
88	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

ALGORITHMS

Symmetry for Boosting
Algorithmic Proofs
of Cyberphysical
Systems
Sayan Mitra and Hussein Sibai, University of Illinois at Urbana-Champaign

Recent algorithms show how the availability

of structural knowledge, such as symmetries,

can significantly improve autonomous system

verification in terms of both running time and

sample complexity.

Verification is used both for constructing math-
ematical proofs as an assurance for quality and
for bug hunting. Light- and heavyweight ver-
ification algorithms run every day on billions

of lines of code at Google, Ama-
zon, Facebook, and other software
firms.1–3 They ensure code-level the
safety and security properties of mo-
bile applications, Internet of Things
operating systems, bootloaders, and
device drivers. In cyberphysical sys-
tems (CPSs), like delivery robots and
autonomous cars, the requirements
to be verified are related to safe-
ty-critical system-level aspects like
stability, robustness, and timeliness.

In the past decade, a number of
software tools, like Flow*,4 SpaceEx,5
DryVR,6 HyLAA,7 and C2E2,8 have
been developed, and they have been
successfully applied to verify realis-
tic CPSs. On the one hand, algorith-

mic verification holds the promise of slashing develop-
ment, testing, and certification costs. On the other hand,
the scalability and usability of these approaches remain a
challenge. In this article, we discuss how recent advances
make it possible to exploit meta knowledge about models,
such as symmetries, to improve the performance of CPS
verification algorithms.

Digital Object Identifier 10.1109/MC.2022.3190954
Date of current version: 26 September 2022

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

http://orcid.org/0000-0001-7082-5516

	 O C T O B E R 2 0 2 2 � 89

EDITOR DORON DRUSINSKY
Naval Postgraduate School; ddrusins@nps.edu

Verification algorithms for CPSs
work on mathematical models like hy-
brid automata—an expressive formal-
ism that combines discrete transitions
for describing programs and continu-
ous flows for describing the evolution
of physical quantities.9 An example of
a simple hybrid automaton is provided
in the “Symmetry Abstraction and
Refinement” section. The hybrid au-
tomaton model of an autonomous car,
for instance, would consist of a program
for computing the control decisions for
steering, throttle, and brake as well as
ordinary differential equations (ODEs)
for describing how the vehicle moves
in space according to the laws of phys-
ics, the vehicle characteristics, and the
computed control decisions. The build-
ing block algorithm for the verification
of hybrid automata is based on what
is called reachability analysis. Before
discussing how symmetry improves
reachability algorithms for hybrid sys-
tems, we introduce the key metrics for
these algorithms, namely, the running
time and sample efficiency.

For the autonomous vehicle model,
a simulation, or a test, produces a sin-
gle behavior of the vehicle over time
as its program drives through an
environment—say, a road intersection
or in a crowded urban space. A test is a
record of the state of the system at dif-
ferent time points as it negotiates the
merge; the state here includes both
the values of the program or software
variables as well as the physical vari-
ables, like the car’s own position, ve-
locity, and acceleration, and those of
other actors in the environment, like
pedestrians and vehicles. Running
tests can help find design bugs but
cannot show their absence: a model,
like the autonomous car, has an un-
countably infinite set of behaviors
arising from different initial condi-
tions; different environments; and,
possibly, the innate nondeterminism
in the controller program; therefore,

no finite set of tests can cover all of
these behaviors.

Reachability analysis, in contrast
to testing, computes all behaviors of
the model. Consider a quadrotor with
a planned path to take off and follow
a sequence of waypoints. When the
quadrotor actually takes off and fol-
lows this path, many different trajecto-
ries may arise because of sensor errors
and wind disturbances. As in Figure 1,
reachability analysis computes a set,
called the reachset, that contains all of
these paths. From the reachset, we can
then check for safety violations, like
collision with obstacles.

One common use case for verifica-
tion is offline or design-time analysis.
Reachsets are used to generate safety
or quality assurance certificates; found
design bugs are analyzed by develop-
ers to improve the code or the design,
amend the requirements, and discover
new operating assumptions necessary
for claiming product safety. The speed
of the analysis is important. Reports
from the software industry suggest that
it has to finish in about 15 min for de-
velopers to react to the suggested bugs
without being burdened by big con-
text switches.3 A second use case is in

runtime verification. The onboard com-
puter of the quadrotor could compute
the reachset forward in time to check
for potential collisions. For typical con-
trol loops, this analysis has to finish in
10–100 ms for the results to be relevant.
In either use case, the running time for
the analysis is a key metric for usability.

REACHABILITY AND SAFETY
FROM SIMULATIONS AND
SENSITIVITY
Reachability analysis for hybrid autom-
ata has been known to be computation-
ally intractable since the early 1990s.
The discovery of new data structures,
like support functions5 and general-
ized star sets,7 have enabled the design
of practical algorithms that compute
approximate reachsets for restricted
types of models.9 These algorithms
rely on the availability of analytical
solutions of the linear differential
equations, which are restrictive when
targeting commonly used nonlinear
models or systems where a complete
model is unavailable.

The next generation of algorithms
relied on numerical simulations and
sensitivity analysis.6,10 Consider an
ODE ẋ = f(x) describing the behavior

FIGURE 1. A reachability analysis for a quadrotor’s planned path from a set of initial
conditions shows possible unsafe intersections.

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

90	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

of a vehicle. A solution or a behavior
of this system is a function of time
ξ (t) with the initial state ξ (0). Given
the initial state, the solution can be
computed using numerical integra-
tion. This is done using the Simulate()
function in Algorithm 1.

Suppose we can also somehow
compute the sensitivity of ξ (t). That
is, for a given δ ̇ > 0 perturbation to
the initial state, for any solution ξ′ that
starts nearby, that is, | ξ (0) − ξ′ (0) | ≤ δ,
we have an upper bound | ξ (t) − ξ′ (t) | ≤ β (t).
Then, by bloating ξ (t) by the factor β (t),
we can compute a set that contains
all behaviors that start from the ball
centered at ξ (0) with radius δ. This set
is going to contain the reachset of the
system from the ball of radius δ.

By repeatedly performing this sim-
ulation and bloating operation over
a number of such δ balls covering all
of the initial states of interest, we can
perform a reachability analysis us-
ing a finite number of simulations. It
can also be shown that by shrinking
δ—that is, the size of the balls cov-
ering the initial set—the computed
reachset can be made arbitrarily pre-
cise at the expense of requiring more
simulations.

Algorithm 1 uses this simulation
plus bloating strategy for safety ver-
ification. Given a set of initial states
K, a time horizon T, a set of Unsafe
states, and the sensitivity β, it decides
whether any solution from K hits the
Unsafe set or not. It maintains a list of
balls, coverlist, which is initialized
as a cover of K with balls of radius δ. In

the while loop, each ball (x, δ) in cov-
erlist is analyzed with three possible
outcomes: either

1.	 the reachset from the (x, δ)
ball—computed by bloating
the simulation from x by β—is
disjoint from the Unsafe set and
is removed from coverlist, or

2.	 a part of the simulation is
contained in Unsafe, and the
algorithm returns “Unsafe.”

If neither holds, then

3.	 the (x, δ) ball is replaced with
a finer cover of δ/2 balls in
coverlist.

This refinement of the cover ensures
that a more precise reachset from the
(x, δ)-ball will be computed in future it-
erations. The algorithm returns “Safe”
only when the reachsets from all of the
balls in coverlist are disjoint from the
Unsafe set.

A key subroutine in Algorithm 1 is
the computation of the sensitivity β. It
is well known that, if the function f in
the ODE is continuous with the Lipschitz
constant L, then β (t) : = δeLt serves as a
sensitivity function.9,10 However, this
function blows up with time, and, there-
fore, δ has to be made very small for a
useful analysis, which, in turn, requires
many simulations. In previous work,11,12
it was shown that the notion of matrix
measures of f can be used to compute
much more precise sensitivity functions
from general nonlinear models.

CYBERPHYSICAL
SYMMETRIES FOR BOOSTING
REACHABILITY
For models of vehicles and robots, of-
ten, we have additional knowledge
about their symmetries. For example,
we might know that the trajectory of
a car making a left turn is just a re-
flection of its trajectory for a right
turn. Could the knowledge of such
symmetries be exploited to develop
verification algorithms that use fewer
samples and run faster? In the rest of
this article, we discuss the ideas pre-
sented by Sibai et al.13–15 that exploit
model symmetries to make verifica-
tion faster.

Formally, a symmetry for an ODE
model ẋ = f (x) is a function g ( · ) that
transforms one state of the system to
another, and this function commutes
f ( · ). The commutation property im-
plies that a behavior of the system ξ′ (t)
starting from a transformed state x′0 =
g (x0) is identical to the transformed be-
havior ξ (t) from x0. This is, g(ξ (t)) = ξ′ (t),
as shown in Figure 2.

Common symmetries include trans-
lations, rotations, and reflections. For
physics models of vehicles, commuta-
tivity with respect to these symmetries
holds because the vehicle models do
not depend on the actual global posi-
tion and orientation, but only on the
relative positions. The car runs the
same way at the 100th mile as it did at
the 50th mile (ignoring fuel depletion
and depreciation). For CPS testing, this
means that a test run from the 50th to
52nd mile can be translated in position

ALGORITHM 1: BASIC SIMULATION-DRIVEN SAFETY VERIFICATION
Input: K,T,Unsafe,β
coverlist = Cover(K,δ)
While coverstack != empty

For each (x,δ) in coverlist
  ξ = Simulate(x,T)
  If Bloat(ξ,δ, β) ∩ Unsafe = empty
   coverlist = coverlist - (x,δ)
  ElseIf ∃ξ(t) ∈ Unsafe Return “Unsafe”
  Else coverlist := coverlist - (x,δ) + Cover(B(x,δ),δ/2)
Return “Safe”

ξ (t) ξ ′ (t) = g(ξ (t))

x0
x ′ = g(x0)0

FIGURE 2. The symmetry allows trajec-
tories starting from g(x0) to be obtained
by transforming the trajectory from x0.

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 2 2 � 91

to create another test run from the
100th to 102nd mile—for free. We do
not really need to run the second test
or do the simulation; we can simply
apply the transformation g() to the
first test, which, in this case, is a trans-
lation of 50 mi, to create the new test.

All translations are not valid sym-
metries. The behavior of a vehicle
speeding up from 60 to 80 mi/h will
not simply be the shifted version of
the run from 40 to 60 mi/h in the ve-
locity coordinates. Similarly, behav-
iors of drones cannot be freely trans-
lated along the z-axis because the
action of gravity breaks symmetry.

As the state in a CPS includes both
computational and physical compo-
nents, the types of symmetries can also
go well beyond the common geometric
symmetries. For example, consider an
autonomous vehicle about to make a left
turn. The controller software state in-
cludes a target waypoint for the vehicle
to reach after the left turn (see Figure 2).
Consider a state transformation that
maps the left waypoint to the right way-
point and reflects the position of the ve-
hicle from left across to the right. This
state transformation is a symmetry of
the waypoint-tracking control system.
More generally, most waypoint-track-
ing controllers enjoy these types of
translation, rotation, and reflection
symmetries that combine the software
and the physical state of the system.

Another symmetry that makes
sense in multiagent CPSs is the no-
tion of permutation symmetry. When
analyzing an ego vehicle interacting
with a collection of other vehicles, the
identities of the other vehicles may not
matter from the point of view of the
ego vehicle. In such situations, consid-
ering one possible type or initial condi-
tion for each of the other vehicles may
be adequate instead of considering all
possible permutations of choices.

APPLICATION OF SYMMETRY
IN VERIFICATION: CACHING
Just like a single new behavior can
be obtained by transforming a pre-
viously computed behavior, a set of

behaviors from a set of states g (S) can
be computed by transforming the pre-
viously computed behaviors from S.
This idea can be incorporated in Algo-
rithm 1 by caching the reachsets com-
puted from different initial covers. For
any subsequent reachability analysis
from a new (x, δ) in coverlist, first, we
whether the reachset from (x, δ) or any
of its transforms has been cached. If
so, it avoids the expensive reachabil-
ity analysis by pulling out the cached
value and transforming it appropri-
ately. Otherwise, the algorithm pro-
ceeds to compute the reachset (x, δ)
from scratch and cache the result.

Sibai et al.13 show how a tree-
like cache storing multiprecision
reachsets can, indeed, speed up verifi-
cation. The cache tree can be used as a
“library” on top of existing reachabil-
ity tools like Flow*,4 SpaeEx,5 DryVR,6
HyLAA,7 and C2E2.8 We experimented
with DryVR and tested the idea on sev-
eral low-dimensional ODE models: the
Lorenz attractor, a simple oscillator,
and a system consisting of two 5D car
models. These systems possess dif-
ferent symmetries, including scaling,
reflection, translation, and permu-
tation. With a single symmetry, the
cache read and write overhead often
dominates the savings in reachability.
However, when multiple symmetries
are used, such as translation invari-
ance in the two-car system, symmetry
caching sped up the reachability anal-
ysis by up to two orders of magnitude,
and it computed up to four orders of
magnitude fewer reachsets.

In hybrid models with multiple ve-
hicles, for all of the software states,
or modes, that can be mapped to
each other using symmetries, their
reachsets are cached together. This
allows the verification algorithm to
utilize computed reachsets across dif-
ferent modes. This increases the cache
hit rate and the computational sav-
ings. Given the symmetries in the dy-
namics, the paths of the vehicles, and
the obstacles, reachability with sym-
metry caching can check whether ve-
hicles collide. Overall, this approach

achieved a 64% speedup in the safety
verification time of a fleet of fixed-
wing aircraft using translation, ro-
tation, and permutation symmetries
and computed 26% fewer reachsets.14

SYMMETRY ABSTRACTION
AND REFINEMENT
Symmetry can also be used to simplify
or abstract hybrid models before reach-
ability analysis is performed. Consider
a set G of symmetry transformations of
an ODE model and a set of unsafe states
U. A verification algorithm can select,
from each set of symmetric initial
states, one representative, resulting in
a smaller new set of representative ini-
tial states. Think of this as a coordinate
transformation for states. The reach-
ability analysis from this new smaller
initial set in the new coordinates would
be faster. The verification algorithm can
then transform the computed reachset
to get a reachset in the original coordi-
nates and check safety with respect to U.

Another alternative is for the ver-
ification algorithm to transform the
unsafe set U to the new coordinates
and check the safety of the computed
reachset in the new coordinates. The
new set U′ would be the union of the
different transformations of U using
all of the symmetries in G. Concretely,
the set U′ would represent the relative
positions of U to the symmetric states
in the original initial set that are rep-
resented by a single state in the new
initial set. This approach saves the
cache access and storage overhead
of the approach described earlier.15
The first approach implemented us-
ing the DryVR tool achieved an order
of magnitude further speedup and
computed two orders of magnitude
fewer reachsets, compared to sym-
metry caching, in several verification
scenarios involving cars cruising and
braking on a single-lane road.

Abstractions of hybrid automata
can be created similarly from a set
of symmetries. The software states
or modes that are symmetric to each
other are represented by a single rep-
resentative mode in the abstraction.

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

92	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

ALGORITHMS

A side effect of this symmetry abstrac-
tion is that the guards and resets for
a discrete transition of the abstract
automaton would be the union of the
symmetry-transformed guards and
resets of the concrete automaton.

Consider the toy scenario in Fig-
ure 3(b), representing a car with sim-
ple dynamics traversing two possible
paths, both from the bottom left (the
beginning of segment s0). The uncer-
tainty in the initial position of the car
is shown by the green box. As the car
traverses the segments, the reachable
states are shown in green. The corre-
sponding hybrid automaton is shown
in Figure 3(a). Each software state
or the mode of the automaton corre-
sponds to the segment of the path be-
ing followed. Discrete transitions rep-
resent the car switching from one path
segment to another. The switch occurs
when the car reaches a region around
the endpoints of the segments.

The symmetry abstraction utilizing
translation and rotation symmetries of
the car is shown in Figure 3(c). Segments
s1–s5 have the same length, while s0 is
shorter. With the right choice of trans-
lation vector and rotation angle for each
segment, segments s1–s5 can be mapped

to the same segment, while that of s0
would not. Hence, the abstraction has
two modes: sv

0, representing s0, and sv
1,

representing s1–s5. In the abstract au-
tomaton, the car starts from an initial set
of states around the starting waypoint of
segment sv

0 and follows the x-axis toward
the origin. Once the car reaches a region
around the origin, its state would be re-
set nondeterministically to somewhere
near the starting waypoint of sv

1. Then the
car would again follow the x-axis toward
the origin, and so on. Since the abstrac-
tion is smaller, its reachability analysis
is faster.

T here are t wo a lternatives for
checking the safety of the abstract hy-
brid automaton. The first transforms
the reachset of the abstract automaton
to overapproximate the reachset of the
concrete one and then checks the safety
[Figure 3(e)]. The second maps the un-
safe set to the abstract state space and
checks the safety there [Figure 3(d)].
The five gray rectangles in Figure 3(d)
represent the relative positions of the
gray unsafe set in the original sce-
nario with respect to each of the five
segments represented by sv

1. The green
rectangle represents the relative po-
sition of the unsafe set with respect to

s0. The conservativeness of the abstrac-
tion may make the abstract automaton
unsafe even when the actual system is
safe. This can be seen by comparing the
reachsets in Figure 3(b) and (e).

The conservativeness of symme-
try abstractions can be controlled by
refining the abstract automaton.15 If
the reachset of a mode intersects the
unsafe set, the refinement algorithm
splits the mode into two abstract modes
and corresponding unsafe sets. In our
toy example, the violet mode, sv

1, gets
split into the modes sv

1 and sv
2 in the

refined abstraction in Figure 3(f). The
refined automaton would be a more
accurate abstraction of the concrete
automaton. As seen in Figure 3(h), the
overapproximation error in Figure 3(e)
is eliminated by the refinement. In the
worst case, the abstraction is refined
back to the original automaton.

We implemented this abstraction-re-
finement algorithm in a new tool called
SceneChecker15 to assess the safety of
motion plans in cluttered environ-
ments. The scenarios are specified in
JavaScript Object Notation files, and
the vehicle dynamics and their symme-
tries are written as Python functions.
SceneChecker constructs the concrete

s0

s1

s2 s4

s3 s5

sv0

sv1 sv0

Ov
1

Ov
0 Ov

0 Ov
1

Ov
2[s0]

sv0

[s0]

sv1

[s1, s2]

sv2

[s3, s4, s5]

sv1

[s1, . . ., s5]

y

s3

s2

s0

s1
s4

s5

x

y

y

x

x

y

y

sv2 sv1, sv0

x

x

(a)

(b)

(d)(c)

(f)

(g)

(h)(e)

FIGURE 3. An abstraction refinement using symmetries. (a) Hybrid automaton model of a vehicle traversing two paths shown in
(b). (b) The five mode transitions for five path segments. (c) Symmetry abstraction of the automaton. (d) Mapping of unsafe set to
abstract state space. (e) Reachable states of (d) with spurious unsafety. (f) Refinement of symmetry abstraction. (g) Reachable states
of (g) with no spurious unsafety.

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

	 O C T O B E R 2 0 2 2 � 93

hybrid automaton and then uses the
provided symmetries to construct the
abstraction. It uses DryVR6 and Flow*4
for reachability analysis. SceneChecker
is able to successfully verify scenar-
ios with quadrotors and cars having
neural network controllers executing
plans with hundreds of segments in
environments with hundreds of polyto-
pic obstacles. It achieves a 14× average
speedup in the verification time over
direct verification with DryVR and
Flow*. On average, it computes two or-
ders of magnitude fewer reachsets than
the symmetry caching approach.

These recent advances suggest
that symmetry caching and ab-
stractions can boost the perfor-

mance of CPS verification algorithms
in terms of both their running times
and their sample efficiency. That said,
two research questions must be ad-
dressed before these ideas can be in-
tegrated in online or offline develop-
ment processes. First, before applying
these methods, we need to check, ide-
ally automatically, that a given trans-
formation is, indeed, a valid symme-
try. This can be an easy static analysis
problem in special cases but, in gen-
eral, will require the development of
new algorithmic checks. Second, com-
plex autonomous systems intercon-
nect different modules for perception,
decision making, and control. Would
new types of symmetries emerge by
composing the symmetries of percep-
tion with those of dynamics? Discov-
ering the right symmetries that max-
imally boost verification for artificial
intelligence-powered CPSs will be an
interesting direction for research.

ACKNOWLEDGMENT
This work was supported by a research
grant from the National Science Foun-
dation's Formal Methods in the Field
program (award 1918531).

REFERENCES
1.	 C. Sadowski, E. Aftandilian, A. Eagle, L.

Miller-Cushon, and C. Jaspa, “Lessons

from building static analysis tools at
google,” Commun. ACM, vol. 61, no. 4,
pp. 58–66, 2018, doi: 10.1145/3188720.

2.	 N. Chong et al., “Code-level model
checking in the software develop-
ment workflow,” in Proc. ACM/IEEE
42nd Int. Conf. Softw. Eng. Softw. Eng.
Pract., New York, NY, USA, 2020, pp.
11–20, doi: 10.1145/3377813.3381347.

3.	 P. W. O’Hearn, “Continuous reason-
ing: Scaling the impact of formal
methods,” in Proc. 33rd Annu. ACM/
IEEE Symp. Logic Comput. Sci. (LICS
’18), New York, NY, USA, 2018, pp.
13–25, doi: 10.1145/3209108.3209109.

4.	 X. Chen, E. Ábrahám, and S.
Sankaranarayanan, “Flow*: An
analyzer for non-linear hybrid
systems,” in Proc. Comput. Aided
Verification, 2013, pp. 258–263, doi:
10.1007/978-3-642-39799-8_18.

5.	 G. Frehse et al., “SpaceEx: Scal-
able verification of hybrid sys-
tems,” in Proc. Comput. Aided
Verification, 2011, pp. 379–395, doi:
10.1007/978-3-642-22110-1_30.

6.	 C. Fan, B. Qi, S. Mitra, and M. Viswa-
nathan, “DryVR: Data-driven verifi-
cation and compositional reasoning
for automotive systems,” in Computer
Aided Verification, R. Majumdar and
V. Kunčak, Eds. Cham, Switzerland:
Springer International Publishing,
2017, pp. 441–461.

7.	 S. Bak and P. S. Duggirala, “HyLAA:
A tool for computing simula-
tion-equivalent reachability for
linear systems,” in Proc. 20th
Int. Conf. Hybrid Syst., Comput.
Contr., ACM, 2017, pp. 173–178, doi:
10.1145/3049797.3049808.

8.	 P. S. Duggirala, S. Mitra, and M.
Viswanathan, “Verification of
annotated models from executions,”
in Proc. 2013 Int. Conf. Embedded
Softw. (EMSOFT), ACM, pp. 1–10, doi:
10.1109/EMSOFT.2013.6658604.

9.	 S. Mitra, Verifying Cyber-Physical
Systems: A Path to Safe Autonomy.
Cambridge, MA, USA: MIT Press,
2021.

10.	 A. Donzé and O. Maler, “Systematic
simulation using sensitivity anal-
ysis,” in Proc. Int. Conf. Hybrid Syst.,

Comput. Contr., 2007, pp. 174–189, doi:
10.1007/978-3-540-71493-4_16.

11.	 C. Fan and S. Mitra, “Bounded
verification with on-the-fly dis-
crepancy computation,” in Proc.
2015 Int. Symp. Automat. Technol.
Verification Anal. (ATVA), Shanghai,
China, vol. 9364, pp. 446–463, doi:
10.1007/978-3-319-24953-7_32.

12.	 J. N. Maidens and M. Arcak, “Reach-
ability analysis of nonlinear systems
using matrix measures,” IEEE Trans.
Autom. Control, vol. 60, no. 1, pp.
265–270, 2015, doi: 10.1109/TAC.
2014.2325635.

13.	 H. Sibai, N. Mokhlesi, and S. Mitra,
“Using symmetry transformations
in equivariant dynamical sys-
tems for their safety verification,”
in Proc. 17th Int. Symp. Automat.
Technol. Verification Anal., Spring-
er-Verlag, 2019, pp. 98–114, doi:
10.1007/978-3-030-31784-3_6.

14.	 H. Sibai, N. Mokhlesi, C. Fan, and S.
Mitra, “Multi-agent safety verification
using symmetry transformations,” in
Tools and Algorithms for the Construction
and Analysis of Systems, A. Biere and
D. Parker, Eds. Cham. Switzerland:
Springer International Publishing,
2020, pp. 173–190.

15.	 H. Sibai, Y. Li, and S. Mitra,
“SceneChecker: Boosting scenario
verification using symmetry
abstractions,” in Proc. 2021 33rd Int.
Conf. Comput. Aided Verification,
Springer-Verlag, pp. 580–594, doi:
10.1007/978-3-030-81685-8_28.

SAYAN MITRA is a professor of
electrical and computer engineering
at the University of Illinois at Urbana-
Champaign, Illinois, 61801, USA.
Contact him at mitras@illinois.edu.

HUSSEIN SIBAI received his Ph.D.
from the Department of Electrical
and Computer Engineering of
University of Illinois, Urbana-
Champaign, Illinois, 61801, USA. He
was advised by Prof. Sayan Mitra.
Contact him at sibai2@illinois.edu.

Authorized licensed use limited to: University of Illinois. Downloaded on October 08,2022 at 21:20:01 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/3049797.3049808
http://dx.doi.org/10.1109/TAC.2014.2325635
http://dx.doi.org/10.1109/TAC.2014.2325635

