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Abstract—Deep learning (DL) models are becoming effective
in solving computer-vision tasks such as semantic segmentation,
object tracking, and pose estimation on real-world captured
images. Reliability analysis of autonomous systems that use these
DL models as part of their perception systems have to account
for the performance of these models. Autonomous systems with
traditional sensors have tried-and-tested reliability assessment
processes with modular design, unit tests, system integration,
compositional verification, certification, etc. In contrast, DL per-
ception modules relies on data-driven or learned models. These
models do not capture uncertainty and often lack robustness.
Also, these models are often updated throughout the lifecycle
of the product when new data sets become available. However,
the integration of an updated DL-based perception requires a
reboot and start afresh of the reliability assessment and operation
processes for autonomous systems. In this paper, we discuss
three challenges related to specifying, verifying, and operating
systems that incorporate DL-based perception. We illustrate these
challenges through two concrete and open source examples.

I. INTRODUCTION

The first aircraft autopilot was developed by Sperry Cor-
poration in 1912 [1]. The autopilot connected a gyroscopic
heading sensor and an altitude sensor to hydraulic elevators
and rudder. This enabled the aircraft to fly straight and level
on a compass course without a pilot’s attention, thereby
greatly reducing the pilot’s workload. As newer sensor tech-
nologies became viable, they have been used to create new
capabilities in manned and unmanned flight control systems.
Deep learning (DL) has shown dramatic improvements in a
number of vision-based detection and estimation tasks such
as target and object detection [2], [3], lane detection [4], [5],
distance estimation [6], pose estimation [7], [8], and free-
space estimation. These DL models promise to help create
the next level of autonomy for air vehicles in existing and
new environments [9]. However, this does not come without
associated challenges.

Embedded and autonomous systems with traditional sensors
have tried and tested development processes and support
tools [10]–[12]. Several steps in this process like requirements
analysis, model-based development, unit testing, and system
integration, are not compatible with the design and analysis
processes for DL-based perception subsystems. For instance,
DL models are evaluated against test data sets, and while it
is accepted that these models should be aware of uncertainty
when shown new data [13], they do not come with specifica-

tions that are supposed to be met in real world deployments.
The models also exceed the capabilities of existing formal test-
ing and verification approaches for assessing reliability. And,
these models have to be maintained and improved throughout
the product lifecycle via data collection and domain.

In this paper, we discuss three challenges related to spec-
ifying, verifying, and operating systems that incorporate DL-
based perception. First, we introduce some terminology and
two concrete autonomous systems that use deep learning-based
models for perception. Executable code for experimenting
with these systems is available at https://publish.illinois.edu/
aproximated-abstract-perception/. Then, we discuss the three
challenge problems in specification, analysis, and runtime
assurance.

II. VISION-BASED AUTONOMOUS SYSTEMS

A. Drone Racing

The autonomous drone racing requires participants to de-
velop the software for an autonomous drone that navigates
through a race course using computer vision. A prominent
version of this competition is the AlphaPilot Challenge [14]
hosted by Lockheed Martin and the Game of Drones [15] by
Microsoft. Both competitions define the vision-based control
task as follows. The rough race course layout and gate
positions are provided beforehand, however the autonomous
system has to use a vision-based control strategy to go through
the actual gates, as fast as possible. Here we discuss a drone
racing pipeline as implemented in the AirSim simulator [15].

Fig. 1 shows a simplified version of the autonomous sys-
tem’s pipeline for tracking gates. The details of the subsystems
for planning and control are omitted. The perception subsystem
detects the gate using front camera images and estimates the
relative position and orientation of the drone to the gate.
The tracking controller computes control commands such as
waypoints, velocity, or thrust to fly the drone through the gates.
The perception subsystem includes both the gate detection
and pose estimation. This subsystem could in general involve
both deep learning models and classical functions (e.g., for
projective transforms, scaling, etc.)

In addition to the perception and the control subsystems,
the closed-loop system has the dynamics of the drone and the
camera in a simulated environment. In the actual drone, the
camera produces the image, and in the simulation a model of
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Fig. 1. Sub-systems in the drone racing autonomous system. Control decisions
are made based on the gate pose estimates obtained from a DL-based
perception pipeline.

the camera renders an image as seen by the camera. In either
case, the image depends on many environmental parameters.
These are factors such as lighting, fog, albedo, lens distortions,
etc., that are not controlled by the autonomy software and are
possibly not observable either. The range of environmental
parameter variations that the system is designed to tolerate is
called its operational design domain (ODD) [16]. There may
also be unknown factors that impact the image, and therefore,
the output of the perception subsystem.

B. Swarm Formation

The Swarm formation problem requires a collection of
drones to create a sequence of formations using vision-
based relative positioning. This is an abstracted version of
various distributed coordination tasks such as formation flight,
surveillance, and cooperative maintenance. Flocking and for-
mation control algorithms have been extensively studied [17],
[18]. There are many consensus-based algorithms for swarm
formation control, and detailed characterization of their per-
formance under the assumption that precise relative positions
are available. Since vision-based control cannot provide exact
relative position information, this problem surfaces the need
for understanding the impact of imprecise state (position)
estimates on distributed control.

Fig. 2 shows the system pipeline for each individual drone in
the swarm. The perception subsystem here uses at least a pair
of images—one from the ego drone and another from a neigh-
boring drone. Common pixels (or features) in these images
identified and associated using DL models. The associated
features are then used to estimate the relative position of the
drones by solving a set of linear equations [19]. The formation
controller then computes velocity commands to fly the drone
and achieve the desired formation shape. As in the racing
problem, the closed-loop system involves vehicle dynamics
and camera sensors. In addition to the environmental factors
in the racing problem, the state estimates are also influenced
by the camera mounting angles and focal length distortions.

Scope: Before proceeding, we note the challenge prob-
lems discussed here arise in architectures where DL models are
integrated as sensors or state estimators in a modular pipeline
(as shown in the above figures). Other autonomy architectures,
such as end-to-end pixels-to-torque learning (e.g., as in [20]),
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Fig. 2. Simplified drone formation flight systems with vision.

share some of these challenges, but we are not addressing them
in this paper.

III. CHALLENGE 1: PERCEPTION DATASHEETS

Specifications of the perception subsystem are useful for
communication, testing, modular reasoning, and the design of
downstream components. Abstractly, the perception subsystem
is a state estimator, no different from GPS or a temperature
sensor, and likewise it should be specified in terms of its
accuracy, resolution, update frequency, operating tolerances,
etc. An ML-powered perception subsystem should come with
a data sheet just like ordinary sensors [21].

The accuracy metrics used for DL models vary with tasks.
For example, mean average precision (mAP) is used for
multi-class object detection [2], [3]; mean intersection over
union (mIoU) is used for multi-class semantic segmenta-
tion [22]; root mean squared error (RMSE) is used for depth
estimation [6]; average distance (ADD) is used for object
pose estimation [7], [8] which is the relevant metric for
the perception subsystem racing, which estimates the pose
of the next gate relative to the drone. These metrics are
usually defined in terms of training and test set data, and
do not readily translate to new images seen in the deployed
system. Relatedly, the DL models do not come with guarantees
or recommendations about tolerable environmental parameter
variations. Thus, the challenge in specifying deep-learning
based perception subsystems can be summarized as follows:

Create datasheets for the perception subsystems for
pose estimation including accuracy and expected
domain of operation.
Nature of the challenge and approaches: The perception

subsystem estimates a quantity or a state—say, relative pose—
and all of the above metrics can be computed provided we
have the ground truth values of the quantity to be estimated.
However, ground truth pose value is not always available
nor computable from the input image. Only in very special
cases, we can derive this relationship using geometry of image
formation, but this relationship will not be robust to vicissi-
tudes of real world images with shadows, occlusions, flares,
etc. For real images, getting the ground truth involves getting
correctly labeled data. For synthetic or simulator generated
data, the ground truth is readily available. For pose, depth,



and speed estimation ground truth can be estimated from
alternative sensors (GPS, lidar, and radar). Various datasets
for this purpose are available, such as KITTI [23] and the
Waymo open dataset [24].

Defining valid domain of operation: An ordinary sensor’s
specification not only spells out its performance parameters
like accuracy (with respect to ground truth), resolution, and the
range over which it is supposed to work, but it also specifies
the environmental variations it is supposed to tolerate. This
GPS sensor’s datasheet [21] states that it works below an
altitude of 18km and in the temperature range of −40◦C
to 85◦C. Motivated by such engineering datasheets, Gebru
et al. [25] have proposed that similar types of datasheets be
published for datasets used for training general ML models.
They argue that documenting the motivation, composition,
collection process, and recommended uses of datasets will
improve communication between creators and consumers of
datasets, and encourage transparency and accountability in
machine learning.

For ML-based perception models, we need the datasheet
to specify the variations on environmental conditions un-
der which the model’s accuracy is guaranteed, or at least
guaranteed with high probability. Images depend on many
environmental conditions such as lighting, albedo, occlusions,
and distortions that may not be represented in the datasets. For
autonomous systems, the notion of tolerances have to be ex-
tended to cover behaviors of other agents in the environment,
and all this is covered under the umbrella term operational
design domains (ODDs) [16]. Other factors adding to the chal-
lenge are the so called unknown unknowns, i.e., unidentified
factors that impact the image and the perception subsystem
but only emerge in real world deployments. Identifying and
spelling out the tolerable ranges for the known parameters is
a starting point for creating a datasheet or a contract for the
perception subsystem. Impacts of unidentified factors could
potentially be managed through out-of-distribution detection
and continuously updating the perception models and we
discuss this more in Section V.

IV. CHALLENGE 2: TESTING AND VERIFICATION WITH
PERCEPTION

Replacing the DL-based perception subsystems in Fig. 1
and Fig. 2 with corresponding perfect state estimators, the
closed-loop systems become standard cyber-physical systems.
Many testing and verification techniques are available for such
systems [11], [12]. However, DL-based perception breaks the
continuity and differentiability assumptions baked into many
of these techniques. This leads to the second challenge:

Test and formally verify the racing and swarm
formation systems, assuming that the perception
subsystems satisfy the specifications in the datasheet.

Current state of the art on simulation-based testing and
falsification relies on simulating the system behavior using
synthetic images. The difficulty is to first formally describe
the numerous scenarios, i.e., combinations of environmental
parameter values, within the operational design domain, and

second to systematically and efficiently simulate and search
through all combinations and construct a reasonable scenario
that falsify the system. For the drone racing as an example, it
is unrealistic to expect the system to function in a scenario that
the gate is completely obstructed by a tree (out of ODD), but
the system should still work when the gate is not obstructed
but cast with the shadow of the leaves (inside ODD). How to
implement the scenario generation and search within ODD for
simulation remains a challenge.

Dually, the formal verification aims to prove the correctness
of the system given the contract of perception subsystems.
Using the contract of perception subsystem greatly reduces the
complexity and make the system verification more tractable.
In addition, if only a small part of the perception model
changes and the contract is only slightly changed, then it is
unnecessary to verify the whole pipeline over the entire space.
There is an opportunity for exploiting incremental verification
to further avoid scalability issues. However, the components of
the perception subsystem, such as ReLU or sigmoid activation
functions or max pooling layers, suggests that the contract
of the perception is likely non-differentiable and nonlinear.
Solving this problem would require the verification of hybrid
system with nonlinear dynamics.

Related approaches: In falsification, the Scenic [26]
language for autonomous driving system can describe abstract
traffic scenarios in 2D geometry with probability distributions,
and VerifAI [27] provides various sampling strategies to
search for scenarios. Our drone racing and formation examples
introduce much higher complexity in describing 3D scenarios
and require better search strategies.

Plenty of recent works focus on system verification directly
with neural networks instead of contracts [28]. These neural
networks however are much smaller compared to DL-based
perception. Katz et al. [29] trains a simple generative adver-
sarial network (GAN) to represent the perception subsystem.
[30] infers and verifies the system with an abstract approx-
imate perception (AAP). These two works shows promising
results how an abstraction or a contract can help address the
scalability issue due to DL-based perception.

V. CHALLENGE 3: RUNTIME ASSURANCE WITH
PERCEPTION

The third challenge is about perception error detection and
handling. An error is an event where the accuracy of the
computed output from the perception subsystem violates the
specification. There are two related problems.

Error detection is the problem of determining that an error
event has occurred. This problem of error is a special case
of the broader problem of anomaly detection [31] and the
problem detecting of out of distribution events and distribution
shifts [32]. Without ground truth direct error detection is
impossible, but probabilistic detection based on alternative
sensors and correlations is possible. For example, if a vision-
based pose estimator is supposed to work with certain accuracy
in the illumination range of 3-1000 Lux, then potential error
in this estimator can be flagged by another sensor for gross



illumination levels. The overall reliability of the system will
then also depend on the specifications of the illumination
sensor, and so on.

An autonomous system’s decision logic has to decide when
a perception error is serious enough to switch the overall
system to a lower-capability or a safe recovery mode. A
balance has to be struck in this decision between unnecessarily
low-performance owing to spurious or unimportant perception
errors, and the risk of missing important perception errors
that cause system-level failures. The basic version of decision
problem, without the complications of ML-based sensing,
is called the runtime assurance problem (RTA) [33]–[35].
ML-based perception, brings a complication to RTA as state
estimation errors now have larger or unknown variances.

Design the detector and optimal runtime decision
logic for protecting the racing and swarm au-
tonomous systems against out of distribution per-
ception errors.
Related approaches: There is a rich and growing body

of work on runtime assurance [33]. A notable clustering-based
approach for detecting anomalous perception is presented
in [36]. To the best of our knowledge, design of runtime
assurance with perception has not been addressed so far.
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