
Programming Abstractions for Simulation and Testing on Smart
Manufacturing Systems

Chiao Hsieh, Daniel Wu, Yubin Koh, Sayan Mitra
University of Illinois at Urbana-Champaign

Urbana-Champaign, IL, USA
{chsieh16,dxwu2,yubink2,mitras}@illinois.edu

Abstract— A smart manufacturing system is a complex cyber-
physical system consisting of a collection of component ma-
chines and a floorplan layout defining the spatial relationship
between components. Each component may be of different
physical behavior with different control software. Simulation
and testing on smart manufacturing systems require a software
infrastructure that can orchestrate the execution of heteroge-
nous, cyber-physical components besides modeling physical
machines in respect to floorplan layouts. Automated simulation
as a result is challenging and error-prone. Recent strides in
formal modeling of cyber-physical systems and programming
languages offer some new techniques for addressing this chal-
lenge. In this paper, we present a compositional automata-based
modeling formalism and programming abstractions to design
coordination logic between heterogeneous robots in different
layouts. Our formalism allows us to automatically simulate
and compare performance metrics for different floorplan lay-
outs. We implement our proof-of-concept prototype with the
challenging simulation environment for 2021 Agile Robotics
for Industrial Automation Competition. Our experiment results
demonstrate how our simulation can be used to evaluate and
compare performance under different layouts and applicable
for reconfiguration and virtual commissioning.

Index Terms— smart manufacturing, virtual commissioning,
simulation

I. INTRODUCTION

Modeling and simulation are essential for rapid testing
and debugging of smart manufacturing systems. For example,
in virtual commissioning, many different machine configura-
tions, layouts, and variations of associated control programs
have to be evaluated, before the actual system is commis-
sioned. The state of the art and the outstanding challenges
surveyed in [1]–[3] suggest that the high level of expertise
and effort required for creating such simulation models make
virtual commissioning prohibitively expensive, especially for
small and medium-sized enterprises. The challenges arise
from two distinct sources. First, developing digital models
of physical machines and mechanisms is challenging and
requires domain expertise. And second, even with avail-
able component models, the software infrastructure that can
orchestrate the execution of heterogeneous, cyber-physical
components in a manageable simulation is challenging and
error-prone. Recent advances in formal modeling of cyber-
physical systems [4]–[6] and programming languages, offer
some new techniques for addressing this second challenge.
These techniques not only provide a sound mathematical

This project is supported by NSF-CNS Award# 1544901.

basis for developing complex models, but they also offer
software for creating executable simulation programs [7],
[8]. In this paper, we propose an approach that builds-up on
these recent advances to show how the burden of developing
simulation models can be reduced with abstractions and
compositional modeling.

Broadly, a simulation model for a manufacturing system
consists of a collection of component machines (we call
them generically as robots in this paper) and a floorplan
layout that defines the spatial relationship between the robots.
Robots may be of different types, they may have different
control software, and they interact physically (e.g., through
transfer of physical materials) and logically (e.g., through
transfer of data as needed by a coordination software layer
on top of control software). A simulation framework for a
manufacturing system therefore requires a good abstraction
for (i) modeling physical interactions such as reading sensor
and writing actuator ports on the robot, (ii) programming co-
ordination software layer such as accessing shared variables
between control software (iii) composing all robots, control
software, and coordination software layer while considering
the floorplan layout.

In recent years, thanks to the effort from government
and the open source community, the Agile Robotics for
Industrial Automation Competition (ARIAC) [9], hosted by
the National Institute of Standards and Technology (NIST),
provides freely available simulated industrial robots such
as the robot arms from Universal Robots and rail-guided
vehicles in Figure 1. These high-fidelity simulation frame-
works enable exploring different combinations of available
robot models to improve smart manufacturing systems. For
example, using less robots can help reduce cost and lower
redundancy in general. With more robots, there will be higher
cost, but the performance is not guaranteed to improve and
depends on good coordination of control software. Testing
and evaluating the simulation can thus help to answer if a
new layout with more robots can achieve higher throughput
or only creates redundancy. However, running the simulation
and evaluating the performance remains error prone because
the current simulation frameworks have not addressed the
complexity of coordination between the control software
and the composition of heterogeneous robots under different
layouts.

In this work, we demonstrate the feasibility of automated
simulation of different layouts of robot placements to eval-



Fig. 1. GEAR simulation environment for the ARIAC 2021 competition.

uate performance, throughput, and cost-effectiveness. Given
a valid layout, we showcase how to automatically generate
and execute the parameterized controller to obtain analytic
from simulations. Our framework therefore allows users to
explore the improvement and trade-offs in the design of smart
manufacturing systems.

In summary, the contributions in this paper are as follows:
(a) We present a compositional automata-based modeling
formalism to program coordination logic between heteroge-
neous robots in different layouts. (b) We propose an analysis
and simulation framework for our modeling formalism to
automatically measure and compare performance metrics for
different layouts. (c) We implement and demonstrate our
proof-of-concept prototype with the high-fidelity simulation
environment in ARIAC 2021.

Looking ahead, we believe that the type of compositional
modeling illustrated in this paper can not only lower the
barrier to creating simulation models for smart manufac-
turing systems, but it can also help with developing and
tuning controller programs, performance evaluation [10], and
anomaly detection.

Related works: Research on software defined con-
trol (SDC) framework [11]–[13] has proposed approaches
on the management and monitoring for smart manufacturing
systems and provides a global view of the system for decision
making. All of the works benefit from integrating fixed
simulation models or digital twins for predictive decision
making and anomaly detection. Our simulation approach
with parameterized floorplan layouts can further extend the
existing simulation for more advanced application such as
virtual commissioning and reconfiguration.

A number of ideas from the extensive body of research
on modeling for cyber-physical systems inform our modeling
formalism (see [4]–[6], [14] and the citations therein). A pre-
vious mathematical formalism (without realistic simulations)
for smart manufacturing appeared in [15]. The formalism
presented in this paper integrates the notion of shared mem-

ory and controller ports from our Koord [7] programming
language.

II. MOTIVATING EXAMPLE

We illustrate our motivating example following the
Agile Robotics for Industrial Automation Competition
(ARIAC) [9] hosted by the National Institute of Standards
and Technology (NIST). In particular, we study ARIAC
2021: a smart manufacturing scenario revolving around the
theme of the COVID-19 pandemic along with the Gazebo
Environment for Agile Robotics (GEAR).

GEAR for ARIAC 2021: In ARIAC 2021, the goal is to
design the software for a smart manufacturing system that
will assemble on-demand, ventilator briefcases consisting of
four items: a battery, a sensor, a regulator, and a pump.
The competing control software is required to transport the
correct items from the conveyor belt to one of the assembly
stations (as1 to as4) and assemble the briefcase as shown
in Figure 1. GEAR consists of four types of robot platforms:
a conveyor belt, a kitting robot, Automated Guided Vehicles
(AGVs), and a gantry robot. The conveyor belt serves as an
entry point for new items and moves items from left to right.
The kitting robot consists of a UR10 robot arm, a vacuum
gripper to grab items, and a linear rail to move parallel to
the conveyor. The AGVs carry items along a defined path
with fixed destinations and deliver items to assembly stations.
Lastly, the gantry robot consists of another UR10 robot arm
that is attached to a rotatable torso, which can move along
a two-dimensional plane on two linear rails.

Simulations for layout optimization: A crucial appli-
cation of the simulation environment is to evaluate over
different layouts of robots to compare various metrics such
as throughput, safety, robustness, etc. This will allow finding
the optimized layout. However, automated simulation for dif-
ferent layouts has to address two concerns: (i) the controllers
for robots will require adjustments under different layouts,
and (ii) the physical parameters, such as the operating range
of the robot arms, limit the relative placements of the AGVs.

To address the first concern, our approach of parameterized
automata with shared variables generalizes the controllers to
work under different floorplan layouts. More specifically, we
are able to support all four main robot types given in ARIAC
2021 the conveyor belt, AGVs, the kitting robot, and the
gantry robot. An automaton is constructed for each of the
existing robots so that it can accordingly carry out its own
tasks, and the composition of all automata is used to simulate
the end to end goal of delivering items between the robots
and assembling the ventilator.

To solve the second concern, we consider the information
provided in the floorplan layout. For the different layouts
shown in Figure 2, the problematic layout on the right does
not consider the operating range of robot arm, and hence the
robot arm cannot transfer items to the AGV. We consider
this as an infeasible layout with a connectivity issue. Our
approach takes in different layouts as inputs and generates a
connectivity graph to ensure the connectivity of robots, such
as the one shown in Figure 3. If there exists a connected



Fig. 2. Feasible vs infeasible layouts constrained by the operating range
of the robot arms. The robot arm is able to reach the AGV in a feasible
layout (Left). The robot arm is too far from the AGV in an infeasible
layout (Right).

conveyor
belt

kitting
robot

agv1

agv2

agv3

agv4

gantry
robot

as1

as2

as3

as4

Fig. 3. The connectivity graph generated for the default world in Figure 1.

path from the source to the destination in our connectivity
graph, items can be transferred from the conveyor belt to
the assembly stations. In other words, we can detect the
connectivity issues by checking if a path exists from the
source to the destination, which then can be used to exclude
infeasible layouts, since the robots will not be able to work
together to transfer the items. We will formally define the
connectivity graph and check connectivity using standard
graph search algorithms in Section III-A.

III. COMPOSITIONAL MODELING OF A HETEROGENEOUS
MULTI-AGENT SYSTEMS

In this section, we will discuss our compositional mod-
eling framework for smart manufacturing systems. We will
show how each instance of a robotic platform is modeled
as a special type of a parameterized automaton. Each type
of automaton has different sets of shared variables for
communication with other automata and ports to interact
with the physical environment. We then discuss the definition
of the complete system as a composition of various automata
instances defined by a layout. This compositional definition
enables us to both automatically check the compatibility of
a layout and generate executable simulation code.

Robot components: The overall system is built by
instantiating a number of robots from a library of possible
robot types. Let the set of robot types be {R1, R2, . . . , RN}.
For example, R1 = AGV and R2 = Conveyor. A system
consists of robot platform instances {r1, ..., rk} of different
robot types. If a robot platform instance ri is of the robot
type Rj , we denote it as type(ri) = Rj . The robot instance
agv1 in Figure 1 is of the type AGV. We can write it as
type(agv1) = AGV.

Each type of the robots can be customized or instantiated
by fixing a number of robot parameters, such as location,
orientation, and certain controller parameters. For each robot
type Ri, we write the corresponding parameter space as PRi

.
For example, agv1 and agv2 in Figure 1 are both instances
of AGV with different station positions inside the warehouse.
Assuming there are three required parameters, the position
of the start station, the interval between the stations, and
the number of items to transfer in each trip, the parameter
space for AGV is PAGV = R2 × R × N. The particular
parameter values of agv1 is denoted as param(agv1) =
((−2.3, 4.6), 0.73, 4) ∈ PAGV to represent that the start
station is placed at (-2.3, 4.6), the interval between stations is
0.73 meters. Or equivalently, it defines the station positions at
(-2.3, 4.6), (-3.03, 4.6), and (-3.76, 4.6), and agv1 transfers
4 items for each trip.

System Composition: Our formalization is inspired by
the transition system model for software defined controllers
in [15] and the shared memory model for distributed robotics
system in [7]. We model the entire system as the composition
of all robot instances:

Sys ≜ A(r1) ∥ A(r2) ∥ ... ∥ A(rk)

where each robot instance is a discrete automaton A(r) =
(X,Q,Θ,Σr, δ) where (i) X = XL∪̇XG∪̇XP is a finite
set of state variable names. XL, XG, and XP denotes the
sets of local variables, shared variables, and controller port
names respectively. We assume the function type(x) to return
the set of possible values for x. A state q is a mapping from
x ∈ X to a value q(x) ∈ type(x) and val(X ) denotes the
set of all possible states of X . (ii) Q ⊆ val(X ) is the set of
states. (iii) Θ ⊆ Q is the set of initial states. (iv) Σr is the
set of all actions. The actions are parametrized by the robot
parameters param(r). (v) δ ⊆ Q× Σr ×Q is the transition
relation.

Figure 4 demonstrates how the local variable (variable s to
represent the current status), shared variables (all loaded and
all dropped), controller ports (pos), and robot parameters
are used to define the (partial) automaton for agv1. The
system starts from LOADING status and waits for the
product items being loaded on the tray. It waits for the shared
variable all loaded to become true before entering MOVING
status. This shared variable may be controlled by other robot
instances, such as the kitting arm robot, to allow loading and
delivering multiple items at a time. Notice that the “goto”
action is parametrized by the position of the station at (-
3.03,4.6). We can generalize the action to support the other
station at (-3.76, 4.6). Once entering the MOVING status, it
may take multiple cycles to reach to the particular station.
In this case, the value of controller port pos is decided
and changed according to the physical environment instead;
therefore, it monitors the controller port variable pos until its
position reaches the station at (-3.03,4.6) and transits to the
DROPPING status. Similarly, all dropped shared variable is
used to decide whether all items have been dropped to the
assembly station so that it can enter RETURNING status to
go back to the starting station and reset to LOADING status.



s=LOADING
pos=(-2.3,4.6)

start

s=MOVING
s=DROPPING
pos=(-3.03,4.6)

s=RETURNING

if all loaded?
goto((-3.03,4.6))

if pos=(-3.03,4.6)?

if all dropped?if pos=(-2.3,4.6)?

Fig. 4. Partial automaton for the robot instance agv1 working between
stations at (-2.3,4.6) and (-3.03,4.6).

A. Connectivity check for feasible layouts

For simplicity, we consider the robot instances as places
in the two-dimensional space R2. We begin by computing
the operating ranges of all the robots specified in a layout.
Figure 5 demonstrates how the position, orientation, and
range parameters in the environment is specified in JSON
format, and the annotated operating ranges in the Gazebo
simulation environment. The type of robot determines the
operating range of motion. For instance, the kitting robot’s
range of motion is a cylinder with its axis along the x or y-
direction. An AGV’s operating range can be represented by
a set of 2D vertical lines, since other robots will be dropping
items and grabbing them off of the AGV. Since computing
the geometric space of the operating range are standard,
we skip the detail of the computation and use range(ri) to
denote the operating range derived from a given layout.

Formally, a connectivity graph is a directed graph G =
⟨V,E, s, T ⟩ where V is the set of all robot instances
{r1, r2, ..., rk}, an edge (ri, rj) ∈ E represents that an
item can be directly transferred from ri to rj , s ∈ V
is the source node, and T ⊂ V is the set of destination
nodes. The process of generating a connectivity graph is
as follows. Starting from a graph with all robot instances
{r1, r2, ..., rk}, but without any edges, we mark the robot
instance where the items enters the system as the source
node s and the robot instances where the final product item
leaves the system as the destination nodes t ∈ T . For the
connectivity graph in Figure 3 as an example, the conveyor
belt robot is the source node s = conveyor, and the assembly
stations are the destination nodes T = {as1,as2,as3,as4}.
We add an edge from node ri to node rj if and only if
(i) the operating ranges of robot instances intersect, i.e.,
range(ri)∩range(rj) ̸= ∅ and (ii) robot ri would transfer an
item over to robot rj according to the robot types type(ri)
and type(rj).

Finally, we can check if every node is reachable starting
from the source node s, and every node can reach any
destination node t ∈ T . A standard algorithm is to use depth-
first search (DFS) starting from the source node s. If there
is no path from the source node s to a node ri, then there
is no path for an item to be delivered to ri, hence the robot
instance ri is not usable. Similarly, if there is no path from
ri to any destination node t, the item will never be used in

the final product. We can therefore detect and reject these
invalid layouts by constructing the connectivity graph.

IV. IMPLEMENTATION

In this section, we present our method of implementation
for building our system. The three major components of this
include (1) the input floorplan layout in the form of a JSON
file and the generation of a Gazebo world as an SDF file, (2)
controller automata, and (3) a connectivity check. All of our
implementation is in an open source repository at the link
below. [16]

Programmable layouts to Gazebo environments: We
parse the input JSON file and retrieve all dynamic (robots)
and static (assembly stations, bins, other obstacles). We then
write this information in world files that are applied to SDF
files when the Gazebo world is launched. The resulting world
should show the floorplan layout specified in the JSON file
as a Gazebo simulation.

Building robot controllers: As discussed in Section III,
each robot follows an automata depending on the robot type
with tunable robot parameters. To implement the automaton,
the basis of all robotic movement in our simulation is done
through ROS, specifically through messages passed over
ROS topics and ROS service calls. For simpler robots, such
as the conveyor belt and the AGVs, a simple command
to control the speed is enough. For more complex robot
arms such as the kitting and gantry robot, we use the
MoveIt framework for sending ROS messages to control the
arm joints. On top of MoveIt, we use an analytical-based
inverse kinematics approach for motion planning to generate
a sequence of desired arm joint values and brings the vacuum
gripper to a desired position.

The MoveIt framework provide well established motion
planning tool that allowed us to abstract over the lower
level details of sending ROS messages. This helped us
build an analytical approach-based inverse kinematics solver
for the two robot arms without going into an extreme
level of detail. There are also plenty of alternatives in-
cluding sampling-based motion planner, such as a Proba-
bilistic Roadmap (PRM) or a Rapidly-Exploring Random
Tree (RRT).

Connectivity Check: We use a short Python function to
implement our connectivity check. In short, we create a node
for each robot specified in the JSON file and then create
a directed edge between nodes where robots can transfer
items to one another. We implement a standard depth-first
search algorithm and run it on the starting node to determine
whether connectivity from start to finish is satisfied or not.

V. EXPERIMENT RESULTS

We use the competition interface provided by the ARIAC
for running our experiment. Items will be spawned on the
conveyor belt and shipped to briefcases located at assembly
stations. We run the simulations on three different layouts,
namely the default competition layout in Figure 1 (Default),
a more spaced layout (Spaced), and a layout with less
AGVs (LessAGV):



"robots": [
{ "name": "kitting",

"type": "kitting",
"pose": [-1.3, 0, 1.127],
"rail_dim": "y",
"rail_range": [-4.8, 4.8]},

{ "name": "conveyor_belt",
"type": "conveyor",
"pose": [-0.573, 0, 0],
"orient": "y",
"orient_range": [-5,5]}

]

Fig. 5. A programmable layout in JSON format (Left) and the corresponding Gazebo simulation environment (Right).

• Default layout has one conveyor belt, one kitting robot,
four AGVs, and one gantry robot. The default space
between the conveyor belt and the kitting robot is 0.73
meter. The starting poses of the four AGVs (in order
from 1 to 4) are (-2.3, 4.6), (-2.3, 1.3), (-2.3, -1.3), and
(-2.3, -4.6).

• Spaced layout sees increased space between the con-
veyor belt and kitting robot to 0.93, as well as increased
space between the four AGVs. The starting poses of the
AGVs are now (-2.5, 4.2), (-2.5, 0.9), (-2.5, -0.9), (-2.5,
-4.2). It uses the same number of robots as the Default
layout.

• LessAGV world has the same layout with the same
spacing as Default world, with the removals of two
robots: agv2 and agv4.

We also consider varying the robot parameters for the robot
automata. The tunable robot parameter in our experiments
is the capacity of an AGV, the maximum number of items
loaded for each trip from the conveyor belt to assembly
stations, denoted as Cap.

Recall from Section II that an order is to assemble a
ventilator briefcase composed of four different kinds of
items. For each combination of a layout and a parameter
value, we conduct a simulation of filling 8 orders and record
the total time usage of an simulation run. We then divide the
total time by 8 to calculate the average amount of time for
finishing one order as shown in Table I.

All of our experiments are conducted on a Ubuntu work-
station (version 18.04.6 LTS) with CPU model Intel Xeon
Silver 4110, GPU model NVIDIA Corporation GP104GL,
ROS Melodic (Version 1.14.12), and Gazebo 9.16.0.

TABLE I
AVERAGE TIME TO FINISH ONE ORDER IN SECONDS UNDER DIFFERENT

COMBINATIONS OF SIMULATION OF SHIPPING 8 ORDERS.

Cap = 2 Cap = 4 Cap = 8
Default 196.650 173.037 133.327
Spaced 198.654 197.384 156.379

LessAGV TIMEOUT 180.993 222.375

Table I shows that the time usage is generally worse with
increased space, but only marginally for certain values of
Cap. We see significant improvements with loading more

items on less AGVs for the default world and the spaced
world, suggesting that operations with the gantry robot are
the bottleneck and that optimizations regarding the gantry
movement and its parameter tuning should be the focus in
future runs. In LessAGV layout with less AGVs, we see
significantly higher times to ship items but a different pa-
rameter value that produces optimal throughput. The results
here show the possible improvements by adjusting just one
robot parameter.

Fig. 6. 2D position trajectories of two battery items in Default layout.
XY-axes are rotated 270◦ to match Figure 1. The trajectories start from the
lower right corner. Both batteries are moved to left by the conveyor belt.
put on agv3 separately by the kitting robot, and carried to the assembly
station as3 in one trip. Finally, battery 1 is transferred to the assembly
table by the gantry robot.

In addition, we track the trajectories of items in transi-
tions for runtime monitoring. Figure 6 shows the position
trajectories of two battery items starting from the right end
of the convey belt, i.e., lower right of the plot. Both batteries
moves to left by the conveyor belt. The curves denote the
two items are transferred to agv3 at (-2.3, -1.3) by the
kitting robot, put down slightly separated, and carried to
the assembly station as3 in the same trip. Finally, the plot
shows the gantry robot picked up and transfer battery 1 to
the assembly table. This showcases that the prototype is able
do fine-grained runtime tracking of individual components.
In short, our experiment shows that our framework can
provide system-level metrics such as throughput, as well
as component-level details such as the trajectories of items,
and we can repeat the simulation and analysis for different



layouts and parameters to identify critical components and
subsequently optimize the entire smart manufacturing sys-
tem.

VI. CONCLUSIONS

We presented our approach to a compositional modeling
and simulation of smart manufacturing systems. Given an
input JSON file representing the layout of a manufacturing
floorplan, and the parameterized controllers for the robot
types, our system can generate a detailed simulator for the
entire plant. The solution uses the notion of controller ports
and shared variables for physical and logical interaction
among robot components. We showed how the generated
simulator can be used for measuring and comparing through-
put of the ventilator assembly orders in ARIAC 2021 with
four distinct robot types. Our current implementation relies
on the Gazebo simulator and the ARIAC 2021 scenario; how-
ever, the concepts can be implemented on other simulators
and scenarios.

Beyond the preliminary experimental results we have
discussed, the work suggests several directions for future
research. First, the parameterized controller programs used
for simulation can be compiled to executable code and
deployed on the actual hardware. This can significantly
reduce the development and testing cost. A variant of this
idea for the Koord language has been demonstrated in the
context of mobile robotic applications [8]. Generating PLC
code directly from communicating state machine models
would be an interesting direction to explore. Second, the
compositional models, with the well-defined interfaces (ports
and shared variables) should be amenable to automatic gen-
eration of runtime monitors [17], [18] for software defined
control [11]–[13]. Finally, rapid generation of simulators and
their evaluations open-up the possibility of optimizing de-
signs and auto-tuning parameters for manufacturing systems.

ACKNOWLEDGMENT

The authors would like to thank Prof. Kira Barton, Dr.
James Moyne, Dr. Yassine Qamsane, Dr. Efe Balta from the
University of Michigan, and Prof. Sibin Mohan and Bin-
Chou Kao, from University of Illinois for many valuable
discussions that informed the research. The research was
supported by a research grant from the US National Science
Foundation under the CPS Frontiers program (NSF CNS
1544901).

REFERENCES

[1] S. Süß, S. Magnus, M. Thron, H. Zipper, U. Odefey, V. Fäßler,
A. Strahilov, A. Kłodowski, T. Bär, and C. Diedrich, “Test method-
ology for virtual commissioning based on behaviour simulation of
production systems,” in 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), 2016, pp.
1–9.

[2] P. Hoffmann, R. Schumann, T. M. Maksoud, and G. C. Premier,
“Virtual commissioning of manufacturing systems a review and new
approaches for simplification.” in ECMS. Kuala Lumpur, Malaysia,
2010, pp. 175–181.

[3] C. G. Lee and S. C. Park, “Survey on the virtual commissioning
of manufacturing systems,” Journal of Computational Design and
Engineering, vol. 1, no. 3, pp. 213–222, 2014.

[4] R. Alur, Principles of Cyber-Physical Systems. The MIT Press, 2015.
[5] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe Autonomy,

ser. Cyber Physical Systems Series. Cambridge, MA, USA: MIT
Press, Feb. 2021.

[6] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, pp. 105–157, 2003.

[7] R. Ghosh, C. Hsieh, S. Misailovic, and S. Mitra, “Koord: A Language
for Programming and Verifying Distributed Robotics Application,”
Proc. ACM Program. Lang., vol. 4, no. OOPSLA, nov 2020. [Online].
Available: https://doi.org/10.1145/3428300

[8] R. Ghosh, J. P. Jansch-Porto, C. Hsieh, A. Gosse, M. Jiang, H. Taylor,
P. Du, S. Mitra, and G. Dullerud, “CyPhyHouse: A programming,
simulation, and deployment toolchain for heterogeneous distributed
coordination,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), May 2020, pp. 6654–6660.

[9] A. Downs, Z. Kootbally, W. Harrison, P. Pilliptchak, B. Antonishek,
M. Aksu, C. Schlenoff, and S. K. Gupta, “Assessing industrial robot
agility through international competitions,” Robotics and Computer-
Integrated Manufacturing, vol. 70, p. 102113, 2021.

[10] K. An, A. Trewyn, A. Gokhale, and S. Sastry, “Model-driven perfor-
mance analysis of reconfigurable conveyor systems used in material
handling applications,” in 2011 IEEE/ACM Second International Con-
ference on Cyber-Physical Systems, 2011, pp. 141–150.

[11] F. Lopez, Y. Shao, Z. M. Mao, J. Moyne, K. Barton, and D. Tilbury, “A
software-defined framework for the integrated management of smart
manufacturing systems,” Manufacturing Letters, vol. 15, pp. 18–21,
2018.

[12] E. C. Balta, D. M. Tilbury, and K. Barton, “A centralized framework
for system-level control and management of additive manufacturing
fleets,” in 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE). IEEE, 2018, pp. 1071–1078.

[13] Y. Qamsane, C.-Y. Chen, E. C. Balta, B.-C. Kao, S. Mohan, J. Moyne,
D. Tilbury, and K. Barton, “A unified digital twin framework for real-
time monitoring and evaluation of smart manufacturing systems,” in
2019 IEEE 15th international conference on automation science and
engineering (CASE). IEEE, 2019, pp. 1394–1401.

[14] R. Alur and T. A. Henzinger, “Reactive modules,” Formal methods in
system design, vol. 15, no. 1, pp. 7–48, 1999.

[15] M. Potok, C.-Y. Chen, S. Mitra, and S. Mohan, “SDCWorks: A Formal
Framework for Software Defined Control of Smart Manufacturing
Systems,” in 2018 ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), 2018, pp. 88–97.

[16] “ARIAC repository for CyPhyHouse,” https://github.com/cyphyhouse/
ARIAC, 2021.

[17] D. Jin, P. O. Meredith, C. Lee, and G. Roşu, “Javamop: Efficient
parametric runtime monitoring framework,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1427–
1430.

[18] B. d’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “Lola:
runtime monitoring of synchronous systems,” in 12th International
Symposium on Temporal Representation and Reasoning (TIME’05).
IEEE, 2005, pp. 166–174.

https://doi.org/10.1145/3428300
https://github.com/cyphyhouse/ARIAC
https://github.com/cyphyhouse/ARIAC

	Introduction
	Motivating Example
	Compositional Modeling of a Heterogeneous Multi-Agent Systems
	Connectivity check for feasible layouts

	Implementation
	Experiment Results
	Conclusions
	References

