
Multi-agent motion planning using differential
games with lexicographic preferences

Kristina Miller∗, Sayan Mitra∗
∗Electrical and Computer Engineering Department

University of Illinois Urbana-Champaign

Abstract—Multi-player games with lexicographic cost func-
tions can capture a variety of driving and racing scenarios and
under certain conditions are known to have pure-strategy Nash
Equilibria. The standard Iterated Best Response (IBR) procedure
for finding such equilibria can be slow because, in general,
computing the best response for each agent involves solving a
non-convex optimization problem. In this paper, we introduce
a type of game which uses a lexicographic cost function. We
show that for this class of games, the best responses can be
effectively computed through piece-wise linear approximations.
This in turn enables us to approximate the Nash Equilibria
using a linearized version of IBR. We show that the gap
between the linear approximations returned by our linearized
IBR and the true best response drops asymptotically. We have
implemented the algorithm and our experiments show that it can
find approximate Nash Equilibria for handful of agents driving
in realistic scenarios in less than 10 seconds.

I. INTRODUCTION

Motion planning in multi-agent environments is a challeng-
ing problem with many applications in autonomous driving,
human-robot interactions, and urban air mobility. Standard
single agent motion planning algorithms can be ported to
multi-agent problems, under restrictive assumptions such as
no interaction among agents or accurate predictions for agents.
By treating other agents as dynamic but known obstacles, a
variety of motion strategies have been used to tackle the multi-
agent problem, such as sampling-based planners [29, 22, 7],
temporal logic-based planers [21, 5, 1], reach-avoid synthe-
sis [18, 6, 10, 2, 23, 16], and model predictive control [17,
3, 24, 27]. These approaches can provide safe trajectories for
navigation, however, typically they do not account for dynamic
interaction between agents.

Differential games [12] are a natural framework to study
strategic interactions between rational agents moving in some
workspace. Using differential games to solve the multi-agent
motion planning problem is a growing area of interest [14,
8, 15, 28, 13, 25, 12]. Recently, a special class of games,
called an urban driving game, was introduced in [26] for
studying decision making in autonomous vehicles around other
vehicles and pedestrians. In urban driving games, agents have a
shared goal of non-collision and independent individual goals.
Specifically, the cost function for each agent has two parts:
(i) a collision cost which forces the agents to avoid collisions,
and (ii) a personal cost which only dependents on the agent’s
own actions. The personal cost could, for example, encode
minimization of distance traveled, fuel expended, or time.

The standard way for evaluating steady-state behavior in
games is to study its Nash equilibria [19]. At a Nash equilib-
rium, none of the agents can improve their cost by unilaterally
changing their actions, and thus, each agent is playing its
optimal response to the action profile of the other agents.
Thus, the Nash equilibria can be seen as prediction of rational
outcomes. In [26], it is shown that the Nash equilibrium exists
for urban driving games.

One limitation of the urban driving game formulation
of [26] is that the personal cost function only depends on the
individual agent’s actions. This formulation cannot be applied
in scenarios where one agent’s personal costs dependents on
its opponent’s cost, such as in a race. In this work, we expand
upon the existing notion urban driving game, and add a zero
sum component to the agents personal cost function. In this
way, the urban driving game can be used in a wider variety of
scenarios, such as a racing scenario. We show that this revised
urban driving game is still a potential game, and therefore, has
a pure strategy Nash equilibrium.

In order to find the Nash equilibrium of the revised urban
driving game, we propose a linearized version of an iterative
best response algorithm. In this algorithm, we use linear con-
straints to minimize the collision cost function, and search over
these actions for the best response. Thus, we approximate the
agents’ trajectories as piecewise linear curves. The algorithm
returns the piecewise linear approximation that minimizes the
agent’s personal cost function, giving rise to the notion of
linear Nash equilibrium. Finally, we show that for a large
enough number of segments, we can find the asymptotic bound
on the gap between the true Nash equilibrium and the linear
Nash equilibrium.

Finally, we implement the linearized version of iterative best
response. This is done using a mixed integer linear program,
similar to [6] and [18]. We show that this prototype tool
works in a variety of scenarios, including traffic scenarios.
Additionally, we show that the time to find the approximate
Nash equilibrium for most scenarios is within seconds.

II. LEXICOGRAPHIC GAMES AND NASH EQUILIBRIA

We use sets such as N = {0, . . . , n− 1} to index or name
the players in the game. For an i ∈ N , {−i} is used as a
shorthand for N\{i}. The set of real and positive real numbers
is denoted as R,R≥0. The lexicographic ordering on R2 is
defined as (a1, b1) ⪯ (a2, b2) iff (1) a1 ≤ a2 or (2) a1 = a2



and b1 ≤ b2. If (a1, b1) ⪯ (a2, b2) and (a1, b1) ̸= (a2, b2)
then (a1, b1) ≺ (a2, b2).

A. Lexicographic general sum games

In this work, we discuss a class of games called lexico-
graphic general sum game which is shown in Definition 1.
This lexicographic general sum game is a generalization of
the urban driving game introduced in [26]. Here, we modify
the personal cost component of the lexicographic cost function
so that each agent’s personal cost is also dependent on its
opponent’s actions.

Definition 1. An n-player lexicographic general sum game
(LG) G is defined by three components G = ⟨N , {Zi}, {Ji}⟩,
where:

(i) N = {0, . . . , n− 1} is a set of n agents,
(ii) Zi is a compact set of uniformly continuous curves zi :

[0, 1] → Rd, which specifies a trajectory for agent i.
The joint action space for G is Z =

∏
i∈N Zi, and a

particular joint action z ∈ Z can be written as z =
[z0, . . . , zn−1] where each zi ∈ Zi. Finally,

(iii) Ji : Z → R2 is a lexicographic cost function for agent i
with Ji(z) = (Jcol

i (z), Jper
i (z)), with two parts, (a) the

collision cost

Jcol
i (z) =

∑
j∈{−i}

fi,j(zi, zj), (1)

is defined in terms of a collection of bounded real-valued
symmetric functions, fi,j(zi, zj) = fj,i(zj , zi), i ̸= j.
And (b) the personal cost

Jper
i (z) = gi(zi)−

∑
j∈{−i}

gj(zj), (2)

is defined in terms of individual costs gi which are
continuous and bounded over Zi.

This 2-part definition of the cost function J provides some
analytical advantages as we shall see in Section III, and it
separates concerns: (a) the collision cost depends on action
pairs and it incentivizes certain social outcomes over others;
(b) the personal cost depends only on individual choices.
We note here that the uniform continuity of the actions zi
implies that the actionspace Zi is compact by Arzela-Ascoli
Theorem [4].

Example: Some examples of an LG at a traffic intersec-
tion can be seen in Figure 1. Each agent lives in R2 is given a
starting position (rectangles) and a goal position (circles). The
action spaces are the trajectories that the agent’s take to reach
the goal position. The collision cost function is given in (3)

fi,j(zi, zj) =

{
0 if zi ∩ Bc(zj) = ∅
1 else

(3)

There are a variety of individual cost functions that can be
used in these scenarios. A simple example of the individual

Fig. 1. Examples of general sum driving games at an intersection. Left: the
vehicles must drive through the intersection while avoiding collisions with
each other, and a pedestrian attempts to cross the intersection. Right: two
vehicles attempt to drive through the intersection while the pedestrian attempts
to cross the intersection. The rectangles are the starting positions, and the
circles denote the goal positions. The dotted trajectories are examples of what
the Nash equilibrium may look like.

cost function is one in which the agents wish to minimize their
traveled distance, seen in (4).

gi(zi) =

∫ 1

0

√
1 + (

d

ds
zi(s))2ds (4)

B. Best responses and Nash equilibria

The predictions from game theory can help us understand
social behavior by predicting how agents will act in a game
defined by the costs. The predictions about player behavior
are called equilibria, and one particular type of equilibria is
called Nash equilibrium, which is defined in terms of agent’s
best responses to other agents’s choice. In 1951, John Nash
proved that all n-player games with finite action sets have a
mixed-strategy Nash equilibrium [19]1

Definition 2 (Best response). Given an action profile z−i ∈
Z−i of agents in {−i}, the best response set of agent i is the
set of actions that minimizes the cost Ji(zi, z−i). That is,

RBR(z−i) = {zi ∈ Zi | Ji(zi, z−i) ⪯ Ji(z
′
i, z−i) ∀z′i ∈ Zi}

The notion of a Nash equilibrium [19] of a game captures
the idea that for some joint actions, no agent can unilaterally
improve their cost. In this work, a Nash equilibrium refers
to a pure strategy Nash equilibrium, where agents select
one action from RBR

i (z−i), as compared to a mixed strategy
Nash equilibrium, where agents select actions from RBR

i (z−i)
according to a probability distribution.

Definition 3 (Nash equilibrium). A joint action z∗ ∈ Z of
an LG is a pure strategy Nash equilibrium(NE) if ∀i ∈ N ,
∀zi ∈ Zi,

Ji(z
∗) ⪯ Ji(zi, z

∗
−i).

1A mixed strategy is a probabilistic distribution on the set of actions of
each player such that this distribution is the best response to the other agent’s
distributions. In this paper, we focus on pure Nash equilibria, and mixed-
strategies would be considered in a future work.



It follows from these definitions that z∗ is an NE if and
only if for every i ∈ N , z∗i ∈ RBR

i (z∗−i).
The existence of a Nash equilibrium for general continuous

game with continuous utility functions can be proven using
a generalization of Kakutani’s fixed point theorem [9]. While
this existence result has been around for a long time, there
has been limited work on practical algorithms for computing
Nash equilibria in general continuous games. Several special
classes of games have been identified, for example, separable
games [20], where the problem becomes tractable. For later
use, we introduce the notion of an ε-Nash equilibrium of a
lexicographic game G, for any ε > 0, which is a joint action
zε ∈ Z such that the neither the collision cost nor the personal
cost can be improved by more than ε. That is, zε is a ε-NE
if for all i ∈ N for all zi ∈ Zi the inequalities in (II-B) hold
true.

Ji(z
ε) ⪯ ⟨Jcol

i (zi, z
ε
−i) + ε, Jper

i (zi, z
ε
−i)⟩

Ji(z
ε
i ) ⪯ ⟨Jcol

i (zi, z
ε
−i), J

per
i (zi, z

ε
−i) + ε⟩. (5)

An example of potential Nash equilibria can be seen in
Figure 1.

Problem Statement: We would like to develop an algo-
rithm that given a lexiographic game G and ε > 0, computes
an ε-Nash equilibrium of G.

In driving games, computing the NE can be very difficult,
especially in scenarios with a large (or infinite) action space,
or in games that have a large number of agents [26]. In this
paper we aim to simplify the computation of NE through a
linearized iterative best response. In the next section, we will
discuss the iterative best response framework for computing
NE, and then we will present the linearized version. Then we
will analyze the algorithm, and show that we can obtain a
reasonable approximation of the NE.

C. Iterated Best Response for Computing NE

Iterated best response (IBR) is a standard method for finding
pure strategy NE. The procedure starts with an initial guess of
a joint action z ∈ Z to be a candidate NE. Then each agent’s
action zi in z is updated to be the best response RBR

i to the
other agent’s current choice of z−i. This continues iteratively
until and unless there is no better response to the joint action
for any of the agents. The standard IBR procedure is shown
Algorithm 1. The computation of the best response for each
agent involves solving an optimization problem, which can be
challenging for general infinite games. Further, the procedure
is not guaranteed to converge, however, if the game is a po-
tential game (defined below), then convergence is guaranteed.
We proceed by showing that lexicographic general sum games
are a special type of potential game (Proposition 1).

D. Lexicographic and potential games

We first show that our game is an ordinal potential game2,
which are guaranteed to have pure strategy NE.

2A potential games is one where and an exact potential function P exists
such that Ji(z

′
i, z−i) − Ji(zi, z−i) = P (z′i, z−i) − P (zi, z−i)/ We will

see that this condition is too strong and not necessary for analysis of LG.

Algorithm 1: Iterative best response (IBR)
Input: G, initial guess z ∈ Z
Output: z∗

1 do
2 z∗ ← z
3 for i ∈ N do
4 zi ∈ RBR

i (z−i)
5 end
6 while z∗ ̸= z;
7 return z∗

Definition 4 (Ordinal potential game). An LG G is an ordinal
potential game (OPG) if there exists a function P : Z → X
such that ∀i ∈ N , ∀z−i ∈ Z−i, ∀zi, z′i ∈ Zi

Ji(z
′
i, z−i) ⪯ Ji(zi, z−i) ⇐⇒ P (z′i, z−i) ⪯ P (zi, z−i).

Here (X ,⪯) is some totally ordered set.

Such a function P is called an ordinal potential function
(OPF) of the game. It can be shown that any lexicographic
game has an OPF. The proof for Proposition 1 is a modification
of Theorem 1 from [26], and is included in the full version of
this paper.

Proposition 1. Any lexicographic game G is an ordinal
potential game with potential function

P (z) = ⟨1
2

∑
j∈N

Jcol
j (z),

∑
j∈N

gj(zj)⟩. (6)

The fact that G is an ordinal potential game leads to some
nice properties: First, a global minimum of P exists [26],
and this global minimum corresponds to a pure strategy Nash
equilibrium [11]. Secondly, an ε-approximation of this NE can
be computed using the iterated best response approach. These
two results are stated here as Propositions 2 and 3.

Proposition 2. Lexicographic general sum games have a pure
strategy Nash equilibrium.

For lexicographic games, the action spaces Zi are indeed
compact, which means that for every zi ∈ Zi, for every ε > 0,
there exist δ > 0 such that ∥zi(x)−z(y)∥ ≤ ε, and x, y ∈ [0, 1]
and ∥x − y∥ ≤ δ (generalized Arzela-Ascoli Thm from [4]).
Then, using similar reasoning to [26], for continuous cost
functions, a pure strategy NE exists.

Proposition 3. For any lexicographic game G, and any ε > 0,
the IBR procedure converges to an ε-NE in a finite number of
iterations.

The proof of this proposition comes from the fact that on
each iteration, each agent attempts to improve their cost by
ε. If there is no updated action that each agent can take to
improve their cost by ε, then the joint action is an ε-NE, and
the algorithm terminates.



III. LINEAR IBR ALGORITHM

We propose an algorithm called L-IBR that searches for
linear best responses that are increasingly closer to the actual
best response of the agents. Instead of searching for best
response actions, which are continuous functions satisfying
certain cost constraints imposed by the actions of other agents,
the algorithm searches for best responses that are piecewise
linear (PWL) functions. PWL functions can be described by
a sequence of waypoints in Rd, and under additional approxi-
mation of the collision cost, the search for optimal waypoints
can be formulated as a mixed integer linear program (MILP).
We show that as the number of waypoints describing a PWL
function increases, the solution found by L-IBR approaches
the linear best response, and the gap between the cost of this
linear best response and the actual NE, can be bounded. The
pseudocode for L-IBR is shown in Algorithm 2.

L-IBR takes as input the lexicographic game G, and an
initial guess for the joint action z ∈ Z that described by
a collection of sequences of waypoints {Pi}N . Then, IBR
is performed for the current joint action described by the
waypoint sequences, until they converge to an equilibrium.
The algorithm returns the PWL joint action as the computed
approximate linear equilibrium zlin.

Algorithm 2: L-IBR
Input: game G = ⟨N , {Zi}N , {Ji}N ⟩, initial guess

{P [0]
i }N , collision bound c

Output: PWL equilibrium zlin

1 k ← 1
2 while k = 1 or P [k] ̸= P [k−1] do
3 {P [k]

i }N ← {P
[k−1]
i }N

4 for j ∈ N do
5 Q← linUpdate({Pi}−j , J

per
j (·), c)

6 P
[k]
j ←
argmin

Γ∈{Q,P
[k]
j }(J

per
j (Wp2C(Γ), {Wp2C(P [k]

i )}−j))

7 end
8 end
9 for i ∈ N do

10 zlin
i ← Wp2C(P [k]

i )
11 end
12 return zlin

In order to find a ε-NE, Jj(Wp2C(P [k])) must never in-
crease for any j ∈ N . Then, we get Invariant 1.

Invariant 1. For every k > 0 and ∀j ∈ N ,

Jj(Wp2C(P
[k])) ⪯ Jj(Wp2C(P

[k−1]))

Since the cost of each agent never increases in each itera-
tion, then when the agents can non longer update their actions
improve their cost, then the algorithm terminates and returns
the approximate linear equilibrium.

Outline of Section III: In Section III-A, we first discuss
the construction of PWL curves given a sequence of way-
points. In Section III-B, we discuss the construction of the
bounding boxes that ensure that there are no collisions between
agents. In Section III-C, we propose a linear formulation for
computing the best response of agent i to z−i by encoding
constraints that guarantee Jcol

i (zi, z−i) is minimized, and
choosing zi that minimizes Jper

i (zi, zj) while satisfying our
linear constraints. However, the set of actions that satisfies the
linear constraints is an under-approximation of the true best
response set. Thus, we will show that L-IBR can find the ε-NE,
and we find the asymptotic lower bound of ε.

Geometric preliminaries: Given two points p, p′ ∈ Rd, a
line segment is denoted by pp′ ⊂ Rd. A ball of radius c ≥ 0
centered at the point p ∈ Rd is denoted by Bc(p). The set of
all points within c distance of a curve z : [0, s]→ Rd is given
by the set Bc(z) :=

⋃
s∈[0,1] Bc(z(s)). Similarly, the set of all

points within c distance of a line segment pp′ is given by the
set Bc(pp′) :=

⋃
q∈pp′ Bc(q)

A. Constructing piecewise linear actions from waypoints

Recall from Definition 1 that the action space Zi consists
of uniformly continuous curves zi : [0, 1] → Rd. In L-IBR,
we use piecewise linear (PWL) curves constructed from a
sequence of m+1 waypoints in Rd as follows: Given sequence
of points Pi = {p0, . . . , pm}, where each pj ∈ Rd, the PWL
function zi is constructed by mapping the domain [0, 1] to
the m line segments p0p1, . . . , pm−1pm. The PWL function is
given by Wp2C(Pi) : [0, 1]→ Rd. The domain is split into m
sections [tj−1, tj ], j ∈ [1,m], and each Wp2C(Pj)(tj) = pj .
Over some duration [tj−1, tj ], Wp2C(Pi)(s) ∈ pj−1pj , and
for any s, σ ∈ [tj−1, tj ], σ > s, ∥Wp2C(Pi)(s) − pj−1∥ <
∥Wp2C(Pi)(σ)− pj−1∥. Many different PWL functions could
be constructed with different ∂zi

∂t values (t ∈ [0, 1]), meaning
that the linearity of the functions comes from their construction
in Rd. We fix any arbitrary mapping Wp2C throughout this
paper and the resulting curve is written as zi = Wp2C(Pi).
An example is shown in Figure 2. Note that the resulting
PWL curves are uniformly continuous, and thus satisfy action
space assumption in Definition 1. This can be seen in Fig-
ure 2. Note that the resulting curve is uniformly continuous,
but possible non-differentiable at each disjunction point pj ,
j ∈ {1, . . . ,m}.

· · ·p0

p1

p2 pm−1

pm

· · ·
0 t1 t2 tm−1 1

Fig. 2. Example of the Wp2C function converting a sequence of waypoints
to a piecewise linear function. Each point pj ∈ Rd, and the associated time
stamp for each point is shown in the timeline below.



Proposition 4. For any sequence of waypoints Pi ∈
∏m

j=0 Rd,
zi = Wp2C(Pi) is uniformly continuous.

Now that we have defined the PWL curves, we will use them
to approximate the nonlinear curves in Zi. Let zi : [0, 1]→ Rd

be the uniformly continuous curve we are trying to approxi-
mate, and Pi be a sequence of m + 1 waypoints in Rd. The
approximation error between Wp2C(Pi) and zi is given by
δ = maxs∈[0,1] ∥Wp2C(Pi)(s) − zi(s)∥. Ideally, the Pi that
we use to approximate zi minimizes δ.

Lemma 1. For any zi, and δ > 0, there exists m ∈ N and
Pi = {p0, . . . , pm} such that ∥Wp2C(Pi)(s)− zi(s)∥ ≤ δ.

We omit the proof for brevity, but it follows from the fact
that for any uniformly continuous function zi, and any s, t ∈
[0, 1], s ̸= t, there exists ζ > 0 and ξ > 0 such that ∥s− t∥ <
ζ =⇒ ∥zi(s)− zi(t)∥ < ξ.

Now that we have bound the error between Wp2C(Pi) and
any action zi, we can begin to find a bound on ε. Here, we use
the assumption that Jper

i (zi, {zj}−i) is Lipschitz continuous
with constant K in the first argument. Then, ε = Kδ.

Lemma 2. For personal cost functions Jper
i (zi, {zj}−i), which

are Lipschitz continuous with respect to the first argument with
Lipschitz constant K, zi ∈ Zi, {zj}−i, and δ > 0, there exists
m ∈ N and Pi = {p0, . . . , pm} such that ∥Jper

i (zi, {zj}−i)−
Jper
i (Wp2C(Pi), {zj}−i)∥ ≤ Kδ.

Proof: Fix an arbitrary δ > 0 and {z−i}. By Lemma 1,
we know that there exists m > 0 and Pi = {p0, . . . , pm} such
that ∥Wp2C(Pi)(s) − zi(s)∥ ≤ δ for all s ∈ [0, 1]. Thus, by
the Lipschitz continuity of Jper

i , ∥Jper
i (Wp2C(Pi), {z−i}) −

Jper
i (zi, {z−i})∥ ≤ Kδ.

B. Constructing bounding boxes to avoid collisions

A common type of collision cost used in autonomous
driving and platooning scenarios is one in which the agents
must remain at least c away from each other. Thus, we use the
following definition of a collision. Two agents i and j collide
if their trajectories zi and zj come within c of each other. The
collision cost is minimized when zj is at least c away from
zi. Thus, given an agent j ∈ N , Jcol

j (zj , z−j) is minimized
when,

∀i ∈ {−j}, Bc(zi) ∩ zj = ∅ (7)

Note that this checks for collisions over the entire trajectory,
not just collisions in time. However, by splitting each trajectory
into shorter trajectories in time, then this would check for
collisions in time. In our collision heuristic, we consider the
collision cost to be minimized when the agents remain at
least c away from each other. A common way of checking
for collisions is checking for intersections between bounding
boxes. In this section we will discuss how to construct the
bounding boxes used.

Each segment in a PWL trajectory has its own bounding
box. Consider two points p, p′ ∈ Rd. The minimum bounding

p

p′

Fig. 3. Example of a bounding box in R2. The yellow tube is Bc(p, p′),
and the rectangle drawn around it is the bounding box.

box for this segment is given by Oc(p, p
′) = {y ∈ Rd|Ay <

b}, where A ∈ Rd×2d, b ∈ R2d. Additionally, Oc(p, p
′) ⊃

Bc(pp′) and there is no other O′
c(p, p

′) ⊃ Bc(pp′) such that
Oc(p, p

′) ⊃ O′
c(p, p

′). In this section, we will show how we
construct such Oc(p, p

′). For convenience in this section, we
will make the dependence on p, p′ implicit.

The line segment that connects p and p′ is given by pp′. The
vector that is tangent to this line is given by −→n 0 = p′−p

∥p′−p∥ .
Then, in order to construct a bounding box, we choose any
basis that spans W that contains −→n 0. This basis is given by
{−→n 0, . . . ,

−→n d−1} where each −→n i is a unit vector.
The bounding boxes are defined by half-spaces. Each of

these half-spaces is indexed by {0, 0′, . . . , (d − 1), (d − 1)′},
meaning

A =


A0

A0′

...
A(d−1)

A(d−1)′

 , b =


b0
b0′
...

b(d−1)

b(d−1)′


Here, each Ai ∈ Rd, and b ∈ R. Let us construct the

ith half-space. Let Aiy = βi be the hyperplane spanned by
{−→n −i} centered on p′ + c−→n i. Then, the half-space is either
given by Aiy < βi or −Aiy < −βi, whichever contains pp′.
We will call this half space {Aiy < b}, where Ai = ±Ai and
bi = ±βi.

Similarly, Ai′y = βi′ is the hyperplane spanned by {−→n −i}
centered on p − c−→n i, and the half-space is either given by
Ai′y ≤ βi′ or −Ai′y < −βi′ , whichever contains pp′. Note
that if the ith half-space is given by ±Aiy ≤ ±βi, then the i′th

half-space is given by ∓Ai′y < ∓βi′ . We call this half-space
{Aiy < bi}.

Then, the bounding boxes are defined as Oc(p, p
′) = {y ∈

Rd|Ay < b}. An example of a bounding box can be seen in
Figure 3. Note that each Aiy = bi, Ai′y = bi′ are parallel, and
any Aiy = bi and Ajy = bj , j ∈ {−i}, j ̸= i′ are orthogonal
to each other.

Proposition 5. For any c > 0, p, p′ ∈ Rd, q, q′ ∈ Rd we note
the following:

1) if Aiq ≥ bi for some i ∈ [0, d− 1], then Ai′q < bi′
2) ∃q ∈ Rd such that for some i, j ∈ [0, d − 1] and j ̸= i′,

Aiq ≥ bi and Ajq ≥ bj .



3) if Aiq ≥ bi and Aiq
′ ≥ bi for some i ∈ [0, d − 1], then

qq′ ∩ Oc = ∅
4) there exists qq′ such that qq′ ∩ Oc = ∅ that does not

satisfy (2).
5) for any qq′ described in (3), there exists q′′ ∈ Rd such

that qq′′ and q′′q′ satisfy (2).

Note that these propositions still hold true if i and i′ are
switched.

Proof:
Proposition 5.1: Consider the half-spaces defined by

Aiy < bi and Ai′y < bi′ . We know from the construction
of the half-spaces that pp′ ⊂ {Aiy < bi} ∩ {Ai′y < bi′}.
This means that {Aiy ≥ bi} ⊂ {Ai′y < bi′}. Therefore, if
Aiq ≥ bi, then Ai′q < bi′ .

Proposition 5.2: Consider two half-spaces defined by
Aiy < bi and Ajy < bj . Since {Aiy = bi} and {Ajy = bj}
are orthogonal to each other, {Aiy ≥ bi} ∩ {Ajy ≥ bj} ̸= ∅.
Therefore, there exists q ∈ {Aiy ≥ bi}∩{Ajy ≥ bj}, and the
proposition holds.

Proposition 5.3: Consider some q, q′ such that Aiq ≥ bi
and Aiq

′ ≥ bi. Then, it is easy to see that qq′ ∩ Oc = ∅.
Propositions 5.4 and 5.5: Consider some q ∈ Rd and

i ∈ [0, d−1] such that Aiq ≥ bi, q′′ ∈ Rd and j ̸= i such that
Aiq

′′ ≥ bi and Ajq
′′ ≥ bj , and q′ ∈ Rd such that Ajq

′′ ≥ bj .
Then, by Proposition 5.2, we can see that qq′′ ∩Oc = ∅ and
q′′q′∩Oc = ∅. If q′′ ∈ qq′, then we can see that qq′∩bboxc =
∅, and thus, Propositions 5.4 and 5.5 hold.

Since Oc is an over-approximation of Bc(pp′), we note there
is a modification on the smallest δ that can be achieved in
Lemma 1. This modification is given in Lemma 3.

Lemma 3. For any p, p′ ∈ Rd, bounding box Oc(p, p
′) ⊂ Rd,

and action zi ∈ Zi such that Bc(pp′) ∩ zi(s) = ∅ for all
s ∈ [0, 1], and δ > c(

√
d − 1), there exists m ∈ N and

Q = {q0, . . . , qm} such that ∥Wp2C(Q)(s)− zi(s)∥ ≤ δ.

The proof follows from the fact that for any point q ∈ Rd

that lies on the boundary of Bc(pp′), there exists a point q′

on the corresponding bounding box Oc such that ∥q′ − q∥ ≤
c(
√
d− 1).

C. Linear formulation for approximating RBR

In Line 5 of Algorithm 2, given the current guess {Pi}N , a
candidate sequence of waypoints Q for agent j is computed.
In this section, we present a mixed integer linear program
(MILP), that minimizes Jcol

j (Wp2C(Pj), {Wp2C(Pi}−j) via
the encoded constraints.

Recall the collision constraint in (7). In the case of
our PWL curves, this can be rewritten as in (8) for any
waypoint sequences {Pj}N . Given an agent j ∈ N ,
Jcol
j (Wp2C(Pj), {Wp2C(Pi)}−j)

∀i ∈ {−j}, Bc(Wp2C(Pi)) ∩ Wp2C(Pj) = ∅ (8)

Now we will walk through the steps of computing zj for
linUpdate({Pi}−j , J

per
j (·), c) in Line 5 of Algorithm 2.

First, we check that individual segments

Consider the waypoints p, p′, q, q′ ∈ Rd. Given a constant
c > 0, the segments pp′ and qq′ are at least c away from each
other if Bc(pp′)∩qq′ = ∅. However, the formulation to check
this is not linear. Thus, we use the minimum bounding boxes
Oc(p, p

′) = {y ∈ Rd|Ay < b} introduced in Section III-B to
check for collisions.

The variable α is an array of binary variables that determine
if q, q′ lie outside the same face of Oc(p, p

′). The Λ >> 0 is
used to encode disjunctions.

SafeSegment(p, p′, c) =∧
r∈{0,0′,...,d−1,d−1′}

(
br −Arq < Λ(1− αr)

∧ br −Arq
′ < Λ(1− αr)

)
∧

∑
r∈{0,0′,...,d−1,d−1′}

αr ≥ 1

(9)

By writing the collision constraints in this way, we can
see that the resulting formulation is linear and contains no
disjunctions.

Lemma 4. Given c > 0 and p, p′ ∈ Rd, for any q, q′ |=
SafeSegment(p, p′, c)

Bc(pp′) ∩ qq′ = ∅

Proof: From Proposition 5.1, we know that if q, q′ lie
outside the same half-space of Oc(p, p

′), then qq′∩Oc(p, p
′) =

∅, and since Bc(pp′) ⊂ Oc, this also means Bc(pp′)∩qq′ = ∅.
Thus, in this proof, we will show that q, q′ lie outside the same
half-space of Oc(p, p

′).
Choose some p ∈ Rds such that Arq ≥ br for some r ∈
{0, 0′, . . . , (d − 1), (d − 1)′}. Then, br − Arq ≤ 0, and αr ∈
{0, 1}. Now choose q′ ∈ Rd. If Arq

′ ≥ br, then br−Arq
′ ≤ 0,

and αr = 1. However, if Arq
′ < br, then br −Arq

′ > 0, and
αr = 0. By the third constraint,

∑
r∈{0,0′,...,(d−1),(d−1)′} αr ≥

1, meaning if q, q′ |= SafeSegment(p, p′, c), then at least
one αr = 1, and therefore Arq

′ ≥ br and Arq ≥ br. Thus,
Bc(pp′) ∩ qq′ = ∅.

Now we check that a sequence of waypoints Q is at least c
away from another sequence of waypoints P . For any sequence
of m + 1 waypoints P = {p0, . . . , pm} and any sequence of
n + 1 waypoints Q = {q0, . . . , qn}, we check that Wp2C(Q)
is at least c away from Wp2C(P ). Here, we use the fact that
if qi−1, qi |=

∧m
j=1 SafeSegment(pj−1, pj , c) for every i =

1, . . . , n, then we say that Q |= SafeSequence(P, c), which
is shown in (10).

SafeSequence(P, c) =
n∧

i=1

(qi−1, qi) |=
m∧
j=1

SafeSegment(pj−1, pj , c) (10)



Corollary 1. For any c > 0, any sequence of m+1 waypoints
P , and any sequence of n + 1 waypoints Q, if for all i =
1, . . . , n

Q |= SafeSequence(P, c)

then
Bc(Wp2C(P )) ∩ Wp2C(Q) = ∅

Proof: By Lemma 4, we know that if (qi−1, qi) |=
SafeSegment(pj−1, pj), then Bc(pj−1pj) ∩ qi−1qi = ∅.
Thus, if (qi−1, qi) |=

∧m
j=1 SafeSegment(pj−1, pj), then⋃

i∈{0,...,m−1}

Bc(pipi+1) ∩ qjqj+1 = ∅

Furthermore, if this is true for every i = 1, . . . ,m, then

⋃
i∈{0,...,m−1}

Bc(pipi+1) ∩
⋃

j∈{0,...,n−1}

qjqj+1 = ∅

Due to the construction of Wp2C(·), we can see this is
equivalent to

Bc(Wp2C(P )) ∩ Wp2C(Q) = ∅

The MILP formulation to find the sequence of
waypoints {Q} that minimizes some cost function
Jcol
i (Wp2C(Q)), {Wp2C(Pi)}−i) is given in (11).

linUpdate({Pj}−i, J
per
i (·), c) =

argmin
Q

Jper
i (Wp2C(Q), {Wp2C(Pj)}−i)

Q |=
∧

j∈{−i}

SafeSequence(Pj , c) (11)

Corollary 2. For any c > 0, any {Pj}−j , and any Q |=∧
j∈{−i} SafeSequence(Pj , c),

Bc(Wp2C(Pj)) ∩ Wp2C(Q) = ∅

for every j ∈ {−i}.

Proof: Consider some sequence of m+1 waypoints Q that
satisfies our constraints in linUpdate({Pj}−i, J

per
i (·), c).

By Corollary 1, if SafeSequence(Pj , c) is satisfied for
every j = {−i}, then it is easy to see that

∀j ∈ {−i}, Bc(Wp2C(Pj)) ∩ Wp2C(Q) = ∅

Thus, we can see that any Q returned by linUpdate(·)
minimizes Jcol

i (·). Note that the Q found using linUpdate is
not necessarily the Q that minimizes Ji(·) while satisfying (8)
(due to our linear approximation). However, combining all
parts above, we can find a bound on the ε error in L-IBR.
This is shown in Theorem 1.

Theorem 1. For some agent i ∈ N with personal cost function
Jper
i (zi, {zj}−i), which is Lipschitz continuous with respect to

the first argument with Lipschitz constant K, some {Pj}−i,
and som constant c > 0 such that for any ε > Kc(

√
d − 1)

there exists m ∈ N and Q = {q0, . . . , Qmi
} found using

linUpdate({Pj}−i, J
per
i (·), c) such that

Jper
i (Wp2C(Q), {Wp2C(Pj}−i) ≤

Jper
i (z∗i , {Wp2C(Pj)}−i) + ε

where z∗i is the best response of agent i to {Wp2C(Pj)}−i.

Proof: Fix some c > 0 and {Pj}−i. Then, from Lemma 3,
we know that in our MILP formulation, the smallest error
between any Pi and zi is c(

√
d− 1). From Lemma 2, we can

then see that for this Q, ∥Jper
i (Wp2C(Q), {Wp2C(Pj}−i) −

Jper
i (Wp2C(Q∗), {Wp2C(Pj}−i)∥ ≤ Kc(

√
d− 1)

Thus, we can see that as the number of segments to
approximate the agent trajectories increases, the algorithm
returns a joint action closer to the NE. In Section IV, we
will see this tradeoff.

IV. EXPERIMENTAL RESULTS

Implementation details: We implement L-IBR using
Python 3 and Gurobi. We run the intersection examples seen
in Figure 1. The collision cost function remains the same as
in (1). In these experiments, we vary the number of agents
and the number of segments in the PWL trajectories. Each
individual agents cost function is the distance traveled. The
results of the experiments are seen in Table I. Each agent’s
individual cost function is the distance traveled. Some example
results can be seen in Figure 4

Fig. 4. Example results from the examples. Note that across the varying
number of segments used to approximate the PWL paths, the actual paths
taken by the agents remains the same.

In Table I, we compare the computational time, and the sum
of all the agents’ individual costs. Here, we can see that the
time to compute the linear NE increases with the number of
agents in the scenario and the number of segments used to
approximate the trajectories. Additionally, the total cost of the
agents individual cost functions decreases as the number of



Scenario Num agents Num segments Total cost Comp time (s)
Ped, 2 Car 3 20 2.268 1.277
Ped, 2 Car 3 10 4.584 0.578
Ped, 2 Car 3 6 7.684 0.427
Ped, 5 car 6 30 3.395 65.16
Ped, 5 car 6 15 6.730 3.567
Ped, 5 car 6 7 14.981 7.168

TABLE I
RESULTS OF L-IBR FOR AN INTERSECTION SCENARIO.

segments to approximate the trajectories increases, which is
in line with our main result from Theorem 1. Thus, we can
see that there is a tradeoff between the computation time, and
how closely we can achieve the true NE. Note that in the ped,
5 car scenario with 15 segments, the computation time is lower
than the scenario with 7 segments. This is due to the number
of iterations run to find the linear NE.

V. CONCLUSION

In this work, we presented a formulation for a lexicographic
general sum game. This game is shown to be a potential
game, and thus possesses a pure strategy Nash equilibrium.
We then presented an iterative best response algorithm that
linearized the constraints to find actions that minimized the
first part of the lexicographic cost function, thus making it
simpler to find actions that would also minimize the second
part of the lexicographic cost function. Finally, we presented
some experiments and showed that our prototype tool could
find solutions to our game.

In the future, we can study how to relax the type of collision
costs we are minimizing for to explore a larger variety of
games. Additionally, we can use this problem set up to study
the types equilibria we get by solving a long single shot
game versus solving a sequence of shorter multi-stage games.
Finally, we can explore equilibria selection to help with the
design of cost functions.

REFERENCES

[1] A. M. Ayala, S. B. Andersson, and C. Belta. Temporal logic motion
planning in unknown environments. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5279–5284. IEEE,
2013.

[2] A. Bajcsy, S. L. Herbert, D. Fridovich-Keil, J. F. Fisac, S. Deglurkar,
A. D. Dragan, and C. J. Tomlin. A scalable framework for real-time
multi-robot, multi-human collision avoidance. In 2019 international
conference on robotics and automation (ICRA), pages 936–943. IEEE,
2019.

[3] A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based
on linear programming - The explicit solution. IEEE TAC, 47(12):1974–
1985, 2002.

[4] B. Berckmoes. An arzel\a-ascoli theorem for the hausdorff measure of
noncompactness. arXiv preprint arXiv:1303.2368, 2013.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45(2):343–352,
2009.

[6] C. Fan, K. Miller, and S. Mitra. Fast and guaranteed safe controller
synthesis for nonlinear vehicle models. In CAV, pages 629–652.
Springer, 2020.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for
agile autonomous vehicles. Journal of guidance, control, and dynamics,
25(1):116–129, 2002.

[8] D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J. Tomlin.
Efficient iterative linear-quadratic approximations for nonlinear multi-
player general-sum differential games. In 2020 IEEE international
conference on robotics and automation (ICRA), pages 1475–1481. IEEE,
2020.

[9] D. Fudenberg and J. Tirole. Game theory. MIT press, 1991.
[10] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin.

Fastrack: A modular framework for fast and guaranteed safe motion
planning. In CDC, pages 1517–1522. IEEE, 2017.

[11] J. P. Hespanha. Noncooperative Game Theory. Princeton University
Press, 2017.

[12] R. Isaacs. Differential games: a mathematical theory with applications
to warfare and pursuit, control and optimization. Courier Corporation,
1999.

[13] D. K. Jha, M. Zhu, and A. Ray. Game theoretic controller synthesis
for multi-robot motion planning-part ii: Policy-based algorithms. IFAC-
PapersOnLine, 48(22):168–173, 2015.

[14] F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin. The computation
of approximate generalized feedback nash equilibria. arXiv preprint
arXiv:2101.02900, 2021.

[15] S. M. LaValle. A game-theoretic framework for robot motion planning.
PhD thesis, University of Illinois at Urbana-Champaign, 1995.

[16] A. Majumdar and R. Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics
Research, 36(8):947–982, 2017.

[17] D. Q. Mayne. Model predictive control: Recent developments and future
promise. In Automatica, volume 50, pages 2967–2986. Pergamon, 2014.

[18] K. Miller, C. Fan, and S. Mitra. Planning in dynamic and partially
unknown environments. IFAC-PapersOnLine, 54(5):169–174, 2021.

[19] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–
295, 1951.

[20] N. D. Stein, A. Ozdaglar, and P. A. Parrilo. Separable and low-rank
continuous games. International Journal of Game Theory, 37(4):475–
504, 2008.

[21] D. Sun, J. Chen, S. Mitra, and C. Fan. Multi-agent motion planning from
signal temporal logic specifications. arXiv preprint arXiv:2201.05247,
2022.

[22] J. Van Den Berg, D. Ferguson, and J. Kuffner. Anytime path planning
and replanning in dynamic environments. In Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA
2006., pages 2366–2371. IEEE, 2006.

[23] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall, M. Johnson-
Roberson, and R. Vasudevan. Towards provably not-at-fault control of
autonomous robots in arbitrary dynamic environments. arXiv preprint
arXiv:1902.02851, 2019.

[24] M. Vitus, V. Pradeep, G. Hoffmann, S. Waslander, and C. Tomlin.
Tunnel-milp: Path planning with sequential convex polytopes. In AIAA
Guidance, Navigation and Control Conference and Exhibit, page 7132,
2008.

[25] A. Zanardi, S. Bolognani, A. Censi, and E. Frazzoli. Game theoretical
motion planning: Tutorial icra 2021. 2021.

[26] A. Zanardi, E. Mion, M. Bruschetta, S. Bolognani, A. Censi, and
E. Frazzoli. Urban driving games with lexicographic preferences and
socially efficient nash equilibria. IEEE Robotics and Automation Letters,
6(3):4978–4985, 2021.

[27] M. N. Zeilinger, C. N. Jones, and M. Morari. Real-time suboptimal
model predictive control using a combination of explicit MPC and online
optimization. IEEE TAC, 56(7):1524–1534, 2011.

[28] M. Zhu, M. Otte, P. Chaudhari, and E. Frazzoli. Game theoretic
controller synthesis for multi-robot motion planning part i: Trajectory
based algorithms. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1646–1651. IEEE, 2014.

[29] M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for rapid
replanning in dynamic environments. In Proceedings 2007 IEEE
International Conference on Robotics and Automation, pages 1603–
1609. IEEE, 2007.


	Introduction
	Lexicographic games and Nash Equilibria
	Lexicographic general sum games
	Best responses and Nash equilibria
	Iterated Best Response for Computing NE
	Lexicographic and potential games

	Linear IBR Algorithm
	Constructing piecewise linear actions from waypoints
	Constructing bounding boxes to avoid collisions
	Linear formulation for approximating RBR

	Experimental results
	Conclusion

