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Causal reasoning for sequential time-series observations is an important problem in a number of dis-
ciplines. Recently, Baier et al. have formalized the notion of cause of a language in Markov chains
as prefixes that raise the probability of an effect. In this paper, we extend this notion of p-causes for
Hidden Markov Models. A natural question is to investigate the relationship between this notion of
p-causes and Pearl’s notion of total causal effect defined using structural causal models and interven-
tions. We explore this relationship for Hidden Markov Models. We find that even when we construct
a SCM to have the same probability distribution as the HMM, the notions are incompatible: p-causes
do not imply total causal effect and total causal effect does not imply a p-cause. This incompatibility
comes from underlying conceptual differences. A p-cause is set of specific observation sequences
that leads to a specific effect with high probability. A total causal effect in the constructed SCM
implies that the current state at one time will effect the state at a later time.

1 Introduction

The potential for formal and causal analysis of software system has been noted in a number recent pub-
lications [3, 5, 8, 14, 15]. A number of different notions of cause and effect for sequential observations
have been developed in the literature: The counterfactual principle [6] captures the idea that there is not
effect without its cause. Granger causality is based on the cause preceding the effect in temporal observa-
tions [2]. Structural causal models (SCMs) [11] represent causal relationships among random variables
as a graph and formalize the notions of confounding, interventions, and total causal effects [13]. SCMs
have helped uncover unexpected causal relationships in domains as diverse as finance [9], vehicle acci-
dents [7], and medicine [10]. Baier et al [4] have recently introduced the notion of p-causes for Markov
chains formalizing the principle that a cause raises the probability for an effect. P-causes are sets of pre-
fixes in a Markov chain that provide high probability of reaching an effect. Thus, p-causes capture both
the probability raising principle and the counterfactual principle. In contrast to SCMs, p-causes consider
the cause and effect of sequences of states, rather than the relationship between variables (regardless of
their specific values). Despite this difference, is it possible for the two notions to coincide? In this paper,
we begin to study how p-causes and SCMs apply to Hidden Markov Models.

HMMs are useful for studying sequential observations arising from stochastic processes with limited
observability. How does the notion of p-causes apply to languages over observations instead of states?
How can Hidden Markov Models be represented as structural causal models? Is there a shared meaning
between p-causes and total causal effect? In this paper, we attempt to answer these questions via a
particular type of unrolling of HMMs as an SCM. We call this the independent noise unrolling (IU) of
an HMM. We find that both causality notions can provide insights on causal relationships of observation
sequences over time. On the other hand, we find that, for our IU encoding of HMMs, these two concepts
are not precisely comparable. There are examples where a p-cause will have a total causal effect in one
HMM but not in another HMM, while both p-causes and non-p-causes can have total causal effects.
From this study, we conclude that time series p-causes can be used to find what prefixes lead to a trace
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language, and total causal effect helps understand the effect that different time steps have on each other.
We present the main definitions and results and a complete version of the paper with proofs will be made
available online 1.

2 Hidden Markov Models

Definition 2.1. A Hidden Markov Model (HMM) is a tuple H= ⟨Q,S,P,O,θ⟩, where Q is a finite set of
states, S is finite set of observations, P : Q×Q → [0,1] is a probabilistic transition function, O : Q×S →
[0,1] is a probabilistic observation function, and θ ∈ P(Q) is an initial distribution.

A execution of an HMM H is a finite or infinite alternating sequence of states and observations
α = (q0,s0),(q1,s1), . . ., such that (1), θ(q0)> 0, (2) P(qi,qi+1)> 0, (3) O(qi,si)> 0, for each i in the se-
quence. The set of all executions is denoted by ExecsM . Given a finite execution β =(q0,s0), . . . ,(qk,sk),
the cylinder set of β , denoted by Cyl(β ), is the set of all infinite executions starting with the prefix β .
For an HMM H, we define the probability of the cylinder set as

PH(Cyl(β )) = θ(q0)O(q0,s0)×
k

∏
i=1

P(qi−1,qi)O(qi,si). (1)

The probability distribution over cylinder sets PH can be uniquely extended to a probability measure over
the σ -algebra generated by all cylinder sets.

For a finite execution α , α ↓ S is the corresponding observation sequence or trace and α ↓ Q gives
the corresponding state sequence or path. The probability distribution over a finite trace σ = s0,s1, . . . ,sk
is defined using the distribution over executions:

PH(Cyl(σ)) = ∑
α:α↓S=σ

PH(Cyl(α)). (2)

The probability distribution over TracesH is defined in the usual way. A finite trace σ defines a
cylinder set which contains all possible extensions of σ : Cyl(σ) = {β ∈ Sω | σ ∈ Pre f (β )}. The sets of
all non-zero probability executions and traces are ExecsH and TracesH. We have overloaded PH to denote
both the probability distributions over traces or executions, but the arguments used will disambiguate.

Consider an ω-regular language L ⊆ Sω . The probability PH(L ) is simply the sum of the probabil-
ities of all the strings in L . For a finite trace β with non-zero probability for the corresponding cylinder
sets, the conditional probability of L given β is:

PH(L |β ) = PH(L ∩Cyl(β ))
PH(Cyl(β ))

. (3)

For brevity we write PH(L |Cyl(β )) as PH(L |β ). Later, we use linear temporal logic to specify
languages, L . We use the eventually (⋄) and next () operators defined in [1]

3 P-Cause in Hidden Markov Models

In this section, we introduce the notion of p-causes for trace languages of HMMs. A p-cause for a
language L is a finite trace that makes the probability of observing a string in L larger than p. We follow
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Figure 1: A HMM representing a system that can overheat

the developments in [4], where a similar notion was studied for Markov chains; however, an additional
complexity arises here because the same trace could be generated by wildly different executions of a
Hidden Markov Model. Throughout this section, we fix an HMM H = ⟨Q,S,P,O,θ⟩, an ω-regular
language L ⊆ Sω , and a constant p ∈ (0,1].

First, we define p-critical prefixes of a language. A finite trace is p-critical if once this trace is
observed, with at least probability p, all extension of the current execution will generate an execution
with a trace in L .

Definition 3.1. For any HMM H, any nonempty language L ⊆ Sω and any p > 0, a finite trace σ ∈ S∗

is a p-critical prefix if PH(L |σ)≥ p.

A p-critical prefix can be useful to know, at a finite point in time, that we are likely observe a string
in the target language in the future. If the language encodes reaching an unsafe state or exiting a safe
state, then the p-critical prefixes could be used for monitoring.

Example 1. Consider a machine with (hidden) states Q = {S1,S2,S3,S4} as shown in Figure 1. At
each state the observed temperature is S = {L,M,H} (corresponding to low, medium, and high readings)
with probabilities as shown. Probabilities not shown are considered probability zero. Suppose we are
interested in the trace language: eventually H , that is, L = ⋄H. Finding a p-critical prefix will help find
executions where we are likely to observe high heat. Consider the prefix trace γ = MM. With explicit
knowledge of the states and transitions, here we can easily calculate PH(L |γ) = 0.58. We calculate
PH(L∩Cyl(γ)) by adding the probabilities of all paths that start with γ and are in L , and we calculate
PH(Cyl(γ)) by adding the probabilities of all paths that start with γ . Since PH(L |γ) ≥ 0.5, we can say
that (MM) is a 0.5-critical prefix of L = {⋄H}.

These p-critical prefixes can be used for monitoring purposes. In the example above, once a MM is
observed during an execution, there is a high probability of overheating, so a user may shut down the
machine instead of allowing it to overheat. This particular prefix forewarns of a likely overheating, and
therefore, is a useful trace to monitor.

A simple but useful property of p-critical prefixes is how they perform in subsets.

Proposition 1. For any non-empty languages, L ,L ′ ⊆ Sω , if γ is a p-critical prefix for L and L ⊆L ′,
then γ is also a p-critical prefix for L ′.

Observing a p-critical prefix guarantees an increase in the probability of observing a string the lan-
guage. However, a single p-critical prefix may not be a prefix for every trace in a language L . Therefore,
in Definition 3.2, we introduce p-causes which are a set of p-critical prefixes where every trace is L has
a prefix in the p-cause.

Definition 3.2. For an HMM H, a p-cause for L ⊆ Sω is a prefix free set of (non-zero probability) finite
traces Π ⊆ S∗ such that:
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1. Every π ∈ TracesH∩L has a prefix π̂ ∈ Π.

2. Every π̂ ∈ Π is a p-critical prefix for L .

The two conditions for p-cause in Definition 3.2 correspond to the probability raising property and
the counterfactual principle for cause and effect. Condition 1 guarantees that the ‘effect’ (a trace being
in L ) would not have happened without the ‘cause’ (observing a trace in the p-cause). Condition 2
guarantees that the probability of the ‘effect’ increases after observing the ‘cause’.

In the following example, we see that probability of being in L raises when we observe a prefix in
the p-cause and a trace cannot be in L without first observing one of the prefixes in the p-cause.

Example 2. To find a p-cause for the HMM H in Example 1 and the language L = ⋄H, we first find a
p-critical prefix for every trace in L . The cylinder sets of traces of the form (L+M)(L+M)H represent
all traces in L . We showed in Example 1 that MM is a 0.5-critical prefix so it can be in the p-cause that
covers Cyl(MMH).
Consider the cylinder set of the remaining traces in TracesH ∩L : (LMH),(LLH),(MLH). As in ex-
ample 1, we can find that P(L |LM) = .58 and P(L |ML) = P(L |LL) = 0.18. Since LM is a .5-critical
prefix, the prefix LM should be added to the p-cause to cover traces in Cyl(LMH). To find a pre-
fix of Cyl(LLH) and Cyl(MLH) that is .5−critical, LL and ML do not have high enough conditional
probabilities. Therefore, LLH and MLH must be in the p-cause set. Therefore, a valid 1

2 -cause is
{(MM),(LM),(LLH),(MLH)}

It is straightforward to see that p-causes are closed under union, but not under intersection.

Proposition 2. For any non-empty languages, L ,L ′ ⊆ Sω and some HMM H, if Π ⊆ S∗ is a p-cause
for L and Π′ ⊆ S∗ is a p-cause for L ′, then Π∪Π′ ⊆ S∗ is a p-cause for the language L ∪L ′.

Lastly, we claim that there exists a p-cause for any p. In future work, we provide a method to
transform all languages to a reachability language which will prove Proposition 3.

Proposition 3. For any non-empty language L ⊆ Sω , there exists a p-cause for any p ∈ (0,1].

4 Structural Causal Models

Structural causal models (SCM) are used to represent and discover causal relationship between vari-
ables using the representation of a graph [11, 13]. SCMs are used for studying causal relationships be-
tween variables, interventions, and counterfactuals and these different levels of reasoning are organized
in Pearl’s hierarchy [12]. Most importantly, they can be used to find confounding factors in relationships
between variables that appear directly related.

SCMs do not inherently have a notion of temporal evolution. However, different authors have used
SCMs to reason about time-series data and dynamical systems using variables to explicitly represent the
unrolling of the dynamic process.

4.1 Preliminaries

We provide a brief overview of Structural Causal Models using definitions from Peter’s Elements of
Causal Inferences [13].

Definition 4.1. A structural causal model (SCM) C= ⟨X,N,E,PN⟩ consists of random variables X, noise
variables N, and a collection E of d structural assignments of the form

X j := f j(PA j,N j), (4)
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where PA j ⊆ {X1, . . . ,Xd} are called parents of X j; and PN is a joint distribution over the noise variables
N1, . . . ,Nd . The noise variables are jointly independent and the dependency graph over X j’s is acyclic.

Given an SCM, an intervention on a variable is a change to the structural assignment of that variable.
It can change the distribution of the system so that the variable is not influenced by any of its parents in
the original SCM.

Definition 4.2. Given an SCM C := ⟨X,N,E,PN⟩ and its entailed distribution PC
X, an atomic intervention

replaces one (or several) structural assignments to obtain a new SCM C̃. The intervention replaces the
assignment for Xk by

Xk := a

where a is some constant value in the range of Xk. The entailed distribution of C̃ is the intervention distri-
bution and the variables with new structural assignments have been intervened on. The new distribution
is denoted

PC̃
X = PC;do(Xk:=a)

X .

Interventions can be used to study the causal relationship between variables. In our study of p-cause,
we will specifically use total causal effect. Total causal effect from X to Y implies that to X has an effect
on Y either directly or indirectly (through other vertices) and can be checked using Equation 5.

Proposition 4. Given an SCM C = ⟨V,N,E,PN⟩, there is a total causal effect from X ⊆ V to Y ⊆ V iff
there is an assignment a that gives a constant value for each Xi ∈ X such that

PC;do(X :=a)
Y ̸= PC

Y . (5)

To compute PC;do(X :=a)
Y , we use adjustment sets, which are typically sets of other vertices that can

have an effect on X and Y and allow us to calculate interventions using conditional probabilities.
All of this is implicitly in terms of real-valued random variables. Our construction later will be in

terms of bit vectors to represent discrete values.

4.2 Hidden Markov Models as Structural Causal Models

Now, we can construct a SCM that entails a probability distribution that is equivalent to the probability
distribution of an HMM’s states and observations over T time steps. This SCM is called the independent
noise unrolling of an HMM (IU(H)). Time series data SCMs are presented in [13]; however, we present
the specific equations needed to represent the probability distribution of an HMM. Given Definition 4.3,
we claim that for any execution γ = x0,y0, . . .xT ,yT of H, PH(Cyl(γ)) =PC(X0 = x0∧Y0 = y0∧ . . .∧XT =
xT ∧YT = yT ).

Definition 4.3. The SCM C= IU(H) for the independent noise unrolling of an HMM H= ⟨Q,S,P,O,θ⟩
for any natural number T , is an SCM C= ⟨X,E,N,Np⟩ where

X = {Xi ∈ B|Q|,Yi ∈ B|S|}T
i=0 (6)

N = {NXi ∈ B|Q|×|Q|,NYi ∈ B|Q|×|S|}T
i=1 ∪NX0 ∈ B|Q|. (7)

and Xt [i] = 1, i ∈ Q corresponds to the HMM being in the state i at time t and Yt [ j] = 1, j ∈ S corresponds
to the HMM emitting observation j at time t.
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(a) A simple Hidden Markov Model H′ (b) T−encoded SCM for H′

Figure 2: A simple HMM and its SCM.

Np is such that NXt ,NYt are the IDD encoding of H such that NXt is a binary matrix where NXt [i, j] = 1
with probability P(i, j) and ∀i,NXt [i, j] = 1 for exactly one j. Similarly, NX0 [ j] = 1 with probability θ( j)
and exactly one entry equaling 1. NYt [i, j] = 1 with probability O(i, j) and ∀i,NYt [i, j] = 1 for exactly one
j.

E = {X0 := NX0 (8)

Xt+1 := Xt ·NXt (9)

Yt := Xt ·NYt} (10)

4.3 Total Causal Effect in the T -encoded SCM

We are ready to consider the total causal effect in IU(H) for an HMM H and its relationship to p-causes.
As shown in Figure 2b, the structure of IU(H) for any H is the same. Therefore, when computing total
causal effect on the same time steps, we can choose the same adjustment set.

Consider the HMM H in Figure 1 and the language for observing H on the third step: L =⃝⃝H.
We know from Example 1, that MM is in the p-cause for L . How might we check for a total

causal effect for this prefix and language? In C = IU(H), the vertices C = {X0,Y0,X1,Y1} represent the
probability distribution of the states and observation in the first two time steps of H. Since the MM is a
prefix of length 2, its probability is in the probability distribution of C. Similarly, E = {X2,Y2} represents
the probability distribution of the states and observations at the 3rd time step and thus the probability of
emitting Σ2H. Therefore, we will check for a total causal effect from C to E in C.

To calculate a total causal effect, we let the adjustment set Z = /0 because there are no backdoor
paths from C to E; therefore, PC;do(C:=c)(E) = PC(E|C := c) (see [13] Proposition 6.41). We see in
H for E = {S3,H} that PH(S1,M,S2,M,S3,H|S1,M,S2,M) ̸= PH((S,Σ)2,S3,H). Since PC entails PH,
PC(E := {S3,H}|C := {S1,M,S2,M}) ̸= PC(E := {S3,H}). Therefore, by Proposition 4, there is a total
causal effect from C to E.

This does not let us conclude that p-causes are necessary for total causal effects. If we wanted to
check for a total causal effect of a non p-critical prefix, say LL, we would select the same sets of vertices
C,E, and we would find that there is also a total causal effect. In contrast, in the HMM H′ in Figure 2a,
with the same language L , MM is also a p-critical prefix. Selecting the same E,C, we find that there is
no total causal effect from C to E because PC(E|C := c) = PC(E) for all choices of c.

We see that there is a total causal effect when C and E are dependent in C, but not on a particular
p-cause. We observe that C = {Xi,Yi}l

i=0 and E = {Xi,Yi}m
j=n are independent when all paths in H from

states reachable at time step l to states reachable at time step n are deterministic.
In summary, we find that that given this encoding, p-critical prefix ̸⇒ total causal effect and total

causal effect ̸⇒ p-critical prefix.
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