
Planning in Dynamic and Partially
Unknown Environments

Kristina Miller ∗ Chuchu Fan ∗∗ Sayan Mitra ∗

∗University of Illinois Urbana-Champaign, Champaign, IL 61820 USA
(e-mail: {kmmille2, mitras}@ illinois.edu)

∗∗MIT, Cambridge, MA 02139 USA (e-mail: chuchu@mit.edu)

Abstract: Motion planning in dynamic and partially unknown environments is a difficult
problem requiring both perception and control components. We propose a solution to the control
component while cleanly abstracting perception. We show that this clean abstraction can be used
to synthesize verifiably safe reference trajectories using a combination of reachability analysis
and Mixed Integer Linear Programming. Experiments with a prototype implementation of this
algorithm show promise as it has subsecond synthesis performance for nonlinear vehicle models
in scenarios with hundred plus obstacles on standard hardware.

Keywords: control synthesis, switched systems, cyberphysical systems, verification, autonomy

1. INTRODUCTION

Controller synthesis is the problem of generating a control
function that guarantees a system meets some higher-level
specification. Various synthesis algorithms have been cre-
ated for restricted specification classes and implemented
in tools (see [13, 21, 18, 1, 16, 20] and references). One
challenge is the state space explosion problem, which limits
discretization-based approaches. Another challenge arises
as as we do not yet have tractable abstractions for learned
models of perception [11, 12, 4].

We contribute a new synthesis algorithm to address these
challenges. First, we present a perception abstraction
called a perception oracle (PO) which can be used to
explore synthesis algorithms. A PO gives an estimate of
obstacles around the vehicle, and generalizes and formal-
izes other common abstractions [4]. It captures perception
algorithms like occupancy grids [3], OctSqueeze [9], and
pedestrian detection and intent tracking [10].

Second, we present a synthesis algorithm that relies on
periodic invocations of the PO. We use carefully computed
error bounds about a low-level tracking controller and
generate a sequence of waypoints that are safe relative to
the output of the PO and attempts to acheive the high-
level goal. We show that under reasonable assumptions
and using symmetries, a small number of reachable set
computations can be transformed to characterize tracking
errors relative to arbitrary, and possibly piece-wise continu-
ous, reference trajectories defined by timed waypoints. We
then show how safe reference trajectories can be computed
by using Mixed Integer Linear Programming (MILP).

1 The authors acknowledge support from the research grants NSF
FMITF: 1918531 and AFOSR FA9550-17-1-0236, the DARPA As-
sured Autonomy under contract FA8750-19-C-0089, and from the
Defense Science and Technology Agency in Singapore. The views,
opinions, and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or policies
of the Department of Defense, the U.S. Government, DSTA Singa-
pore, or the Singapore Government.

Our algorithm is implemented in an open source tool and
evaluated in various scenarios involving a nonlinear vehicle
model navigating a crowded intersection. Our experiments
show that safe reference trajectories are found in partially
visible and dynamic environments when system parame-
ters are reasonable according to conditions related to the
soundness of the algorithm. This takes less than a second,
even with over 100 pedestrians. We compare against Model
Predictive Control (MPC), and show that our approach
can plan over longer periods and with more obstacles.

Closely related research. Real-time motion planning is a
major open problem in robotics and an active area of
research with many papers. Our algorithm is comparable
to those in FaSTrack [8], RTD [24], FACTEST [7], and the
funnel library [14]. None of these approaches define the
accuracy and timing behavior of perception modules and
differ in the key step of computing tracking error bounds—
which has implications on data-structures, applicability,
and performance. In [8], Hamilton-Jacobi-based reachabil-
ity analysis is used to produce the tracking error bounds.
Convex optimization is used for computing funnels around
tracking controllers in [14]. In [24] reachable sets are com-
puted using convex optimization and it generates con-
trollers that are provable not-at-fault. In [7], Lyapunov-
type functions are used to compute error bounds and
the waypoints are computed using satisfiability solvers. In
contrast, our algorithm uses sampling-based reachability
analysis and generates the waypoints using MILP. We im-
plemented our algorithm within the FACTEST framework,
and our approach can deal with dynamic obstacles. MPC
has also been used to synthesize controllers with reach-
avoid specifications. Implicit MPC [15] relies on solving an
optimal control problem with explicit solutions [5, 25, 27]
or with LP [5], QP [2, 19], or MILP solvers [25, 18].

2. ONLINE PLANNING IN DYNAMIC
ENVIRONMENTS

Notations. The length of the line segment joining p1, p2 ∈
Rn is denoted by ‖p2 − p1‖2. A polytope is denoted by



Poly(H, b) = {x ∈ Rn|Hx ≤ b} where H ∈ Rm×n,
b ∈ Rm. The ith row of H is H(i) ∈ Rn and the ith row
of b is b(i) ∈ R. The set {x : H(i)x = b(i)} is a face of
Poly(H, b) and there are m faces for H ∈ Rm×n, and we
denote this number as dP(H). A ball of radius r centered
at p is Br(p), and the bloated set of a segment S is Br(S).

The overall vehicle system S is specified by three subsys-
tems: (i) a perception subsystem P provides a prediction
for the free space around the vehicle, (ii) a plant-controller
subsystem C guides the system towards a specific waypoint,
and (iii) a planner L produces a reference trajectory for C
based on the inputs from P. We assume that P and C are
given and present an algorithm implementing L such that
S satisfies given safety requirements. In this section, we
spell out details about P and C and how they are composed
to define S. This can be seen in Figure 1.

2.1 Perception Subsystem: Oracles

The two or three dimensional subset of the Euclidean
space occupied by the physical system and obstacles is the
workspace W. The part of W not occupied by static and
dynamic obstacles is called the freespace. The freespace is
the ground truth function: W : R≥0 →W such that if the
system occupies W(t), at any time t, then it is considered
to be safe. The obstacle space is therefore WC(t).

We are interested in studying planning and control prob-
lems for arbitrary perception technologies, hence, we ab-
stract P in terms of a mathematical object called a per-
ception oracle (PO). A PO with a space-time horizon of
(dP , TP ), when queried at time t, returns a function under-
approximating the freespace in the dP -neighborhood of
the vehicle over the time interval [t, t + TP ]. By under-
approximating the freespace, we can take into account a
set of possible trajectories for the dynamic obstacles.

Definition 1. (Perception oracle). A (TP , dP )-perception
oracle queried at time t and position x ∈ X returns a
function FSt,x : [t, t + TP ] → 2W such that for any time
t′ ∈ [t, t + TP ], the freespace in BdP (x) ⊂ W contains
the oracles output FSt,x(t′). That is, ∀ t′ ∈ [t, t + TP ],
FSt,x(t′) ⊆ W(t′) ∩ BdP (x). TP is the time horizon and
dP is the sensing distance of the oracle.

Fig. 1. Intersection scenario in Webots (left) and algorithm’s
internal representation (right). The vehicle (blue) must reach
the green circle while avoiding pedestrians (black). The PO
returns a subset of the pedestrians (green dots) within the
sensed space (yellow) with predicted future occupancy (orange-
red). The planner computes waypoints (dotted line).

Definition 1 may be too strong, but we posit that it is a
good abstraction for studying planning and control algo-
rithms. Perception algorithms such as occupancy grids [3],

or OctSqueeze [9], essentially implement probabilistic ver-
sions of this definition. However, a probabilistic variant of
Definition 1 would unnecessarily complicate and distract
from our theory. Instead, we propose working with confi-
dence bounds when using a probabilistic implementation
of PO. Approaches for pedestrian detection and intent
tracking [10] essentailly implement Definition 1, by com-
puting the complement of FSt,x. Even with Definition 1,
planning and control remain highly nontrivial as the agent
only has partial (and possibly stale) view of the world.

We represent the complement of FSt,x by a set of timed
obstacles which are polytopes in WC×R≥0. A PO queried
at time tq and state xq returns FStq,xq

(t) represented by
a list of timed obstacles Oi = Poly(HOi

, bOi
). The set of

all PO’s is O.

2.2 Plant-Controller Subsystem

The plant-controller subsystem C is specified by a 4-tuple:
(i) the state space X ⊆ Rn, (ii) the initial set X0 ⊆ X ,
(iii) a set of modes Z, and (iv) a dynamic function f : X ×
Z → X that is locally Lipschitz continuous with respect
to the first argument.

Given a mode z ∈ Z and an initial state x0 ∈ X0, a
solution or trajectory of C up to a time bound T , is a
continuous trajectory ξ : [0, T ] 7→ X that satisfies (i)

ξ(0) = x0 and (ii) for any t ∈ [0, T ], dξ(t)
dt = f(ξ(t), z).

The initial state and mode of a trajectory ξ is ξ(0) and z,
respectively. In Section 3.2, we see that each mode will be
a reference trajectory (or path) generated by L of the form
z : R≥0 → X . Once a mode is fixed, C will ideally track this
path. The projection of a trajectory onto the workspaceW
is denoted by ξ ↓ W. We want to ensure that the vehicle
always resides in the freespace, i.e., ∀ t, (ξ ↓ W)(t) ∈W(t).

2.3 Planner and Closed-Loop System

The planner function L takes in the current state of the
vehicle, the goal G, and a perception oracle, and produces
a mode for C. That is, L : X × O → Z, where the
dependence on G is implicit.

In autonomous systems, the perception, control, and plan-
ner modules involve many threads and processes running
on an operating system and communicating over chan-
nels and buses. We consider a relatively clean yet im-
plementable mathematical model of S, and specify the
execution times in terms of the period TS with which the
PO is queried and a new prediction is obtained.

The timing of S is as follows. The PO is queried at each iTS
time. The computed reference trajectory zi is the mode for
ξi over t ∈ [iTS , (i+1)TS ]. Simultaneousy, the zi+1(t) to be
followed over [(i+1)TS , (i+2)TS ] is computed. Therefore,
S is a switched system, with mode switches every iTS time.

An execution of S is a sequence α = ξ0, ξ1, . . ., such that
(i) ξ0(0) ∈ X0, and (ii) for all i > 0, ξi is a trajectory
of duration TS for C with mode zi and starting from
the state ξi(0) = ξi−1(TS). The mode zi is computed
using zi−1(TS) and the output of the PO invoked at time
(i − 1)TS . That is, zi = L(zi−1(TS),FS(i−1)TS ,ξi−1(0)).
This switching rule models the situation where the PO
provides predictions based on slightly stale information,
and that the computation of the planner output at time
iTS commences sometime in the previous TS interval.



Problem statement The controller synthesis problem is
the following: Given a plant-controller subsystem C, a
perception subsystem P, a goal G ⊆ W, and time constant
TS , we want to design a planner L such that the along
all executions of S, (i) ∀i, t, ξi(t) ↓ W ∈ W(t) and (ii)
ξN (ξN .ltime) ∈ G. Here, there are N segments in the
execution and ξN .ltime is the last time of ξN .

3. SYNTHESIS ALGORITHM FOR PLANNER

Overview In this section, we present a planner algorithm
which computes reference trajectories with inputs from
the perception and plant-controller subsystems. First, we
bound the error between the actual vehicle trajectory and
the reference for an arbitrary reference using reachability
analysis (Section 3.1). Then, using these error bounds, we
synthesize safe reference trajectories guaranteed to be in
the freespace predicted by the PO. Our reference trajec-
tories zi will be piecewise linear (PWL) functions of time
constructed from timed waypoints {(pi,k, ti,k)}Nk=0, where
each waypoint pi,k ∈ W and t ∈ R≥0. In Section 3.2, we
present constraints needed to synthesize timed waypoints
that guarantee ξi(t) is safe. Finally, we present the full
algorithm which takes the timing of the subsystems into
account (Section 3.4). This algorithm performs two tasks
over each time period [iTS , (i + 1)TS ]: 1) It drives the
system trajectory ξi(t) to follow zi(t). 2) It queries a
(TP , dP )-PO, and the returned freespace over [iTS , iTS +
TP ] is used to compute a reference trajectory zi+1(t) for
the time period [(i + 1)TS , (i + 2)TS ]. Thus, we have the
mild requirement that the prediction period (TP ) be at
least twice the planning period TS (TP > 2TS).

3.1 Bounding Error to Arbitrary References

First, we must bound the error of the system trajectory to
an arbitrary reference trajectory, so that the vehicle is safe
over [0, TS ]. The reference trajectory zi(t) is constructed
from the N + 1 waypoints {(pi,k, ti,k)}Nk=0 that define
the segments that make up zi(t). The system trajectory
ξi(t) follows zi(t) over [iTS , (i + 1)TS ]. The system error
over this time period is given by εi(t) = zi(t) − ξi(t). In
this section, we focus on bounding the error of one such
reference trajectory. Therefore, we drop the subscript i.
Then, the reference trajectory is z(t), the timed waypoints
are {(pk, tk)}Nk=0, the system trajectory is ξ(t), and the
system error is ε(t) = z(t)− ξ(t).
The error function with respect to arbitrary reference
trajectories is usually not easy to compute analytically.
This problem is tackled by different methods in different
tools and frameworks, as discussed in the related research
section. We use recent advances in sensitivity-based reach-
ability analysis algorithms due to their flexibility and per-
formance [17, 6]. Reachability analysis would nominally
require expensive new computations for every new ξi and
zi. Instead, we use symmetry properties of reachable sets
from [23, 22] to perform a one-time computation that gives
all the necessary error bounds for every ξi and zi.

3.1.1. Error along a single segment In [23], the results
for symmetry transformations of reach sets were developed
for hybrid systems where each mode corresponded to a pair
of waypoints. Here, we adapt the results to our notion
of time-stamped waypoints. We present key definitions
and theorems for completeness. The main symmetry result
is Lemma 1, which allows us to transform pre-computed

reach sets instead recomputing them for each reference
trajectory. These reach sets are used to find the error
bounds over each segment. These results are not novel, but
they are crucial to proving safety of our main algorithm.

In what follows, we use f(x, Sk) to denote the system
dynamics following a segment Sk ∈ W. Here, Sk(t) = (pk−
pk−1) t−tk−1

tk−tk−1
t + pk−1 and it is valid over [tk−1, tk]. The

trajectory starting from x0 at time tk−1 and following Sk
is ξ(x0, Sk, t). The reachable set of a system starting from
a set X0 ⊆ X and following the segment Sk up to time
t, is Reach(X0, Sk, t), and it contains all ξ(x0, Sk, t) for
which xo ∈ X0. The size of Reach(X0, Sk, t) at time t is
Rad(Reach(X0, Sk, t)).

Definition 2. Let Γ be a group of linear operators acting
on Rn. We say γ ∈ Γ where γ : Rn → Rn is a symmetry of
a system C if for any trajectory, ξ(x0, Sk, t), γ · ξ(x0, Sk, t)
is also a trajectory.

Definition 3. The closed-loop dynamic function f : X ×
(R≥0 ×W)2 → X is Γ-equivariant if for any γ ∈ Γ, there
exists ρ : (R≥0 × W)2 → (R≥0 × W)2 such that for all

x ∈ X , ∂γ
∂xf(x, Sk) = f(γ(x), ρ(Sk)).

We can use the symmetry operation γ to construct a
new trajectory without simulating the system, but by
transforming the original trajectory using γ(·). Theorem 1
gives a sufficient condition under which γ is a symmetry.

Theorem 1. If f is Γ-equivariant, then for any trajec-
tory ξ(x0, Sk, t) and γ ∈ Γ, we have γ(ξ(x0, Sk, ·)) =
ξ(γ(x0), ρ(Sk), ·), where ρ is the transformation associated
with γ in Definition 2.

Lemma 1 (adopted from Theorem 2 in [23]) shows that
for any transformation of the system dynamics following
some Sk, a corresponding transformation can be applied to
the reachable set. This result is useful since the reference
trajectories computed in Section 3.2 are PWL, meaning
that only one reachable set needs to be computed to
follow some linear segment Sk, then transformations can
be applied to every other segment Sj , j 6= k.

Lemma 1. Let f be Γ-equivariant, then for any γ ∈
Γ and its corresponding ρ, γ(Reach(X0, Sk, t))) =
Reach(γ(X0), ρ(Sk), t)), where X0 is the initial state and
Sk is a segment of the reference trajectory.

Since the system dynamics are Γ-equivariant for our sym-
metry, the reachable sets can be computed independently
of z(t) when the initial set X0 is known. The error bounds
for the system following the kth waypoint is given by (1).

`k = max
t

Rad(Reach(X0, Sk, t))) (1)

This bound is valid over t ∈ [tk−1, tk], meaning ξ(x0, Sk, t)
is always within `k of the reference z(t).

Lemma 2. Consider a system C following the segment Sk
constructed from timed waypoints (pk−1, tk−1) and (pk, tk)
and an initial position x0 ∈ X0. At any time t ∈ [tk−1, tk],
ξ(x0, Sk, t) ↓ W ∈ B`k(Sk(t)).

Proof. Fix any segment Sk of the reference trajec-
tory z(t) and t ∈ [tk−1, tk]. Then, for any x0 ∈
X0, the actual trajectory ξ(x0, Sk, t) ∈ Reach(X0, Sk, t).
The error of the system is defined as ε(t) = z(t) −
ξ(x0, Sk, t). The set of all errors is E(t) = {z(t) −



ξ(x0, Sk, t)|x0 ∈ X0} and since this is Reach(X0, Sl, t)
translated, Rad(E(t)) = Rad(Reach(X0, Sk, t)). Since
ε(t) ∈ E(t), then ‖ε(t)‖ ≤ Rad(Reach(X0, Sk, t)). Us-
ing (1), we can see that ‖ε(t)‖ ≤ `k. Therefore,
ξ(x0, Sk, t) ∈ B`k(z(t))∀x0 ∈ X0, and when projected onto
the workspace, ξ(x0, Sk, t) ↓ WB`k(Sk)∀x0 ∈ X0. �

We iteratively use (1) for GetBounds(f,X0, N) to create
error bounds over each segment in z(t). At time tk, the
system switches to follow segment Sk+1. Thus, the error
increases, but this change in error can be bounded. At
time tk, ξk−1(tk) ∈ B`k(pk), as shown by Lemma 2, and
ξk(tk) ∈ B`k(pk). This only accounts for the error in W.
If the remaining states are bounded, then we can use this
information to find a bound on the total change in error,
allowing us to know the size of this new initial set.

3.2 Synthesizing Reference Trajectories with MILP

Given a lookahead time TP and a sensing distance dP ,
a (TP , dP )-PO is queried and returns a prediction of the
freespace FSiTS ,ξi(0)(t) at each iTS time. At the same
time, the planner tries to find a reference trajectory zi+1 :
[0, ti+1,N ] → W to be followed over the time interval
[(i+ 1)TS , (i+ 2)TS ]. We require that zi+1 is safe at least
over [0, TP ]. If the problem is solvable, zi+1(t) is returned
and the vehicle follows it. In this section, we consider
one such time period where such a reference trajectory
is synthesized, so the subscript i is dropped.

A reference trajectory z(t) is considered safe if the vehicle
following it remains in W(t) for all t ∈ [0, TP ]. Recall that
z(t) is valid over t ∈ [0, tN ]. Then, to progress to a goal G,
we require that z(tN ) ∈ G. Since z(t) is constructed from
timed waypoints {(pi,k, ti,k)}Nk=0, it suffices to synthesize
these waypoints. In what follows, we show that the prob-
lem of finding the desired timed waypoints can be encoded
as a mixed integer linear programming (MILP) problem.

Suppose the PO is queried at query time tq and query
state xq. It returns FStq,xq (t) as a list of timed obstacles

{Oi ∈ WC × R≥0}i. Then, each line segment Sk that
connects (pk−1, tk−1) and (pk, tk) must be at least `k away
from every obstacle so that the vehicle trajectory will not
intersect with the obstacle. As each obstacle O ∈ {Oi}i is
represented using a polytope, it suffices to have [pk−1, tk−1]
and [pk, tk] be outside of at least one face of the polytope
for z(t) to avoid O. Note that it may be impossible for the
endpoints to lie outside every face of the polytope, so we
have a disjunction of constraints in (2).

Lemma 3. Given a polytope O = Poly(HO, bO) where
HO ∈ Rm×(n+1), an integer M � 0, and variables αj ∈
{0, 1} for j = 1, · · · ,m. Consider the timed waypoints
(pk−1, tk−1) and (pk, tk) and the segment Sk(t) joining
them. If the following conditions hold

dP(HO)∧
j=1

Ñ
−H(j)

O

ï
pk−1
tk−1

ò
+ (b

(j)
O + ‖H(j)

O ‖`k) ≤M(1− αj) ∧

−H(j)
O

ï
pk
tk

ò
+ (b

(j)
O + ‖H(j)

O ‖`k) ≤M(1− αj)

é
dP(HO)∑
j=1

αj ≥ 1 (2)

then ∀t ∈ [tk−1, tk], B`k(Sk(t)) ∩O = ∅.

Proof. The waypoint (pk, tk) is outside and at least `k
away from the jth face of Poly(HO, bO) if (−H(j)

O [pk tk]
T

+

(b
(j)
O + ‖H(j)

O ‖`k)) < 0. If this is the case, then αj = 1 as
the MILP constraint becomesÄ
−H(j)

O [pk tk]
T

+ (b
(j)
O + ‖H(j)

O ‖`k)
ä
≤M(1− 1) = 0.

If this is not the case, then αj = 0, and the MILP
constraint becomesÄ
−H(j)

O [pk tk]
T

+ (b
(j)
O + ‖H(j)

O ‖`i)
ä
≤M(1− 0) = M.

This constraint will still hold true when M � 0.

If both (pk−1, tk−1) and (pk, tk) lie at least `k outside the
jth plane, then it is easy to see that αj = 1. If this is only
true for one of the waypoints, then αj = 0. Therefore, if∑dP(HO)
j=1 αj ≥ 1, then (pk−1, tk−1) and (pk, tk) lie outside

at least one plane of the polytope. This means that the
line segment Sk(t) is at least `k away from O. As Sk(t) is
at least `k away from O, then B`k(Sk(t)) ∩O = ∅. �

Avoid(`k, O, (pk−1, tk−1), (pk, tk)) denotes the constraint
in (2). Since all the system trajectories starting from
X0 are contained within B`k(Sk(t)), it follows that the
vehicle following Sk will not intersect with O. If these con-
straints hold true for every O ∈ {Oi}i then B`k(Sk(t)) ⊂
FStq,xq (t). If this constraint holds true for every Sk(t) for
k = 1, · · · , N , then B`(k)(z(t) ↓ W) ⊂ FStq,xq (t) for all
time t ∈ [0, TP ]. Similarly, the reference trajectory must
end within the goal shrunken by `N :

Goal(G, `N , (pN , tN )) := ∧dP(HG)
j=1 HGpN ≤ b(j)G − ‖HG‖`N

(3)

Finally, we introduce maximum velocity constraints by
simply requiring that the distance between the waypoints
is upper-bounded and the time between them is lower-
bounded. In (4), we use the 1-norm since it can be easily
turned into linear constraints. For a maximum velocity of
vmax, we choose lmax

∆tmin
= vmax.

RefVel(lmax,∆tmin, (pk−1, tk−1), (pk, tk))

= |pk − pk−1|1 < lmax ∧ tk − tk−1 ≥ ∆tmin (4)

Putting it all together, the MILP formulation to find a
reference trajectory is φpts, seen in (5).

φpts = ∃(p0, t0), (p1, t1), · · · , (pN , tN ) s.t.

p0 = z(0) ↓ W; t0 = 0
N∧
k=1

∧
O∈{Oi}i

Avoid(O, `k, (pk−1, tk−1), (pk, tk))

N∧
k=1

RefVel(lmax,∆tmax, (pk−1, tk−1), (pk, tk))

Goal(G, `N , (pN , tN )) (5)

The initial state of the vehicle is z(0). The waypoints
that construct a safe reference trajectory are computed
by solving for (5), which we call GetWaypoints.

We convert the waypoints returned by GetWaypoints to
a PWL reference trajectory, which is implemented in a
function called WaypointsToTraj. Due to limited space we
omit the details of this procedure in this paper.



3.3 Synthesis algorithm

The full algorithm to synthesize a safe reference trajectory
is as follows. While N is less than the maximum number
of segments Nmax, check to see if a sequence of timed
waypoints {(pk, tk)}Nk=0 that satisfies the constraints φpts
exists. If they exist, convert them to a valid reference
trajectory z(t) and return z(t). If they do not exist, add
another line segment and try again. If no waypoints can
be found within Nmax, the algorithm will return None.

Algorithm 1: Synthesize

Input: z(0), G,FStq,xq
(t), Nmax, {`k}Nmax

k=1 , lmax,∆tmin
1 N ← 1
2 while N ≤ Nmax do
3 {(pk, tk)}Nk=0 ← GetWaypoints(φpts)
4 try:
5 z(t)←WaypointsToTraj({(pk, tk)}Nk=0)
6 return z(t)

7 catch {(pk, tk)}Nk=0 = None:
8 N ← N + 1
9 z(t)← None

10 return z(t)

Theorem 2 states that if TP > 2TS , any ξ(t) following
z(t) will be safe for all t ∈ [0, TP ]. The proof follows from
Lemmas 2 and 3 and (3), which we omit for space.

Theorem 2. Given an initial state z(0), error bounds
{`k}Nk=1 constructed using (1), and a [TP , dP ]-perception
oracle queried at time tq and state xq that returns
FStq,xq (t), a goal set G, the reference trajectory z(t) com-
puted using Algorithm 1 ensures that the actual trajectory
ξ(t) following z(t) satisfies ∀t ∈ [0, TP ], ξ(t) ↓ W ∈W(t)
and ξ(z.ltime) ↓ W ∈ G.

Remark. The assumption in this theorem gives a con-
dition on perception distance dP . Let the maximum ve-
locity of any obstacle and the vehicle vO,max and vmax
respectively. The maximum distance both move over TS
is dO,max = vO,maxTS and dmax = vmaxTS respectively.
Thus, we require dP ≥ dO,max + dmax to ensure that if
new dynamical obstacle appears, it won’t cause a collision
and can be captured in the next sensing time.

3.4 Full Algorithm with Timing

Given a vehicle model C, some initial reference trajectory
z0(t), the freespace W(t), a lookahead time TP , the goal
is to find a safe controller from the initial set to the goal
set such that for any execution α = ξ0(t) _ ξ1(t) · · · ,
_ ξi(t) ∈ W(t),∀t ∈ [0, TS ],∀i = 0, 1, · · · . For simplicity
of illustration, we abuse the notation and use W(t) to
represent freespace at local time t which is reset whenever
the system switches modes. This z0(t) is the reference
trajectory that the system is following when the algorithm
starts, and assumed to be safe. In our implementation in
Section 4, z0(t) is set so that the vehicle is at a full stop.

The inputs to Algorithm 2 are as follows: (i) the scenario
defined by (W(t), G), (ii) system dynamics f , (iii) time
constants TS and TP , an (iv) sensing distance dP , (v) some
maximum number of segments Nmax, and (vi) a safe initial

reference trajectory z0(t) with error bounds {`k}Nmax

k=1 .

Algorithm 2: Main Algorithm

Input: (W(t), G), f , TS , TP , dP , Nmax, lmax,

∆tmin, z0(t), {`k}Nmax

k=1
1 i← 0
2 zi(t)← z0(t)
3 while ξi(t) /∈ G and zi(t) 6= None do
4 ξi([0, TS ])← RunController(zi(t), f)
5 X0 ← CreateInitial(zi(TS), `k)

6 {`k}Nmax

k=1 ← GetBounds(f,X0, Nmax)

7
zi+1(t)← Synthesize(zi(TS), G,FSiTS ,ξi(0)(t),

{`k}Nmax

k=1 , lmax,∆tmin)
8 i← i+ 1

Algorithm 2 exits if G is reached or if the scenario is
unsolvable. From Algorithm 1, the reference trajectory
zi(t) is set to None if the scenario is unsolvable. The vehicle
is run according to it’s system dynamics f and the refer-
ence trajectory zi(t) in the function RunController(zi(t), f)
(line 4). While zi(t) is being followed, zi+1(t) is computed.

In line 5, the initial set is created using the function
CreateInitial(zi(TS), `k). Here, `k is the error bound for the
line segment Sk that the system is following at TS . The
initial set for the next period is X0 = B`k(zi(TS) ↓ W). In
line 6, the error bounds are found using the symmetrical
reachable sets from Section 3.1. A new reference controller
is found in line 7 and the mode is updated.

Theorem 3. Given a vehicle model C with system dynam-
ics f and a scenario defined by (W(t), G), the sequence of
reference trajectories found using Algorithm 2 will result in
the execution α = ξ0ξ1 · · · , where ξi(t) ↓ W ∈W(t),∀t ∈
[0, TS ],∀i = 0, 1, · · · .

We defer the proof to the full version of this paper. This
proof uses Theorem 2 and Lemma 2.

Algorithm 2 may not always be able to generate a reference
trajectory. In such cases, the algorithm should exit and a
safe backup controller should be used. We will not discuss
it here, but this is an interesting future research direction.

4. EXPERIMENTS AND DISCUSSIONS

Implementation details. Algorithm 2 is implemented in the
FACTEST framework [7] using Gurobi, and in a Python or
Webots simulator. We consider scenarios where pedestri-
ans move according to a dataset [26]. We can typically find
safe trajectories in less than a second when one exists.

Path complexity is the number of segments in a path.
Figure 2 (left) suggests computation time scales linearly
with path complexity and increases with the number
of obstacles. This reflects the increase in constraints as
the number of obstacles and path complexity increases.
Algorithm 2 was deployed with the Webots vehicle model
in scenarios with 12 and 105 pedestrians. We varied the
lookahead (TP ), synthesis period (TS), and maximum
velocity bounds. The results are summarized in Table 1.

We note the following: 1) As the maximum velocity of the
vehicle decreases, the safety margin (min. dist) increases.
This makes sense, as the vehicle can maintain higher sep-
aration. 2) As synthesis time increases, the safety margin
decreases, since re-planning occurs less often. Issues may
arise if pedestrians can suddenly enter the vicinity of the



Fig. 2. Computation time comparisons. Left: effect of path complex-
ity and number of obstacles on running time. Right: comparison
of MPC (TP = 1s blue, TP = 4s green) and Algorithm 2 (red).

Ppl TP TS dsense tmin lmax Min dist Completion
12 4 1 10 5 10 1.405 17.312
12 4 1 10 2.5 10 2.256 10.912
12 4 1 10 5 5 3.501 25.184
12 4 0.5 10 5 10 1.390 15.36
12 4 2 10 5 10 1.020 19.776

105 4 1 10 5 10 1.622 15.584
105 4 2 10 5 10 1.796 15.456
105 4 2 10 6 12 0.766 18.528
105 4 2 10 4 8 1.256 17.344

Table 1. Online synthesis results. The parameters are: number of
pedestrians (Ppl), TS , TP , tmin, lmax, the minimum safety margin
(Min dist), and the completion time (Completion). The units of time

and distance are seconds and meters.

vehicle, though we can add the condition that a new path
should be synthesized if an unexpected obstacle appears.
3) The safety margin decreases as lmax increases. This is
due to the MILP solver defaulting to reference trajectories
that lie close to the obstacles and can be overcome by
adding a cost function that rewards a larger safety margin.

Comparison with MPC. In this comparison, we specify a
high-level path, and MPC computes the optimal inputs to
avoid obstacles. We compare in scenarios with 4, 76, and
105 pedestrians and with two different TP . Computation
time results are seen in Figure 2 (right). While Algorithm 2
may not be the clear “winner” we note where it can be
beneficial. MPC is faster when TP is “just right”. If TP is
too large, or too many obstacles are detected , MPC times
out (see TP = 4s). Therefore, Algorithm 2 is beneficial in
scenarios where a large TP is desirable.

Conclusions. We presented an abstraction for perception
(PO) and based on that we developed a synthesis algo-
rithm for unknown environments. Our analysis helps to
identify sufficient conditions on perception, update period,
and maximum velocity of the vehicle that assure safety.
The open prototype implementation shows promise. In
the future, we plan to compare with tools like RTD and
FaSTrack. Some interesting directions are to use learned
tracking controllers with complex plant models, or explore
conditions under which progress can be guaranteed.

REFERENCES

[1] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista,
K. Sreenath, and P. Tabuada. Control barrier functions: Theory
and applications. In ECC, pages 3420–3431. IEEE, 2019.

[2] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Jo-
hansson. Real-time trajectory generation using model predictive
control. In CASE, pages 942–948. IEEE, 2015.

[3] H. Badino, U. Franke, and R. Mester. Free space computation
using stochastic occupancy grids and dynamic programming. In
ICCV, volume 20. Citeseer, 2007.

[4] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin.
An efficient reachability-based framework for provably safe

autonomous navigation in unknown environments. In CDC,
pages 1758–1765. IEEE, 2019.

[5] A. Bemporad, F. Borrelli, and M. Morari. Model predictive
control based on linear programming - The explicit solution.
IEEE TAC, 47(12):1974–1985, 2002.

[6] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2:
A verification tool for stateflow models. In TACAS, pages 68–
82. Springer, 2015.

[7] C. Fan, K. Miller, and S. Mitra. Fast and guaranteed safe
controller synthesis for nonlinear vehicle models. In CAV, pages
629–652. Springer, 2020.

[8] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J.
Tomlin. Fastrack: A modular framework for fast and guaranteed
safe motion planning. In CDC, pages 1517–1522. IEEE, 2017.

[9] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun. Oct-
squeeze: Octree-structured entropy model for lidar compression.
In CVPR, June 2020.

[10] Z. Huang, A. Hasan, K. Shin, R. Li, and K. Driggs-Campbell.
Long-term pedestrian trajectory prediction using mutable in-
tention filter and warp lstm. IEEE RA-L, 2020.

[11] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia. Safe autonomy
under perception uncertainty using chance-constrained tempo-
ral logic. Journal of Automated Reasoning, 60(1):43–62, 2018.

[12] Y. Kantaros, M. Malencia, and G. J. Pappas. Reactive temporal
logic planning for multiple robots in unknown occupancy grid
maps. arXiv preprint arXiv:2012.07912, 2020.

[13] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-
logic-based reactive mission and motion planning. IEEE T-RO,
25(6):1370–1381, 2009.

[14] A. Majumdar and R. Tedrake. Funnel libraries for real-time
robust feedback motion planning. The International Journal of
Robotics Research, 36(8):947–982, 2017.

[15] D. Q. Mayne. Model predictive control: Recent developments
and future promise. In Automatica, volume 50, pages 2967–
2986. Pergamon, 2014.

[16] S. Mouelhi, A. Girard, and G. Gössler. CoSyMA: A tool for
controller synthesis using multi-scale abstractions. In HSCC,
pages 83–88. ACM, 2013.

[17] B. Qi. Building DryVR: A verification and controller syn-
thesis engine for cyber-physical systems and safety-critical au-
tonomous vehicle features. PhD thesis, UIUC, 2018.

[18] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A.
Seshia. Reactive synthesis from signal temporal logic specifi-
cations. In HSCC, pages 239–248. ACM, 2015.

[19] S. Richter, C. N. Jones, and M. Morari. Computational
complexity certification for real-time mpc with input constraints
based on the fast gradient method. IEEE TAC, 57(6):1391–
1403, 2011.

[20] P. Roy, P. Tabuada, and R. Majumdar. Pessoa 2.0: A controller
synthesis tool for cyber-physical systems. In HSCC, pages 315–
316. ACM, 2011.

[21] M. Rungger and M. Zamani. Scots: A tool for the synthesis of
symbolic controllers. In Proceedings of the 19th HSCC, pages
99–104, 2016.

[22] G. Russo and J.-J. E. Slotine. Symmetries, stability, and
control in nonlinear systems and networks. Physical Review
E, 84(4):041929, 2011.

[23] H. Sibai, N. Mokhlesi, C. Fan, and S. Mitra. Multi-agent safety
verification using symmetry transformations. In TACAS, pages
173–190. Springer, 2020.

[24] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall,
M. Johnson-Roberson, and R. Vasudevan. Towards provably
not-at-fault control of autonomous robots in arbitrary dynamic
environments. arXiv preprint arXiv:1902.02851, 2019.

[25] M. Vitus, V. Pradeep, G. Hoffmann, S. Waslander, and C. Tom-
lin. Tunnel-milp: Path planning with sequential convex poly-
topes. In AIAA Guidance, Navigation and Control Conference
and Exhibit, page 7132, 2008.

[26] D. Yang, L. Li, K. Redmill, and Ü. Özgüner. Top-view
trajectories: A pedestrian dataset of vehicle-crowd interaction
from controlled experiments and crowded campus. In 2019
IEEE (IV), pages 899–904. IEEE, 2019.

[27] M. N. Zeilinger, C. N. Jones, and M. Morari. Real-time
suboptimal model predictive control using a combination of
explicit MPC and online optimization. IEEE TAC, 56(7):1524–
1534, 2011.


	Introduction
	Online planning in dynamic environments
	Perception Subsystem: Oracles
	Plant-Controller Subsystem
	Planner and Closed-Loop System

	Synthesis Algorithm for Planner
	Bounding Error to Arbitrary References
	Synthesizing Reference Trajectories with MILP
	Synthesis algorithm
	Full Algorithm with Timing

	Experiments and discussions

