map of the environment with its static obstacles. The Verification

Server has two ROS Services: initialize and verifyQuery , which are presented

to the user and the agents as remote procedure calls. The Verification Server

has verify , which calls the Reachability Subroutine to compute the queried

reachable set or retrieve it from the cache. In addition, verify checks if any

of the intersections between the computed reachable set with the reachable

sets of other agents or the static obstacles is non-empty. The map of the en-

vironment is provided to the Verification Server through the initialize service

and will be stored, together with the computed reachable sets for all agents,

29

Figure 3.1: 3D map of Cologne with two quadrotors. Each agent is
supposed to move from the start position (small blue rectangle) to the goal
(green) following plan segments shown by the orange and yellow lines.

in the UnsafeSet . The agents interact with the Verification Server through

the verifyQuery service. A query to the verifyQuery service is fulfilled by

calling verify , which in turn uses the static obstacle map received from the

initialize service, the cache of reachable sets, the Reachability Subroutine,

and the collision checker to answer the query.

As an agent moves in the workspace, it checks if following the next segment

in its planned path would lead to a collision by querying the verifyQuery

service of Verification Server. The time elapsed between the query to the

verifyQuery service and its response is called the response time. The response

time can be used to measure the performance of the Verification Server.

A query to the verifyQuery ROS Service includes its identifier id, the

segment to be followed s, the set of possible current states, the dynamics of

the agent, the symmetry map Φ, and the look-ahead time T . The dynamics

of the agent can either be specified by ordinary differential equations (ODE)

or by a black-box simulator. The details about the symmetry map Φ will be

discussed in Section 3.4.2.

The Verification Server checks for collision by computing the reachable

sets [118] of all querying agents. Given the set of possible current states of

the agent Θ, the segment in the workspace it plans to follow s, and the look-

ahead time T , the reachable set over-approximates the set of states that the

30

Figure 3.2: The figure shows the architecture of Swerve.

agent might reach within time T starting from any state in Θ and following

the segment s. Therefore, if the reachable set of an agent is not intersecting

with any static obstacle or reachable set of another agent, then that agent is

guaranteed to not reach a state in which it collides with static obstacles or

other agents within time T . The collision checker in the Verification Server

stores the reachable set of the most recent query of each agent. The collision

checker checks if a newly computed reachable set of an agent intersects with

the stored reachable sets of the other agents or with the static obstacles. The

Verification Server then replies with a Safe or Unsafe answer to the agent’s

query as well as with the computed reachable set. More details about the

implementation of the server are discussed in Section 3.4.

Initialization The server has to be initialized with the map of the envi-

ronment listing the static obstacles. This is done in Swerve by calling the

initialize ROS Service. The static obstacle map can be specified in three

possible ways: (1) a 3D city model in the CityJSON format [119], (2) a list

of vertices defining polytopes in space-time, or (3) a list of linear inequalities

also defining polytopic obstacles.

31

3.4 Verification Server

In this section, we will discuss the implementation of the Verification Server

and its different components.

3.4.1 verify Overview

A sketch of the verification algorithm verify implemented on the server is

shown in Algorithm 3. The execution time of verify is the major contributor

to the response time described in Section 3.3. verify uses a cache and a

lock . The lock is used to prevent multiple service calls from modifying the

shared contents in the cache and the UnsafeSet at the same time. Each call

to verify will have to obtain the lock first before executing the service (line

2) and will release the lock only after finishing all the computations (lines 7

and 14). Therefore, only one service request can be fulfilled at a time.

In line 5, verify calls the verifySegment function described in Algorithm 4.

The verifySegment function first obtains the reachable set for the agent start-

ing from Θ following segment s for the given time bound T . Then, it checks

for collision by checking the non-emptiness of the intersections between the

obtained reachable set of the querying agent and the static obstacles and the

stored reachable sets of the other agents in UnsafeSet . The verifySegment

function then returns the verification result. If the verification result is safe

or unsafe, verify returns it (line 8). Otherwise, verify calls the refine func-

tion, which is described in Section 3.4.4, to obtain a more accurate reachable

set from the cache (line 10). If the cache does not store such a reachable

set, verify sets its c flag to True. That means that in the next call to

verifySegment in the following iteration of the for loop, the reachable set

is computed using the reachability subroutine instead of retrieved from the

cache (line 11). The for loop terminates after the refine threshold is reached.

3.4.2 Symmetry and Caching

The reachability subroutine in Swerve can be any of the existing tools

such as Flow* [87], CORA [51], DryVR [49], C2E2 [50], and HyLAA [47].

Our current implementation of Swerve uses DryVR. In addition, Swerve

32

Algorithm 3 verify(id, s,Θ, A, T,Φ)

1: Global cache, lock
2: lock .acquire()
3: c = False
4: for (i = 0; i < threshold ; i++) do
5: result = verifySegment(id, s,Θ, T, A,Φ, c)
6: if result = safe or result = unsafe then
7: lock .release()
8: return: result
9: end if

10: success = cache.refine(key, Θ, Φ, A)
11: if not success then c = True
12: end if
13: end for
14: lock .release()
15: return: unsafe

utilizes the underlying symmetries in the physics models of the vehicles and

a cache to speed up the collision checks.

Symmetry The symmetry we used for Swerve is similar to the one de-

scribed in Section 2.3.4. For a dynamical system described by the differential

equation (3.1) and a corresponding symmetry map Φ, if x is a solution to

(3.1), then Φ(x) will also be a solution to (3.1) [82].

ẋ = f(x, s), (3.1)

where x ∈ Rn and s ∈ Rm. In [77], it has been shown how symmetries can be

used to transform previously computed reachable sets to new ones starting

from symmetric initial sets of states and following symmetric segments. In

Swerve, we require the user to provide a family of symmetries for the agents’

dynamics. The family of symmetries would be a set of pairs of maps Φ =

{(γs, ρs)}s∈S, where S is the set of segments that might be followed by any of

the agents in the workspace. For any s ∈ S, ρs transforms the agent’s planned

segment s to a representative symmetric segment sv, and γs transforms a

given agent’s state or trajectory following s to its trajectory following sv. This

input requirement is the same as that of SceneChecker in [79] and CacheReach

in [77].

33

Caching Swerve uses a cache to store computed reachable sets. The

implementation of the cache is similar to the one used in CacheReach [79].

For a given query by an agent to the Verification Server to compute the

reachable set following segment s, the key to the cache is the representative

segment sv of s, i.e., sv := ρs(s). Since a scenario might have agents with

different dynamics, an identifier to the agents’ dynamics A is added as part

of the key of the cache. After the cache entry is selected, the initial set of

states Θ in the query is transformed using γs resulting in a new symmetric

set of states Θv.

In a given entry in cache, there might be multiple stored reachable sets

starting from different sets of states. The tool CacheReach [77] returns the

γ−1
sv -transformation of the union of all reachable sets stored at that entry

with initial sets intersecting Θv. This might result in over-approximation

errors in the retrieved reachable set [77]. Swerve tackles this problem by a

refinement algorithm described in Section 3.4.4.

3.4.3 verifySegment Overview

The verifySegment function implements the core algorithm for obtaining the

reachable set and performing safety checking against static obstacles and

other agents.

The input to the verifySegment function is the same as those to the verify ,

except for an additional flag c. It also has access to cache, the map of static

obstacles O, and the reachable sets corresponding to the most recent request

from each agent R.

The algorithm first transforms the initial set of states Θ and plan s to

their symmetric representatives Θv and sv using γs and ρs (line 2). Then,

verifySegment checks if for agent dynamics A and transformed segment sv,

the transformed initial states Θv are already in the cache. If yes, the union

of already computed reachable set rv is retrieved from the cache (line 4)

and transformed using γ−1
s to get the reachable set r for the agent following

plan s starting from Θ. Otherwise, the reachability subroutine is called to

compute the reachable set r (line 8). The computed reachable set will then

be transformed using γs and stored in the cache (line 9).

The algorithm checks the intersection between r and static obstacles O

34

(line 12). If the intersection is non-empty and r is retrieved from the cache,

the function will return unknown. Otherwise, the function will return unsafe.

The next step is to update the reachable sets in R, which is the dynamic part

of UnsafeSet (line 17). Since R stores the reachable sets corresponding to

the current behaviors of the agents, it can naturally be used to predict near-

future collisions between agents. Accordingly, verifySegment computes the

intersection of r with all the reachable sets stored in R (line 18). If any

non-empty intersection exists and r was retrieved from cache, verifySegment

returns unknown. If r was computed using the reachability subroutine,

verifySegment returns unsafe instead.

Algorithm 4 verifySegment(id, s,Θ, A, T,Φ = {(γs, ρs)}, c)
1: Global cache, O, R
2: Θv = γs(Θ), sv = ρs(s)
3: if cache.in cache(Θv, sv, A) and !c then
4: rv = cache.get(Θv, sv, A)
5: r = γ−1

s (rv)
6: from cache = True
7: else
8: r = computeReachSet(Θ, s, A, T)
9: cache.add(Θv, sv, A, γs(r))

10: from cache = False
11: end if
12: if r ∩O ̸= ϕ then
13: if from cache then return: unknown
14: elsereturn: unsafe
15: end if
16: end if
17: R[id] = r
18: if

⋃
i!=idx(r ∩R[i]) ̸= ϕ then

19: if from cache then return: unknown
20: elsereturn: unsafe
21: end if
22: end ifreturn: safe

3.4.4 Refinement

Since the returned reachable sets from cache have an initial set that contains

Θv but does not necessarily match it exactly, verifySegment might result in

35

spurious counterexamples.

To solve this problem, we introduce a refinement algorithm cache.refine to

decrease the over-approximation errors in the retrieved reachable sets from

cache. This refinement algorithm decomposes the union of reachable sets

stored at a given entry in cache into different subsets.

When a query matches an entry in cache, it computes the Euclidean dis-

tances between the center of Θv and the centers of the initial sets of these

different unions of the stored reachable sets. It selects the reachable sets

corresponding to the one with the closest distance. If its initial set contains

Θv, cache transforms it using γ−1
sv and returns it as a response to the agent’s

query. Otherwise, it asks the reachability subroutine to compute it from

scratch. This is a heuristic to retrieve more accurate reachable sets from the

cache.

The refinement of a cache entry can be repeated until the union of stored

reachable sets becomes a list of reachable sets. In this case, cache.refine

returns unsuccess, which will force the verifySegment function to compute

the reachable set using the reachability subroutine.

3.5 Experimental Evaluation

We test the performance of Swerve on a number of scenarios with 2D and

3D workspaces and different agent densities and dynamics.

Agents and Dynamics We use two types of agents: a ground vehicle

with 3D bicycle dynamics and two inputs (C) and a 6D quadrotor (Q) with

six inputs. The bicycle is controlled using a PD controller [120], which is

translation and rotation symmetric by design. The quadrotor is controlled

by a Neural Network controller from the Verisig paper [65]. This controller

is translation symmetric since it takes the difference between the agent state

and the segment that the agent follows. Furthermore, we modified the Neural

Network controller so that it’s also rotation symmetric. Therefore, we are

using both translation and rotation symmetries with caching.

Scenarios We experimented with a number of different scenarios. We name

scenarios as Mapi−D−N , where (1) Mapi indicates the static obstacle map

36

used; maps with a higher number are more complex and have more complex

plans. Map4 is a partial 3D map of Cologne in CityJSON format. (2)

D ∈ {2D , 3D} indicates the dimension of the workspace. (3)N is the number

of agents in the scenario; different types of agents may be mixed. We run

the above scenarios with different time horizons to vary the load on the

verification server.

Recall that the plan from the initial position to goal for each agent is

generated independently (using an RRT planner). Therefore, the plans from

different agents will indeed intersect in space and time. While running a

scenario, the load of the Verification Server can be determined by the number

of agents in the scenario together with the time horizon for each plan segment.

As the number of agents increases or the time horizon for each plan segment

decreases, the Verification Server will be called more frequently, adding loads

to the Verification Server.

The plans are fed to the agents segment by segment, which means each

agent receives the new segment to follow when it finishes following its current

segment. An agent will wait and retry following the segment after 15 s when

the plan is detected by verify to be unsafe. The initial set of states of verifi-

cation will be an L∞ ball centered at the agent’s current state, representing

sensor and state estimation uncertainty. The reachability tool DryVR [49] is

used in the V erificationServer to compute reachable sets. In addition, we

add a constant bloating factor to the reachable sets computed by DryVR to

simulate the effect of sensor noise while the agent is executing the plan.

We ran each of the scenarios with and without symmetry and caching.

The results are shown in Table 3.1. Table 3.1 shows Swerve’s response

time (in seconds) in these two cases. In both cases, we are using reachability

analysis tool DryVR to compute the reachtubes. The symmetry map Φ used

is translation and rotation symmetry. In the table, we present the number of

agents (N), the types of agents (Agent), the number of obstacles (|O|), the
total number of plan segments (|S|), the number of calls to the reachability

subroutine (Rc), average response time for each service call (ARt), the max

response time (MRt), the max response time of 90% of agents (MRt− 90),

and the average traversal time for each path segment (ASt). From these

results, we make the following observations.

37

Table 3.1: Swerve response time (in seconds).

Swerve

Sc. Agent |O| |S| Rc ARt MRt-90 MRt ASt

Map1-2D-50 C 100 300 6 0.25 0.25 8.07 15.61
Map2-2D-12 C 236 1457 133 0.95 2.22 4.95 18.30
Map2-2D-17 C 236 1457 197 1.14 2.93 8.62 19.35
Map3-2D-34 C 462 4810 616 2.30 5.48 14.49 21.40
Map1-3D-50 Q 100 300 1 0.18 0.25 2.19 26.84
Map2-3D-17 Q 236 1457 1 0.21 0.30 1.57 16.65
Map4-3D-20 Q 252 2724 25 0.25 0.34 2.67 17.06
Map4-3D-20 C&Q 252 2724 163 0.71 2.09 8.19 18.15

(a) Experiment results for Swerve with symmetry and caching.

Swerve Without Caching

Sc. Agent |O| |S| ARt MRt ASt

Map1-2D-50 C 100 300 75.21 90.33 97.80
Map2-2D-12 C 236 1457 3.63 10.76 21.00
Map2-2D-17 C 236 1457 9.93 13.41 27.84
Map3-2D-34 C 462 4810 35.72 51.22 54.89
Map1-3D-50 Q 100 300 71.16 81.27 96.63
Map2-3D-17 Q 236 1457 6.48 8.34 21.83
Map4-3D-20 Q 252 2724 2.51 5.15 22.91
Map4-3D-20 C&Q 252 2724 10.84 30.05 45.51

(b) Experiment results for Swerve without symmetry and caching.

Swerve is able to perform online multi-agent collision checks Ta-

ble 3.1 shows that the system is able to check potential collisions in both 2D

and 3D scenarios with different types of agents (Cols 1-2). In the best case

(Row 4), even with 50 agents, the average response time for each service call

is only 0.18 s.

Figure 3.3 shows the visualization of computed reachable sets for five agents

in a 30 s time interval. The reachable sets shown in orange represent the

reachable sets computed in the first 10 s of the 30 s time interval. The

reachable sets shown in yellow and light yellow represent the reachable sets

computed in the 10-20 s interval and the 20-30 s interval, respectively. The

reachable set shown in red represents an unsafe reachable set detected by the

Verification Server. We can see that the tool is able to detect a potential col-

38

lision between Agent3 and Agent4, and therefore, marks the plan for Agent4

to be unsafe. On the other hand, although the reachable sets for Agent1

and Agent2 occupy the same physical space, the Verification Server decided

that their planned segments are safe to follow since Agent1 and Agent2 are

disjoint in time.

Figure 3.3: The picture shows the computed reachable set of 5 agents in
scenario Comp3D-20 in a 30 s time interval.

Symmetry caching can significantly speed up response times If we

compare running the scenarios with and without symmetry caching, we can

see that the average response time is improved by an average 16x and, in

some cases, by more than 300x. In scenario Map1-3D-50, the average re-

sponse time is only 0.18 s, which provides a maximum of 395x saving in av-

erage verification time while using symmetry-based caching. The worst-case

response time is also improved with symmetry-based caching. The worst-

case response time is improved by an average of 27x. In the same scenario

Map1-3D-50, the worst-case response time is 2.19 s, which is 44x faster than

without caching.

In addition, we can observe that as the number of agents in the scenario in-

creases, savings from using symmetry-based caching increase. If we compare

the average response time for scenario Map2-2D-12 and scenario Map2-2D-

17, we can see that as the number of agents increases from 12 to 17, the

39

saving from using symmetry-based caching increases from 3.8x to 8.7x. A

similar trend can also be observed in most other scenarios.

From Table 3.1, we observe that with symmetry and caching, the number

of calls to the reachability subroutine is much smaller than the total num-

ber of segments in the scenario since many reachable sets were obtained by

transforming stored reachable sets in cache. In the extreme case, as shown in

scenario Map1-3D-50 and Map2-3D-17, only one reachable set was computed,

and the rest of the reachable sets were retrieved from cache.

The Verification Server is able to finish verification tasks in near

real time If we compare the average response time with the average time

taken by an agent to traverse a planned segment with typical velocities, we

can see that the average response time is around 1/10 of the time for the

agent to follow the segment. Even in complicated scenarios with multiple

agents with different dynamics (Row 7), the average verification time is only

1/25 of the time it takes for the agent to traverse a segment.

Column 7 in Table 3.1 measures the maximum verification time for 90%

(MRt-90) of the agents, which means 90% of the verification requests can

be fulfilled before this time. We can see that this time is still much shorter

than the total amount of time for the agent to follow the segment. Even

in scenario Map3-2D-34, which has the largest value of MRt-90, the value

is still only 1/4 of the average total time for the plan to be followed. This

suggests that the Swerve approach is a feasible option for online collision

checking.

The performance of Verification Server may decrease as the load in-

creases To further understand the performance of the Verification Server,

we varied its load by running scenario map2-2D with different numbers of

agents and different time horizons for each of the planned segments. The re-

sults are shown in Table 3.2. Besides the values shown in Table 3.1, this table

also shows the time horizon for each segment (Ts). From rows 1-3 in Table

3.2, we can clearly see that as the number of agents in the workspace increase

from 6 to 17, the average response time increases gradually from 0.71 s to

1.14 s. The max response time and 90% max response time increase as well.

This decrease in performance happens not only because Verification Server

has to fulfill more verify requests, but also since each verify request may take

40

Table 3.2: Response time (ARt) with different agent densities in space-time.

Sc. Ts Rc ARt MRt-90 MRt

Map2-2D-17 15 197 1.14 2.93 8.62
Map2-2D-12 15 133 0.95 2.22 4.95
Map2-2D-6 15 85 0.71 1.96 3.95
Map2-2D-17 20 185 0.90 2.19 8.23
Map2-2D-17 10 173 1.42 3.70 11.69
Map2-2D-17 5 189 2.24 4.97 10.77

longer to fulfill since the collision checker has to check more intersections

with other agents.

From rows 1, 3, and 4 in Table 3.2, we can see that as we decrease Ts from

20 to 10, the average response time increases from 0.90 s to 1.42 s, which

also shows the decrease of performance in the Verification Server.

Row 5 in Table 3.2 shows an extreme case for the Verification Server. In

this case, the number of agents is too large, or Ts is too small so that the

verification request is generated faster than the Verification Server can fulfill.

In this case, we can see the response time increasing significantly, and the

verification tasks can no longer be performed in real time.

The decrease in performance is coming from the fact that the Verification

Server can only handle a single verification request at a time. Therefore,

when we increase the number of agents or decrease Ts, which will increase

the frequency of verification requests, the verification server may not be able

to handle the request fast enough, and in this case, some verification requests

have to wait until other requests finish before it can be handled. In addition,

in some cases, some verification requests that can be fulfilled quickly will

have to wait for slower requests to finish first before they can be handled,

which can also influence the response time.

3.6 Discussion and Future Work

We present Swerve, an open-source toolkit for online safety checking of

multi-agent systems. It provides a ROS-based communication framework and

an implementation of reachable set caching for rapid online collision check-

ing. We apply the toolkit to scenarios with multiple agents with different

41

dynamics. Our experiments suggest that Swerve is a promising approach

for online checking of inter-agent and static obstacle collisions. In addition,

we are able to identify the influence of load on the performance of Swerve

and the reasons for the observations. In the future, it would be beneficial to

explore how the sequence of handling verification requests can influence the

performance of Swerve and to further boost the verification speed of the

server. Finally, it will be interesting to experiment with Swerve in scenarios

simulated in photo-realistic simulators and in real-world deployments.

42

CHAPTER 4

CONCLUSION AND FUTURE WORK

In this thesis, we propose solutions to the scenario verification problem and

online multi-agent verification problem.

To solve the scenario verification problem, we present the tool SceneChecker.

The tool is able to convert the scenario verification problem to a standard

hybrid system verification problem and solves it effectively by exploiting

symmetric properties in the plan and the vehicle dynamics. SceneChecker

implements symmetry abstractions, a novel refinement algorithm, and more

importantly, can boost the performance of any existing reachability analysis

tool as a plug-in subroutine. We evaluated SceneChecker on several scenarios

and compared results with the other two leading tools, DryVR and Flow*.

SceneChecker shows significant speedup in verification time, even while using

those tools as reachability subroutines.

To solve the online multi-agent verification problem, we present Swerve,

an open-source cloud computing toolkit for efficient runtime collision check-

ing for multi-agent autonomous systems. Swerve implements a remote

server to check safety for different agents running in a shared workspace us-

ing bounded time reachability analysis. In addition, by exploring symmetry

in agent dynamics, Swerve implements a cache to store already computed

reachable sets and reuses them to avoid repeated computations. We tested

Swerve on several scenarios involving more than 20 cars and drones fol-

lowing independent plans in realistic environments with hundreds of static

obstacles. We are able to show that Swerve is able to efficiently perform

online collision detection.

The results from these works imply the following potential research direc-

tions.

For the SceneChecker work, we can investigate other strategies for elim-

inating spurious counterexamples and returning valid ones in unsafe cases.

In addition, it would be essential to address other sources of uncertainty in

43

scenario verification, such as moving obstacles or interactive agents.

For the Swerve work, it would be interesting to explore how the sequence

of handling verification requests can influence the performance of Swerve

and to further boost the verification speed of the server. In addition, it

would be beneficial if we could deploy the Swerve on some popular cloud

computing services such as Amazon Web Service (AWS) so it can easily be

accessed by a wide range of people.

For both SceneChecker and Swerve, it would be beneficial to explore other

types of symmetries such as permutation and time scaling.

Last but not least, it would be interesting to apply SceneChecker and

Swerve to scenarios simulated in photo-realistic simulators such as Gazebo

[99], CARLA [78], CommonRoad [121], and Scenic [31] or even scenarios

running with real-world agents such as F1/10th [122] or PiDrone [123].

44

APPENDIX A

NN-CONTROLLED QUADROTOR CASE
STUDY

In this appendix, we will describe a case study of a scenario having a planner,

NN controller, and a quadrotor and model it as a hybrid automaton. We

use the quadrotor model that was presented in [65] along with its trained

NN controller and an RRT planner to construct its reference trajectories,

independent of its dynamics.

The dynamics of the quadrotor are as follows:

q̇ :=



ṗqx

ṗqy

ṗqz

v̇qx

v̇qy

v̇qz


=



v̇qx

v̇qy

v̇qz

g tan θ

−g tanϕ
τ − g


, ẇ :=



ṗwx

ṗwy

ṗwz

v̇wx

v̇wy

v̇wz


=



bx

by

bz

0

0

0


, (A.1)

where q and w are the states of the quadrotor and the planner reference

trajectory representing their position and velocity vectors in the 3D physical

space, respectively. The variables θ, ϕ, and τ represent the control inputs

pitch, roll, and thrust, respectively, provided by the NN controller. The input

to the NN controller is the difference between the quadrotor state and the

reference trajectory: q − w. The g = 9.81 m/s2 is gravity, and bx, by, and bz

are piece-wise constant, resulting in a piece-wise linear planner trajectory. In

our case, these would be determined by the RRT planner, as we will explain

next.

The NN controller has two hidden layers with 20 neurons, each with tanh

activation units and a linear output layer. It acts as a classifier to choose

from a set U ⊂ [−0.1, 0.1]× [−0.1, 0.1]× [7.81, 11.81] of eight possible control

inputs. It was trained to mimic a model predictive control (MPC) controller

to drive the quadrotor to follow the planner trajectory. An NN is used for

45

its faster runtime computation and reachability analysis and smaller memory

requirements than traditional MPC controllers.

Given an initial set of positions K ⊂ R3, a goal set of positions G =

∪iGi ⊂ R3, and a set of 3D obstacles, the planner would generate a directed

graph over R3 that connects K to every Gi with piece-wise linear paths.

We denote the set of linear segments in the graph by R := {ri}i. The

planner ensures that the waypoints and segments do not intersect obstacles

but without regard to the quadrotor dynamics.

The Hybrid constructor in SceneChecker models such a scenario as a hybrid

automaton:

1. X = R6, the space in which the state of the quadrotor q lives, and

S = R, the space in which the graph segments live, where the first

three and last three coordinates determine the start and end points

s.src and s.dest of the segment, respectively,

2. ⟨Θ, sinit⟩ := ⟨[K, [−0.5, 0.5]3], sinit⟩, where [−0.5, 0.5]3 are the range of

initial velocities of the quadrotor and sinit is the initial segment going

out of K,

3. E := {(ri, ri+1) | ri, ri+1 ∈ R, r.dest = ri+1.src},

4. guard((ri, ri+1)) is the 6D ball centered at [ri.dest , 0, 0, 0] with radius

[1, 1, 1,∞,∞,∞], meaning that the quadrotor should arrive within dis-

tance 1 unit of the destination waypoint of the first segment, which is

equivalent to the source waypoint of the second segment, at any veloc-

ity, to be able to transition to the second segment/mode,

5. reset(q, (ri, ri+1)) = q, meaning that there is no change in the quadrotor

state after it starts following a new segment, and

6. f(q, r) = g(q, h(q, ri)), where g : X × U → X is the right-hand side

of the differential equation of q in equation (A.1) and h : X × S →
U is the NN controller. Without loss of generalization, we assume

that [bx, by, bz] ∈ {−0.125, 0.125}3. bx is equal to −0.125 if r.src[0] >

r.dest [0] and 0.125 otherwise. The same applies for by and bz.

46

REFERENCES

[1] K. Korosec, “Waymo’s driverless taxi service can now be accessed on
google maps,” Jun 2021. [Online]. Available: https://techcrunch.com/
2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-
google-maps/

[2] “Utah department of public safety.” [Online]. Available: https:
//highwaysafety.utah.gov/other-focus-areas/autonomous-vehicles/

[3] P. Koopman and M. Wagner, “Toward a framework for highly
automated vehicle safety validation,” in WCX World Congress
Experience. SAE International, apr 2018. [Online]. Available:
https://doi.org/10.4271/2018-01-1071

[4] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Sur-
vey on scenario-based safety assessment of automated vehicles,” IEEE
Access, vol. 8, pp. 87 456–87 477, 2020.

[5] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels,
and J. M. Zöllner, “Testing of advanced driver assistance towards au-
tomated driving: A survey and taxonomy on existing approaches and
open questions,” in 2015 IEEE 18th International Conference on In-
telligent Transportation Systems, 2015, pp. 1455–1462.

[6] W. Huang, K. Wang, Y. Lv, and F. Zhu, “Autonomous vehicles
testing methods review,” in 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC). IEEE Press, 2016.
[Online]. Available: https://doi.org/10.1109/ITSC.2016.7795548 p.
163–168.

[7] P. Junietz, W. Wachenfeld, K. Klonecki, and H. Winner, “Evaluation of
different approaches to address safety validation of automated driving,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2018, pp. 491–496.

[8] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher,
“Formal specification and verification of autonomous robotic systems:
A survey,” ACM Comput. Surv., vol. 52, no. 5, Sep. 2019. [Online].
Available: https://doi.org/10.1145/3342355

47

https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://highwaysafety.utah.gov/other-focus-areas/autonomous-vehicles/
https://highwaysafety.utah.gov/other-focus-areas/autonomous-vehicles/
https://doi.org/10.4271/2018-01-1071
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1145/3342355

[9] Y. Selvaraj, W. Ahrendt, and M. Fabian, “Verification of decision
making software in an autonomous vehicle: An industrial case study,”
in Formal Methods for Industrial Critical Systems, K. G. Larsen and
T. Willemse, Eds. Cham: Springer International Publishing, 2019,
pp. 143–159.

[10] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang,
J. Rosenfeld, and T. T. Johnson, “Verification for machine learning,
autonomy, and neural networks survey,” 2018.

[11] A. J. Hawkins, “Waymo and cruise dominated autonomous testing
in california in the first year of the pandemic,” Feb 2021.
[Online]. Available: https://www.theverge.com/2021/2/11/22276851/
california-self-driving-autonomous-cars-miles-waymo-cruise-2020

[12] WAYMO, “Waymo safety report,” Sep 2020. [Online]. Available:
https://waymo.com/safety/safety-report

[13] D. J. Fremont, J. Chiu, D. D. Margineantu, D. Osipychev, and S. A.
Seshia, “Formal analysis and redesign of a neural network-based air-
craft taxiing system with VerifAI,” in 32nd International Conference
on Computer Aided Verification (CAV), July 2020.

[14] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” 2018.

[15] J. B. Michael, D. Drusinsky, and D. Wijesekera, “Formal verification
of cyberphysical systems,” Computer, vol. 54, no. 9, pp. 15–24, 2021.

[16] C. Rouff, A. Vanderbilt, W. Truskowski, J. Rash, and M. Hinchey,
“Verification of NASA emergent systems,” in Proceedings. Ninth IEEE
International Conference on Engineering of Complex Computer Sys-
tems, 2004, pp. 231–238.

[17] C. Pecheur, “Verification and validation of autonomy software at
NASA,” 02 2001.

[18] G. Brat and A. Jonsson, “Challenges in verification and validation of
autonomous systems for space exploration,” in Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., vol. 5, 2005,
pp. 2909–2914.

[19] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and A. Jonsson,
“Verification of autonomous systems for space applications,” in 2006
IEEE Aerospace Conference, 2006, p. 11.

[20] D. Bhatt, G. Madl, D. Oglesby, and K. Schloegel, “Towards scal-
able verification of commercial avionics software,” in AIAA Infotech@
Aerospace 2010, 2010, p. 3452.

48

https://www.theverge.com/2021/2/11/22276851/california-self-driving-autonomous-cars-miles-waymo-cruise-2020
https://www.theverge.com/2021/2/11/22276851/california-self-driving-autonomous-cars-miles-waymo-cruise-2020
https://waymo.com/safety/safety-report

[21] O. Laurent, “Using formal methods and testability concepts in the
avionics systems validation and verification process,” in 2010 Third
International Conference on Software Testing, Verification and Vali-
dation, 2010, pp. 1–10.

[22] J. Barnat, J. Beran, L. Brim, T. Kratochv́ıla, and P. Ročkai, “Tool
chain to support automated formal verification of avionics simulink de-
signs,” in Formal Methods for Industrial Critical Systems, M. Stoelinga
and R. Pinger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 78–92.

[23] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification of
cyber-physical systems using deep reinforcement learning,” in Formal
Methods, K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, Eds.
Cham: Springer International Publishing, 2018, pp. 456–465.

[24] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
Tools and Algorithms for the Construction and Analysis of Systems,
P. A. Abdulla and K. R. M. Leino, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 254–257.

[25] J. L. Eddeland, A. Donzé, S. Miremadi, and K. Åkesson, “Industrial
temporal logic specifications for falsification of cyber-physical systems,”
in ARCH20. 7th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20), Berlin, Germany, July
12, 2020, ser. EPiC Series in Computing, vol. 74. EasyChair, 2020.
[Online]. Available: https://doi.org/10.29007/r74f pp. 267–274.

[26] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo, “Falsification of
hybrid systems using adaptive probabilistic search,” ACM Trans.
Model. Comput. Simul., vol. 31, no. 3, July 2021. [Online]. Available:
https://doi.org/10.1145/3459605

[27] C. Menghi, S. Nejati, L. Briand, and Y. I. Parache, “Approximation-
refinement testing of compute-intensive cyber-physical models:
An approach based on system identification,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020. [Online]. Available: https:
//doi.org/10.1145/3377811.3380370 p. 372–384.

[28] M. Waga, “Falsification of cyber-physical systems with robustness-
guided black-box checking,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3365365.3382193

49

https://doi.org/10.29007/r74f
https://doi.org/10.1145/3459605
https://doi.org/10.1145/3377811.3380370
https://doi.org/10.1145/3377811.3380370
https://doi.org/10.1145/3365365.3382193

[29] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for
control systems with machine learning components,” in Proceedings
of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, ser. HSCC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3302504.3311814 p. 179–184.

[30] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo, “Two-
layered falsification of hybrid systems guided by monte carlo tree
search,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2894–2905, 2018.

[31] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: A language for scenario
specification and scene generation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2019. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3314221.3314633 p. 63–78.

[32] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “VerifAI: A toolkit for the
formal design and analysis of artificial intelligence-based systems,” in
31st International Conference on Computer Aided Verification (CAV),
July 2019.

[33] Q. Thibeault, J. Anderson, A. Chandratre, G. Pedrielli, and
G. Fainekos, “PSY-TaLiRo: A Python toolbox for search-based test
generation for cyber-physical systems,” in Formal Methods for In-
dustrial Critical Systems, A. Lluch Lafuente and A. Mavridou, Eds.
Cham: Springer International Publishing, 2021, pp. 223–231.

[34] T. Dreossi, A. Donze, and S. A. Seshia, “Compositional falsification
of cyber-physical systems with machine learning components,” in Pro-
ceedings of the NASA Formal Methods Conference (NFM), May 2017.

[35] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” Journal of
Automated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[36] T. Dreossi, S. Ghosh, X. Yue, K. Keutzer, A. Sangiovanni-Vincentelli,
and S. A. Seshia, “Counterexample-guided data augmentation,” in
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18. International Joint Conferences
on Artificial Intelligence Organization, 7 2018. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/286 pp. 2071–2078.

50

https://doi.org/10.1145/3302504.3311814
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.24963/ijcai.2018/286

[37] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic adversarial deep
learning,” in Computer Aided Verification, H. Chockler and G. Weis-
senbacher, Eds. Cham: Springer International Publishing, 2018, pp.
3–26.

[38] S. A. Seshia, A. Desai, T. Dreossi, D. Fremont, S. Ghosh, E. Kim,
S. Shivakumar, M. Vazquez-Chanlatte, and X. Yue, “Formal specifi-
cation for deep neural networks,” in Proceedings of the International
Symposium on Automated Technology for Verification and Analysis
(ATVA), October 2018, pp. 20–34.

[39] S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor,
“Verifying controllers against adversarial examples with Bayesian
optimization,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), May 2018. [Online]. Available: http:
//dx.doi.org/10.1109/ICRA.2018.8460635

[40] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat,
and M. Althoff, “AROC: A toolbox for automated reachset optimal
controller synthesis,” in Proc. of the 24th International Conference on
Hybrid Systems: Computation and Control, 2021.

[41] V. Gaßmann and M. Althoff, “Verified polynomial controller synthesis
for disturbed nonlinear systems,” IFAC-PapersOnLine, vol. 54,
no. 5, pp. 85–90, 2021, 7th IFAC Conference on Analysis and
Design of Hybrid Systems ADHS 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896321012544

[42] C. Fan, K. Miller, and S. Mitra, “Fast and guaranteed safe controller
synthesis for nonlinear vehicle models,” in Computer Aided Verifica-
tion, S. K. Lahiri and C. Wang, Eds. Cham: Springer International
Publishing, 2020, pp. 629–652.

[43] C. Fan, U. Mathur, S. Mitra, and M. Viswanathan, “Controller syn-
thesis made real: Reach-avoid specifications and linear dynamics,” in
Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.
Cham: Springer International Publishing, 2018, pp. 347–366.

[44] Z. Huang, Y. Wang, S. Mitra, and G. Dullerud, “Controller synthesis
for linear dynamical systems with adversaries,” in Proceedings of the
Symposium and Bootcamp on the Science of Security, ser. HotSos
’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2898375.2898378 p.
53–62.

[45] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in CAV, 2011, pp. 379–395.

51

http://dx.doi.org/10.1109/ICRA.2018.8460635
http://dx.doi.org/10.1109/ICRA.2018.8460635
https://www.sciencedirect.com/science/article/pii/S2405896321012544
https://www.sciencedirect.com/science/article/pii/S2405896321012544
https://doi.org/10.1145/2898375.2898378

[46] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and
R. Grosu, “Xspeed: Accelerating reachability analysis on multi-core
processors,” in Hardware and Software: Verification and Testing - 11th
International Haifa Verification Conference, HVC 2015, Haifa, Israel,
November 17-19, 2015, Proceedings, ser. Lecture Notes in Computer
Science, N. Piterman, Ed., vol. 9434. Springer, 2015. [Online].
Available: https://doi.org/10.1007/978-3-319-26287-1 1 pp. 3–18.

[47] S. Bak and P. S. Duggirala, “HyLAA: A tool for computing
simulation-equivalent reachability for linear systems,” in Proceedings
of the 20th International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’17. New York, NY, USA: Association
for Computing Machinery, 2017. [Online]. Available: https:
//doi.org/10.1145/3049797.3049808 p. 173–178.

[48] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Au-
tomatic reachability analysis for nonlinear hybrid models with C2E2,”
in Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I,
2016, pp. 531–538.

[49] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-driven
verification and compositional reasoning for automotive systems,” in
Computer Aided Verification, R. Majumdar and V. Kunčak, Eds.
Cham: Springer International Publishing, 2017, pp. 441–461.

[50] X. Chen, S. Sankaranarayanan, and E. Abraham, “Flow* 1.2: More
effective to play with hybrid systems,” in ARCH14-15. 1st and 2nd
International Workshop on Applied Verification for Continuous and
Hybrid Systems, ser. EPiC Series in Computing, G. Frehse and
M. Althoff, Eds., vol. 34. EasyChair, 2015. [Online]. Available:
https://easychair.org/publications/paper/QrVj pp. 152–159.

[51] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015.

[52] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-reachability
analysis for hybrid systems,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, C. Baier and C. Tinelli, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 200–205.

[53] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling,
“Juliareach: A toolbox for set-based reachability,” in Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation
and Control, 2019, pp. 39–44.

52

https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1145/3049797.3049808
https://doi.org/10.1145/3049797.3049808
https://easychair.org/publications/paper/QrVj

[54] S. Bogomolov, G. Frehse, A. Gurung, D. Li, G. Martius, and
R. Ray, “Falsification of hybrid systems with symbolic reachability
analysis and trajectory splicing,” Nonlinear Analysis: Hybrid
Systems, vol. 42, p. 101093, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1751570X21000832

[55] S. Bogomolov, G. Frehse, A. Gurung, D. Li, G. Martius, and
R. Ray, “Falsification of hybrid systems using symbolic reachability
and trajectory splicing,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3302504.3311813 p.
1–10.

[56] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 167–170.

[57] S. B. Liu, B. Schürmann, and M. Althoff, “Reachability-based identi-
fication, analysis, and control synthesis of robot systems,” 2021.

[58] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
in Computer Aided Verification, R. Majumdar and V. Kunčak, Eds.
Cham: Springer International Publishing, 2017, pp. 97–117.

[59] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
pp. 1599–1614.

[60] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai 2: Safety and robustness certification of neural
networks with abstract interpretation,” in Security and Privacy (SP),
2018 IEEE Symposium on, 2018.

[61] M. Mirman, T. Gehr, and M. Vechev, “Differentiable abstract
interpretation for provably robust neural networks,” in Proceedings
of the 35th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018. [Online]. Available:
https://proceedings.mlr.press/v80/mirman18b.html pp. 3578–3586.

53

https://www.sciencedirect.com/science/article/pii/S1751570X21000832
https://www.sciencedirect.com/science/article/pii/S1751570X21000832
https://doi.org/10.1145/3302504.3311813
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://proceedings.mlr.press/v80/mirman18b.html

[62] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf

[63] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of deep
convolutional neural networks using imagestars,” in 32nd International
Conference on Computer-Aided Verification (CAV). Springer, July
2020.

[64] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract
domain for certifying neural networks,” Proc. ACM Program.
Lang., vol. 3, no. POPL, Jan. 2019. [Online]. Available: https:
//doi.org/10.1145/3290354

[65] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network con-
trollers,” in Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, 2019, pp. 169–178.

[66] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari,
“Sherlock - A tool for verification of neural network feedback systems:
Demo abstract,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3302504.3313351 p.
262–263.

[67] C. Hsieh, K. Joshi, S. Misailovic, and S. Mitra, “Verifying controllers
with convolutional neural network-based perception: A case for intel-
ligible, safe, and precise abstractions,” 2021.

[68] Z. Wang, W. Ren, and Q. Qiu, “Lanenet: Real-time lane detection
networks for autonomous driving,” ArXiv, vol. abs/1807.01726, 2018.

[69] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro,
D. Schwartz-Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle,
“Code-level model checking in the software development workflow,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice, ser. ICSE-
SEIP ’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3377813.3381347 p.
11–20.

54

https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3377813.3381347

[70] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J.
Pappas, and I. Lee, “Case study: Verifying the safety of an
autonomous racing car with a neural network controller,” in
Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control, ser. HSCC ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3365365.3382216

[71] T. Jaunet, G. Bono, R. Vuillemot, and C. Wolf, “SIM2REALVIZ:
Visualizing the sim2real gap in robot ego-pose estimation,” CoRR,
vol. abs/2109.11801, 2021. [Online]. Available: https://arxiv.org/abs/
2109.11801

[72] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee,
M. Savva, S. Chernova, and D. Batra, “Are we making real progress
in simulated environments? measuring the sim2real gap in embodied
visual navigation,” 2019.

[73] B. Nemire, “Training in Nvidia Isaac Sim closes the sim2real gap,” Oct
2021. [Online]. Available: https://developer.nvidia.com/blog/training-
in-nvidia-isaac-sim-closes-the-sim2real-gap/

[74] E. Heiden, “Closing the sim2real gap using invertible simulators.”

[75] J.-B. Weibel, T. Patten, and M. Vincze, “Addressing the sim2real gap
in robotic 3-d object classification,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 407–413, 2020.

[76] J. Hietala, D. Blanco-Mulero, G. Alcan, and V. Kyrki, “Closing
the sim2real gap in dynamic cloth manipulation,” arXiv preprint
arXiv:2109.04771, 2021.

[77] H. Sibai, N. Mokhlesi, C. Fan, and S. Mitra, “Multi-agent safety veri-
fication using symmetry transformations,” in Tools and Algorithms for
the Construction and Analysis of Systems, A. Biere and D. Parker,
Eds. Cham: Springer International Publishing, 2020, pp. 173–190.

[78] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[79] H. Sibai, Y. Li, and S. Mitra, “Scenechecker: Boosting scenario verifi-
cation using symmetry abstractions,” 2021.

55

https://doi.org/10.1145/3365365.3382216
https://arxiv.org/abs/2109.11801
https://arxiv.org/abs/2109.11801
https://developer.nvidia.com/blog/training-in-nvidia-isaac-sim-closes-the-sim2real-gap/
https://developer.nvidia.com/blog/training-in-nvidia-isaac-sim-closes-the-sim2real-gap/

[80] Y. Li, H. Sibai, and S. Mitra, “Swerve: Effi-
cient runtime verification of multi-agent systems using dy-
namical symmetries and cloud computing,” Nov 2021.
[Online]. Available: https://figshare.com/articles/software/
Swerve Efficient Runtime Verification of Multi-Agent Systems Using
Dynamical Symmetries and Cloud Computing/16910812/2

[81] H. Sibai and S. Mitra, “Symmetry abstractions for hybrid systems and
their applications,” 2020.

[82] H. Sibai, N. Mokhlesi, and S. Mitra, “Using symmetry transformations
in equivariant dynamical systems for their safety verification,” in Au-
tomated Technology for Verification and Analysis, Y.-F. Chen, C.-H.
Cheng, and J. Esparza, Eds. Cham: Springer International Publish-
ing, 2019, pp. 98–114.

[83] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager,
“Adding symmetry reduction to uppaal,” 2004.

[84] C. N. Ip and D. L. Dill, “Better verification through symmetry,” in Pro-
ceedings of the 11th IFIP WG10.2 International Conference Sponsored
by IFIP WG10.2 and in Cooperation with IEEE COMPSOC on Com-
puter Hardware Description Languages and Their Applications, ser.
CHDL ’93. Amsterdam, The Netherlands, The Netherlands: North-
Holland Publishing Co., 1993, pp. 97–111.

[85] S. Bak, Z. Huang, F. A. T. Abad, and M. Caccamo, “Safety
and progress for distributed cyber-physical systems with unreliable
communication,” ACM Trans. Embed. Comput. Syst., vol. 14, no. 4,
Sep. 2015. [Online]. Available: https://doi.org/10.1145/2739046

[86] M. Bujorianu and J.-P. Katoen, “Symmetry reduction for stochastic
hybrid systems,” in 2008 47th IEEE Conference on Decision and
Control : CDC ; Cancun, Mexico, 9 - 11 December 2008. -
T. 1. Piscataway, NJ: IEEE, 2008, nebent.: Proceedings of the
47th IEEE Conference on Decision and Control. [Online]. Available:
https://publications.rwth-aachen.de/record/100535 pp. 233–238.

[87] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in CAV. Springer, 2013, pp. 258–263.

[88] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Symmetry reduction
for probabilistic model checking,” in Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, 2006, pp. 234–248.

56

https://figshare.com/articles/software/Swerve_Efficient_Runtime_Verification_of_Multi-Agent_Systems_Using_Dynamical_Symmetries_and_Cloud_Computing/16910812/2
https://figshare.com/articles/software/Swerve_Efficient_Runtime_Verification_of_Multi-Agent_Systems_Using_Dynamical_Symmetries_and_Cloud_Computing/16910812/2
https://figshare.com/articles/software/Swerve_Efficient_Runtime_Verification_of_Multi-Agent_Systems_Using_Dynamical_Symmetries_and_Cloud_Computing/16910812/2
https://doi.org/10.1145/2739046
https://publications.rwth-aachen.de/record/100535

[89] L. R. Antuña, D. Araiza-Illan, S. Campos, and K. Eder, “Symmetry re-
duction enables model checking of more complex emergent behaviours
of swarm navigation algorithms,” in Towards Autonomous Robotic Sys-
tems - 16th Annual Conference, TAROS 2015, Liverpool, UK, Septem-
ber 8-10, 2015, Proceedings, 2015, pp. 26–37.

[90] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” in
Computer Aided Verification, 5th International Conference, CAV ’93,
Elounda, Greece, June 28 - July 1, 1993, Proceedings, 1993, pp. 463–
478.

[91] E. M. Clarke and S. Jha, “Symmetry and induction in model checking,”
in Computer Science Today: Recent Trends and Developments, 1995,
pp. 455–470.

[92] S. Jacobs and R. Bloem, “Parameterized synthesis,” Logical Methods
in Computer Science [electronic only], vol. 10, 01 2014.

[93] M. Mann and C. Barrett, “Partial order reduction for deep bug finding
in synchronous hardware,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, A. Biere and D. Parker, Eds. Cham:
Springer International Publishing, 2020, pp. 367–386.

[94] M. Pandey and R. E. Bryant, “Exploiting symmetry when verify-
ing transistor-level circuits by symbolic trajectory evaluation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 7, pp. 918–935, 1999.

[95] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symmetries
to speed up SAT-based Boolean matching for logic synthesis
of FPGAs,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 27, no. 10, pp. 1751–1760, 2008. [Online]. Available:
https://doi.org/10.1109/TCAD.2008.2003272

[96] J. Maidens and M. Arcak, “Exploiting symmetry for discrete-time
reachability computations,” IEEE Control Systems Letters, vol. 2,
no. 2, pp. 213–217, 2018.

[97] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017. [Online]. Available:
https://doi.org/10.1177/0278364917712421

[98] H. Sibai and S. Mitra, “Symmetry abstractions for hybrid systems and
their applications,” 2020.

57

https://doi.org/10.1109/TCAD.2008.2003272
https://doi.org/10.1177/0278364917712421

[99] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 3, Sep. 2004, pp. 2149–2154 vol.3.

[100] Nvidia, “Ros bridge¶.” [Online]. Available: https://docs.nvidia.com/
isaac/isaac/packages/ros bridge/doc/ros bridge.html

[101] N. V. Patel, “NASA’s next lunar rover will run open-
source software,” Apr 2021. [Online]. Available: https:
//www.technologyreview.com/2021/04/12/1022420/{NASA}-lunar-
rover-viper-open-source-software

[102] ApolloAuto, “Apolloauto/apollo: An open autonomous driving
platform.” [Online]. Available: https://github.com/ApolloAuto/apollo

[103] Blue Robotics, “Bluerov2,” Datasheet, June, 2016.

[104] E. Zapridou, E. Bartocci, and P. Katsaros, “Runtime verification of
autonomous driving systems in CARLA,” in Runtime Verification
- 20th International Conference, RV 2020, Los Angeles, CA, USA,
October 6-9, 2020, Proceedings, ser. Lecture Notes in Computer
Science, J. Deshmukh and D. Nickovic, Eds., vol. 12399. Springer,
2020. [Online]. Available: https://doi.org/10.1007/978-3-030-60508-
7 9 pp. 172–183.

[105] S. Jaksic, E. Bartocci, R. Grosu, and D. Nickovic, “An algebraic frame-
work for runtime verification,” 2018.

[106] H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. John-
son, “Decentralized real-time safety verification for distributed cyber-
physical systems,” in Formal Techniques for Distributed Objects, Com-
ponents, and Systems (FORTE’19), J. A. Pérez and N. Yoshida, Eds.
Cham: Springer International Publishing, June 2019, pp. 261–277.

[107] K. Y. Rozier and J. Schumann, “R2U2: Tool overview,” in
RV-CuBES 2017. An International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime
Verification Tools, ser. Kalpa Publications in Computing, G. Reger
and K. Havelund, Eds., vol. 3. EasyChair, 2017. [Online]. Available:
https://easychair.org/publications/paper/Vncw pp. 138–156.

[108] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based
monitoring of cyber-physical systems: A survey on theory,
tools and applications,” pp. 135–175, 2018. [Online]. Available:
https://doi.org/10.1007/978-3-319-75632-5 5

58

https://docs.nvidia.com/isaac/isaac/packages/ros_bridge/doc/ros_bridge.html
https://docs.nvidia.com/isaac/isaac/packages/ros_bridge/doc/ros_bridge.html
https://www.technologyreview.com/2021/04/12/1022420/{NASA}-lunar-rover-viper-open-source-software
https://www.technologyreview.com/2021/04/12/1022420/{NASA}-lunar-rover-viper-open-source-software
https://www.technologyreview.com/2021/04/12/1022420/{NASA}-lunar-rover-viper-open-source-software
https://github.com/ApolloAuto/apollo
https://doi.org/10.1007/978-3-030-60508-7_9
https://doi.org/10.1007/978-3-030-60508-7_9
https://easychair.org/publications/paper/Vncw
https://doi.org/10.1007/978-3-319-75632-5_5

[109] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez, “Braceassertion:
Runtime verification of cyber-physical systems,” in 2015 IEEE 12th
International Conference on Mobile Ad Hoc and Sensor Systems, 2015,
pp. 298–306.

[110] S. Kang, I. Chun, and H.-S. Kim, “Design and implementation
of runtime verification framework for cyber-physical production
systems,” Journal of Engineering, vol. 2019, p. 2875236, 2019.
[Online]. Available: https://doi.org/10.1155/2019/2875236

[111] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” 2017.

[112] M. Khaled and M. Zamani, “Cloud-ready acceleration of formal method
techniques for cyber–physical systems,” IEEE Design Test, vol. 38,
no. 5, pp. 25–34, 2021.

[113] M. Pourmehrab, L. Elefteriadou, and S. Ranka, “Smart intersection
control algorithms for automated vehicles,” in 2017 Tenth International
Conference on Contemporary Computing (IC3). IEEE, 2017, pp. 1–6.

[114] O. Barzilai, N. Voloch, A. Hasgall, O. L. Steiner, and N. Ahituv, “Traf-
fic control in a smart intersection by an algorithm with social priori-
ties,” Contemporary Engineering Sciences, vol. 11, no. 31, pp. 1499–
1511, 2018.

[115] T. Niels, N. Mitrovic, K. Bogenberger, A. Stevanovic, and R. L. Bertini,
“Smart intersection management for connected and automated vehicles
and pedestrians,” in 2019 6th International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS). IEEE,
2019, pp. 1–10.

[116] S. Bharadwaj, T. Wongpiromsarn, N. Neogi, J. Muffoletto, and
U. Topcu, “Minimum-violation traffic management for urban air mo-
bility,” in NASA Formal Methods, A. Dutle, M. M. Moscato, L. Titolo,
C. A. Muñoz, and I. Perez, Eds. Cham: Springer International Pub-
lishing, 2021, pp. 37–52.

[117] C. Hsieh, H. Sibai, H. Taylor, and S. Mitra, “Unmanned air-traffic
management (UTM): Formalization, a prototype implementation, and
performance evaluation,” ArXiv, vol. abs/2009.04655, 2020.

[118] S. Mitra, Verifying Cyber-Physical Systems a Path to Safe Autonomy.
The MIT Press, 2021.

59

https://doi.org/10.1155/2019/2875236

[119] H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski,
and S. Vitalis, “CityJSON: A compact and easy-to-use encoding
of the CityGML data model,” Open Geospatial Data, Software
and Standards, vol. 4, no. 1, p. 4, Jun 2019. [Online]. Available:
https://doi.org/10.1186/s40965-019-0064-0

[120] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
2016.

[121] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017.

[122] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1TENTH:
An open-source evaluation environment for continuous control
and reinforcement learning,” in Proceedings of the NeurIPS
2019 Competition and Demonstration Track, ser. Proceedings of
Machine Learning Research, H. J. Escalante and R. Hadsell,
Eds., vol. 123. PMLR, 08–14 Dec 2020. [Online]. Available:
https://proceedings.mlr.press/v123/o-kelly20a.html pp. 77–89.

[123] L. Eller, T. Guérin, B. Huang, G. Warren, S. Yang, J. Roy, and
S. Tellex, “Advanced autonomy on a low-cost educational drone plat-
form,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 1032–1039.

60

https://doi.org/10.1186/s40965-019-0064-0
https://proceedings.mlr.press/v123/o-kelly20a.html

	CHAPTER 1 INTRODUCTION
	Motivation
	Formal Verification Approach to Safe Autonomy
	Falsification
	Controller Synthesis
	Reachability Analysis
	Neural Network Verification
	Verification of Autonomous Systems with Neural Networks
	Challenges in Formal Verification

	Thesis Contributions
	Thesis Structure

	CHAPTER 2 SceneChecker: Boosting Scenario Verification using Symmetry Abstractions
	Overview
	Related Works
	Background
	Scenario Verification Problem
	Converting Scenarios to Hybrid Automata
	Reachability Analysis
	Symmetry for Dynamical Systems

	SceneChecker: Algorithm Overview
	Symmetry Abstraction of Hybrid Automaton
	SceneChecker Algorithm Overview

	Experimental Evaluation
	Conclusions and Future Work

	CHAPTER 3 Swerve: Efficient Runtime Verification of Multi-Agent Systems Using Dynamical Symmetries and Cloud Computing
	Overview
	Related Works
	Toolkit Architecture
	Verification Server
	verify Overview
	Symmetry and Caching
	verifySegment Overview
	Refinement

	Experimental Evaluation
	Discussion and Future Work

	CHAPTER 4 Conclusion and future work
	APPENDIX A NN-controlled quadrotor case study
	REFERENCES

