
RTAEval: A Framework for Evaluating
Runtime Assurance Logic

Kristina Miller1(B), Christopher K. Zeitler2, William Shen1,
Mahesh Viswanathan1, and Sayan Mitra1

1 University of Illinois Urbana Champaign, Champaign, IL 61820, USA
kmmille2@illinois.edu

2 Rational CyPhy, Inc., Urbana, IL 62802, USA

Abstract. Runtime assurance (RTA) addresses the problem of keeping
an autonomous system safe while using an untrusted (or experimental)
controller. This can be done via logic that explicitly switches between the
untrusted controller and a safety controller, or logic that filters the input
provided by the untrusted controller. While several tools implement spe-
cific instances of RTAs, there is currently no framework for evaluating
different approaches. Given the importance of the RTA problem in build-
ing safe autonomous systems, an evalutation tool is needed. In this paper,
we present the RTAEval framework as a low code framework that can be
used to quickly evaluate different RTA logics for different types of agents
in a variety of scenarios. RTAEval is designed to quickly create scenarios,
run different RTA logics, and collect data that can be used to evaluate
and visualize performance. In this paper, we describe different compo-
nents of RTAEval and show how it can be used to create and evaluate
scenarios involving multiple aircraft models.

Keywords: Runtime assurance · Autonomous systems

1 Introduction

Safe operation of autonomous systems is critical as their real world deployment
becomes more common place in domains such as aerospace, manufacturing and
transportation. However, the need for safety is often at odds with the need to
experiment with, and therefore deploy, new untrusted technologies in the pub-
lic sphere. For example, experimental controllers created using reinforcement
learning can provide better performance in simulations and controlled environ-
ments, but assuring safety in real world circumstances is currently beyond our
capabilities for such controllers. Runtime assurance (RTA) [3,15–17] addresses
this tension. The idea is to introduce a decision module that somehow chooses
between a well-tested Safety controller and the experimental, Untrusted con-
troller , assuring safety of the overall system while also allowing experimentation
with the new untrusted technology where and when possible. Specific RTA tech-
nologies are being researched and tested for aircraft engine control [1], air-traffic
management [4], and satellite rendezvous and proximity operations [9].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
É. André and J. Sun (Eds.): ATVA 2023, LNCS 14216, pp. 302–313, 2023.
https://doi.org/10.1007/978-3-031-45332-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45332-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-45332-8_17

RTAEval: A Framework for Evaluating Runtime Assurance Logic 303

The Simplex architecture [16,17] first proposed this idea in a form that is rec-
ognizable as RTA. Since then, the central problem of designing a decision module
that chooses between the different controllers has been addressed in a number of
works such as SimplexGen [3], Black-Box Simplex [13], and SOTER [5]. The two
main approaches for building the decision module are based on (a) an RTASwitch
which chooses one of the controllers using the current state or (b) an RTAFilter
which blends the outputs from the two controllers to create the final output. In cre-
ating an RTASwitch, the decision can be based on forward-simulation of the cur-
rent state [19], model-based [3] and model-free forward reachability [13], or model-
based backward reachability [3]. The most common filtering method is Active Set
Invariance Filtering (ASIF) [2], wherein a control barrier function is used to blend
the control inputs from the safety and untrusted controllers such that the system
remains safe with respect to the control barrier functions [7,12,14].

While these design methods for the decision module have evolved quickly,
a software framework for evaluating the different techniques has been missing.
In this paper, we propose such a flexible, low-code framework called RTAEval
(Fig. 1). A low-code framework is one which simplifies the development of appli-
cations by providing a library of tools which reduces the amount of code required
to be written by the user. Low-code frameworks are becoming more commonplace
as the need to quickly experiment, deploy, and test new technologies becomes
more urgent. One example of a low-code framework is the Scenic Library [11]
which can be used to quickly and easily spin up new test environments for testing
perception and control algorithms. In this work, we introduce a framework in a
similar vein which can be used to test new runtime assurance technologies. This
framework consists of a module for defining scenarios, possibly involving multiple
agents; a module for executing the defined scenario with suitable RTASwitches
and RTAFilters; and a module for collecting and visualizing execution data.
RTAEval allows different agent dynamics, decision modules, and metrics to be
plugged-in with a few lines of code. In creating RTAEval, we have defined stan-
dardized interfaces between the agent simulator, the decision module (RTA),
and data collection.

In Sect. 2, we give an overview of RTAEval. In Sect. 2.1, we discuss how sce-
narios are defined, and, in Sect. 2.2, we discuss how the user should provide
decision modules (also called the RTALogic). In Sect. 2.3, we discuss data col-
lection, evaluation, and visualization. Finally, in Sect. 3, we show a variety of
examples implemented in RTAEval. A tool suite for this framework can be found
at https://github.com/RationalCyPhy/RTAEval.

2 Overview of the RTAEval Framework

The three main components of RTAEval are (a) the scenario definition, (b) the
scenario execution, and (c) the data collection, evaluation, and visualization
module (See Fig. 1). A scenario is defined by the agent and its low-level con-
troller, the unsafe sets, the untrusted and safety controllers, the time horizon for
analysis, and the initial conditions. Given this scenario definition, the scenario
is executed iteratively over the specified time horizon.

https://github.com/RationalCyPhy/RTAEval

304 K. Miller et al.

During each iteration of the closed-loop execution of the RTA-enabled
autonomous system, the current state of the agent and the sets of unsafe states
are collected. This observed state information is given to both the untrusted
and safety controller, which each compute control commands. Both of these
commands are evaluated by the user-provided decision module (i.e., RTA logic),
which computes and returns the actual command to be used by the agent. The
agent then updates its state, and the computation moves to the next iteration.
While the execution proceeds, data – such as the RTA computational perfor-
mance, controller commands, agent states, and observed state information of
the unsafe sets – is collected via the data collection module. At the end of an
execution, this data is evaluated to summarize the overall performance of the
RTA. This summary includes computation time of the RTA logic, untrusted ver-
sus safety controller usage, and the agent’s distance from the unsafe set. We also
provide a visualization of this data.

A low-code tool suite of the RTAEval framework is written in Python, which
was chosen for its ease of implementation and interpretibility. The tool is flexible
in that it allows for a wide variety of simulators and coding languages and
can be generalized to scenarios where multiple agents are running a variety of
different RTA modules. Simple Python implementations of vehicle models (some
of which we provide in simpleSim) can be incorporated directly. However, users
can incorporate new agent models within simpleSim as long as the agent has a
function step that defines the dynamics and low-level controller of the agent
and returns the state of the agent at the next time step. An example of this is
provided in Example 1 and Fig. 4. The safety and untrusted controllers should
also be encoded in step, which simply takes in the command (or mode) to be
used over the next time step. Higher fidelity simulators such as CARLA [6] and
AirSim [18] can also be used in place of simpleSim for the execution block. The
observed state information would need to be provided to our data collection,
evaluation, and visualization tool in the format seen in Fig. 2.

Fig. 1. RTAEval framework. (Scenario Definition and Execution) Some user-defined sce-
nario is executed. The scenario is defined by the safety controller, untrusted controller,
plant and low level controllers, unsafe sets, and sensor. (Data collection, evaluation,
and visualization) The execution data is collected, evaluated, and visualized using our
provided suite of tools.

RTAEval: A Framework for Evaluating Runtime Assurance Logic 305

2.1 Scenario Definition and Execution

A scenario is defined by the agent, unsafe sets, safety and untrusted controllers,
initial conditions, and time horizon T > 0. The simulation state at time t ∈ [0, T]
consists of the agent state, the unsafe set definition, and the control command
at time t. The agent has an identifier, a state, and some function step that
takes in some control command at time t and outputs the system state at time
t + 1. The unsafe sets are the set of states that the system must avoid over
the execution of the scenario. We say that the agent is safe if it is outside the
unsafe set. The safety and untrusted controllers compute control commands for
the system, which are then filtered through the RTA logic, as discussed further
in Sect. 2.2. The initial conditions define the simulation state at time 0. Then,
given a scenario with some time horizon T and an RTA logic, an execution of the
scenario is a sequence of time-stamped simulation states over [0, T]. Note that,
while we define an execution as a discrete time sequence of simulation states, the
actual or real-world execution of the scenario may be in continuous time; thus,
we simply sample the simulation states at a predefined interval. We call the part
of the execution that contains only the sequence of agent states the agent state
trace. Similarly, we call the part of the execution that only contains the sequence
control commands the mode trace and the part that only contains the sequence
of unsafe set states the unsafe set state trace.

Fig. 2. Execution structure required by the
RTAEval evaluation and visualization

In order for our evaluation and
visualization to work, the execu-
tion must be given to the data col-
lection as a dictionary, the struc-
ture of which is shown in Fig. 2.
Here, there are three levels of dic-
tionaries. The highest level dictio-
nary has the keys ‘agents’ and
‘unsafe’, which point to dictio-
naries containing the state and
mode traces of the agents and
state traces of the unsafe sets
respectively. The second level of
dictionaries has keys that cor-
respond to different agents and
unsafe sets. We call these keys the agent and unsafe set IDs. Each agent ID points
to a dictionary containing the state and mode traces of that agent. The state
trace is a list of time-stamped agent states, and the mode trace is a sequential
list of control commands. Each unsafe set ID points to a dictionary containing
the set type and state trace of that unsafe set. The set type is a string that tells
RTAEval what type of set that particular unsafe set is. Currently, RTAEval sup-
ports the following set types: point, ball, hyperrectangle, and polytope. Each set
has a definition that, together with the type, defines the set of states contained
within the unsafe set. Then, the state trace for an unsafe set is a sequence of
time stamped definitions of the set.

306 K. Miller et al.

Example 1. Consider the following adaptive cruise control (ACC) scenario shown
in Fig. 3 as a running example. An agent with state x = [p, v]� has dynamics
given by

f(x,m) =
[
0 1
0 0

]
x +

[
0
1

]
a(x,m),

where a(x,m) = gS(x) if m = S and a(x,m) = gU(x) if m = U. The agent tries
to follow at distance d > 0 behind a leader moving at constant speed v̄. The
position of the leader at time t is given by pL(t). Then, the untrusted controller
gU and safety controller gS are given by

gS(x) = k1((pL(t) − d) − p) + k2(v̄ − v) and gU(x) =

{
amax (pL(t) − p) > d

−amax else
,

where k1 > 0 and k2 > 0. The function step is a composition of the untrusted
controller, the safety controller, and the dynamics function of the system.

A collision between the agent and leader occurs if ‖pL(t) − p(t)‖ ≤ c, c < d.
There is then an unsafe set centered on the leader agent, and it is defined by
O = {[p, v, t]� ∈ X ×R≥0 | ‖pL(t)−p‖ ≤ c}. The function updateDef then takes
in the current state of the simulator and creates the unsafe set centered on the
leader. The initial conditions for this scenario are then the initial agent state x0,
the initial leader state xL0, and the time horizon T > 0.

Fig. 3. Example visualization of the scenario
defined in Example 1. The leader is shown in
black, the follower is shown in orange, and
the unsafe region is shown in red.

This scenario is shown in our
low code framework in Figs. 4 and 5.
The dynamics of the agent are
defined in step in lines 11–26 of
Fig. 4. The proportional controller is
defined in lines 1–4 and the bang-
bang controller is defined in lines 6–
9. This is all contained within a class
AccAgent. In Fig. 5, we set up the
scenario. In lines 2–5, we define the
goal point for the agent. In lines 7–

15, we create the agent, the leader, and the unsafe set. Finally, in line 18, we
initialize the scenario to be executed; in lines 21–26, we add the agents and unsafe
sets to the scenario; and in lines 29–30, we set up the scenario parameters.

2.2 RTA Logics

We provide an RTA base class that can be used in RTAEval. The user must
provide the RTA logic to be evaluated. This logic takes in an observed state
and outputs the control command to be used by the plant. This observed state
information has to be provided in the format shown in Fig. 2 for data collection,
evaluation, and visualization to work. The RTA base class is shown in Fig. 6.
We provide the functions RTASwitch and setupEval. Users must provide the
switching logic as RTALogic. When creating RTA, the user can decide to use

RTAEval: A Framework for Evaluating Runtime Assurance Logic 307

1 def P(self , time_step): #Proportional controller
2 xrel = self.goal_state [0] - self.state_hist [-1][0]
3 vrel = self.goal_state [1] - self.state_hist [-1][1]
4 return self.Kp[0]* xrel + self.Kp[1]* vrel
5

6 def BangBang1D(self , time_step): # Bang -bang controller
7 x_err_curr = self.goal_state [0] - self.state_hist [-1][0]
8 v_err_curr = self.goal_state [1] - self.state_hist [-1][1]
9 return np.sign(x_err_curr)*self.a_max

10

11 def step(self , mode , initialCondition , time_step , simulatorState):
12 self.goal_state = self.desired_traj(simulatorState)
13 if mode == ’SAFETY ’:
14 self.control = self.P
15 elif mode == ’UNTRUSTED ’:
16 self.control = self.BangBang1D
17 else:
18 self.control = self.no_control ()
19 a_curr = self.control(time_step)
20 if abs(a_curr) > self.a_max:
21 a_curr = np.sign(a_curr)*self.a_max
22 x_next = initialCondition [0] + initialCondition [1]* time_step
23 v_next = initialCondition [1] + a_curr*time_step
24 if abs(v_next) >= self.v_max:
25 v_next = np.sign(v_next)*self.v_max
26 return [x_next , v_next]

Fig. 4. Controller and step functions for the agent in Example 1. The first function
defined is the proportional controller (Safety) and the second function is the Bang-bang
controller (Untrusted). The step function (lines 11–26) takes in the current mode and
state of the agent, as well as the time stpe and current suimulator state. In lines 13–18
it decides which controller to use, and in lines 19–26, it updates the staet of the agent.

our data collection by running setupEval in init . This will create a data
collection object called eval, which saves the data used for our evaluation (see
Sect. 2.3). The switch is performed in RTASwitch, which also stores the current
perceived state of the simulator from the point of view of the agent, as well as
the time to compute the switch. The user provided switching logic RTALogic
takes in the current state of the simulator and returns the mode that the agent
should operate in. To create different logics, the user must create an RTA class
derived from the RTA base class, which implements the function RTALogic. An
example of this is given in Example 2.

Example 2. An example of a simple RTA switching logic can be seen in Fig. 7.
This is a simulation-based switching logic that was designed for the adaptive
cruise control introduced in Example 1. Here, the future states of the simulator
are predicted over some time horizon T and saved as predictedTraj in line 2. We
then check over this predicted trajectory to see if the agent ever enters the unsafe
set in lines 3–11. If it does, then the safety controller is used, and if it does not,
then the untrusted controller is used. Once RTALogic is created, we add it to a
new class called accSimRTA and use it to create an RTA object called egoRTA for
egoAgent1. We can then change line 22 in Fig. 5 to RTAs = [egoRTA, None].
This will associate egoRTA with egoAgent1 and run the RTA switching logic
every time the state of egoAgent1 is updated.

308 K. Miller et al.

1 # Define desired goal point for the follower agent (ego):
2 def agent1_desiredTraj(simulationTrace):
3 lead_state = simulationTrace[’agents ’][’leader ’][’state_trace ’][-1][1:]
4 return [lead_state [0] - 10, lead_state [1]]
5

6 # Create the ego agent:
7 agent1 = AccAgent("follower",file_name=controllerFile)
8 agent1.follower = True
9 agent1.desired_traj = agent1_desiredTraj

10

11 # Create the leader agent:
12 leader = AccAgent("leader",file_name=controllerFile)
13

14 # Create the unsafe set centered on leader agent:
15 unsafe1 = relativeUnsafeBall("unsafe1", [5], 7, "leader")
16

17 # Initialize the ACC scenario:
18 accSim = simpleSim ()
19

20 # Initialize agents and unsafe sets in the scenario:
21 agents = [agent1 , leader]
22 RTAs = [None , None]
23 modes = [ccMode.UNTRUSTED , ccMode.NORMAL]
24 inits = [[0,1], [5 ,1]]
25 accSim.addAgents(agents=agents , modes=modes , RTAs=RTAs , initStates=inits)
26 accSim.addUnsafeSets(unsafe_sets = [unsafe1])
27

28 # Set simulation parameters
29 accSim.setSimType(vis=False , plotType="2D", simType="1D")
30 accSim.setTimeParams(dt=0.1, T=5)

Fig. 5. Python code snippet defining the scenario in our low-code RTAEval frame-
work. The untrusted and safety controllers are contained within the dynamics of the
AccAgent, which is defined in a separate file. The scenario is executed in a simply
python simulator, which is initiated on line 18. Initially, the agents are not assigned
RTAs, but this will be done in Sect. 2.2. The agents and unsafe sets are added to the
scenario, and the simulation parameter are set in lines 29 and 30.

2.3 Data Collection, Evaluation, and Visualization

We now discuss the data collection, evaluation, and visualization tool which is
provided as a part of RTAEval. This tool is a class that has some collection func-
tions and post-processing functions. To use the data collection and evaluation
functionalities provided, the user must add the line self.setupEval() when cre-
ating the RTA object. Data collection occurs via the functions collect trace
and collect computation times. Here, collect trace collects the simulation
traces, and collect computation times collects the time it takes for the RTA
module to compute a switch. An example of how the data collection can be
incorporated in the RTA module is shown in Fig. 7. The traces are collected and
stored as a dictionary of the form shown in Fig. 2. Once the data has been col-
lected over a scenario, we can use them to evaluate the performance of the RTA
over a scenario. Examples of the data evaluation, as well as screenshots from
our simulator are shown in Sect. 3. A summary of the RTA’s performance in the
scenario can be quickly given by running eval.summary(). The main metrics
that we study are the following: Computation time gives the running time of
RTASwitch each time it is invoked. We provide the average, minimum, and max-
imum times to compute the switch. Distance from unsafe set is the distance

RTAEval: A Framework for Evaluating Runtime Assurance Logic 309

1 class baseRTA(abc.ABC):
2 def __init__(self):
3 self.do_eval = False # Don’t automatically set up RTAEval
4 pass
5

6 @abc.abstractmethod
7 def RTALogic(self , simulationTrace: dict) -> Enum:
8 # User provided logic for switching RTA
9 pass

10

11 def RTASwitch(self , simulationTrace: dict) -> Enum:
12 start_time = time.time()
13 rtaMode = self.RTALogic(simulationTrace)
14 running_time = time.time() - start_time
15

16 if self.do_eval:
17 self.eval.collect_computation_time (running_time)
18 self.eval.collect_trace(simulationTrace)
19 return rtaMode
20

21 def setupEval(self):
22 # Add this to init when inheriting baseRTA to inclde evaluation
23 self.do_eval = True
24 self.eval = RTAEval ()

Fig. 6. Base RTA class used in the low-code RTAEval framework. Users need only
provide the decision logic, which we call RTALogic.

1 def RTALogic(simulationTrace):
2 predictedTraj = simulate_forward(simulationTrace)
3 egoTrace = predictedTraj[’agents ’][egoAgent.id][’state_trace ’]
4 for unsafeSet in self.unsafeSets:
5 unsafeSetTrace = predictedTraj[’unsafe ’][unsafeSet.id][’state_trace ’]
6 for i in range(len(unsafeSetTrace)):
7 egoPos = egoTrace[i][1]
8 unsafeSetDef = unsafeSetTrace[i][1]
9 pos_max = unsafeSetDef [0][0] - unsafeSetDef [1]

10 if egoPos > pos_max:
11 return egoModes.SAFETY
12 return egoModes.UNTRUSTED

Fig. 7. Example RTA switching logic for Example 2. Here, the trajectory of the follower
agent is simulated forward, and if it ever comes within collision distance of the leader,
then the safety controller is used.

between the ego agent and the unsafe sets. We also allow the user to find the
distance from other agents in the scenario. Time to collision (TTC) is the
time until collision between the ego agent and the other agents if none of them
change their current trajectories. Finally, we also provide information on the
percent controller usage, which is the proportion of time each controller is
used over the course of the scenario. We also provide information on the number
of times a switch occurs in a scenario. Example results are shown in Sect. 3.

3 RTAEval Examples

In this section, we present some examples using our provided suite of tools
for RTAEval. We evaluate two different decision module logics: SimRTA and

310 K. Miller et al.

ReachRTA. SimRTA is the simulation based switching logic introduced in Exam-
ple 2. ReachRTA is similar to SimRTA but uses reachable sets that contain all
possible trajectories of the agent as the basis of the switching logic. We eval-
uate these RTAs in 1-, 2-, and 3-dimensional scenarios with varying numbers
of agents. These scenarios are described in more detail in Table 1. Here, the
workspace denotes the dimensions of the physical space that the systems live in.
Note that, while all the examples presented have some physical representation,
this is not a necessary requirement of the tool. We also provide pointers to where
the dynamics of the agents can be found, as well as the untrusted and safety
controllers used. Visualizations of the scenarios can be seen in Figs. 3 and 8.

Table 1. Brief description of evaluated scenarios.

ACC Dubins GCAS

Workspace 1 2 3

Dynamics
Untrusted

Example 1
Bang-bang controller
(Example 1)

Dubin’s car [8]
PID with
accleration [10]

Dubin’s plane [8]
PID with
acceleration [10]

Safety PID (Example 1) PID with
deceleration [10]

PID with deceleration
and pitching up [10]

Unsafe Leader (ball) Leader (ball) and
building (rectangle)

Leader (ball) and
ground (polytope)

Visualization Fig. 3 Fig. 8 Fig. 8

Scenario length 10 s 20 s 40 s

Fig. 8. Example scenarios in Table 1. Left: 2-dimensional dubins aircraft with building
collision avoidance. The leader is shown in black, and the followers are shown in orange
and blue. The desired trajectories are shown in gray. Right: Ground collision avoidance.
The leader is shown in black and the follower is shown in orange. The desired trajectory
is shown in white.

Each of these scenarios is executed using simpleSim, and the two RTA logics
are created for them. Data is collected over the scenario lengths in Table 1.
Note that the scenario length is the simulation time for the scenario and not

RTAEval: A Framework for Evaluating Runtime Assurance Logic 311

the real time needed to run the scenario. We run these scenarios with varying
numbers of agents and present the running time of the scenario execution and
evaluations in Table 2. The simulation time step is set to 0.05 for all scenarios.
Here, exec time is the time it takes to run the scenario, RTA comp time is the
average time it takes to run the user-provided RTA logic per iteration, and %
RTA comp is the percentage of the exec time that is taken by the RTA decision
module. That is, % RTA computation is roughly the number of time steps in
a scenario multiplied by the the average RTA comp time and divided by the
execution time. Finally, eval time is the time it takes to get a full summary of
how the RTA performs for each agent. The evaluation summary includes the
average decision module computation time, controller usage, distance from the
unsafe sets and other agents, and time to collision with the unsafe sets and other
agents. We note that a majority of the run time for the scenario execution is
due to the RTA logic computation time and not our tool. Additionally, while the
run time of the evaluation is affected by the number of agents in the scenario,
it is mostly affected by the set type of the unsafe set, where the polytope in the
GCAS scenario causes the biggest slow down in evaluation time.

Table 2. Running time for execution and evaluation of RTAs with the tool suite
provided for RTAEval.

SimRTA ReachRTA

Scenario Num
agents

Exec
time
(s)

RTA
comp
time
(ms)

% RTA
Comp

Eval
time
(s)

Exec
time
(s)

RTA
comp
time
(ms)

% RTA
Comp

Eval
time
(s)

ACC 1 18.49e-3 0.07 76.63 7.27e-3 0.35 1.71 97.89 8.22e-3

2 50.08e-3 0.10 84.12 18.16e-3 1.12 2.76 98.66 17.96e-3

5 0.18 0.16 90.47 87.96e-3 6.01 5.96 99.10 0.10

Dubins 1 2.32 4.99 86.06 32.88e-3 15.18 37.10 97.76 34.15e-3

3 15.30 11.84 92.89 0.18 71.60 58.83 98.60 0.11

10 203.87 49.77 97.65 0.70 461.71 114.08 98.83 0.76

GCAS 1 5.85 6.08 83.12 30.62 39.28 47.65 97.02 31.423

1 45.27 17.84 94.60 83.61 174.00 71.11 98.07 98.10

The summary of an RTA performance is given out in a text file from which
visualizations like the one in Fig. 9 can be easily created. In addition to the
computation time, distance from the unsafe sets, distance from the other agents,
and controller usage, the minimum times to collision (TTC) for the unsafe sets
and other agents are also reported. The summary information is saved in such
a way that users can pull up snapshots of the scenario at any point in time.
This means that the user can examine the state of the scenario that caused
an unwanted result. Such functionality aids in the rapid prototyping of RTA
technologies and logics.

312 K. Miller et al.

Fig. 9. Example visualization from three agent dubins scenario. From left to right:
Controller usage plot, distance from other agents, and distance from unsafe sets. ego2
and ego3 denote the other aircraft.

4 Conclusion

We presented the RTAEval suite of Python-based tools for evaluating different
runtime assurance (RTA) logics. Different RTA switching logics can be quickly
coded in RTAEval, and we demonstrate its functionality in rapid prototyping
of RTA logics on a variety of examples. RTAEval can be used in multi-agent
scenarios and scenarios with perception models. Interesting next steps might
include extending the functionality of RTAEval to filtering methods such as ASIF
and scenarios that involve effects of proximity-based communication.

References

1. Aiello, A., Berryman, J., Grohs, J., Schierman, J.: Run-time assurance for advanced
flight-critical control systems. In: Proceedings of AIAA Guidance, Navigation, and
Control Conference, AIAA 2010–8041, Toronto, Ontario Canada, Aug., 2010 (2010)

2. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.:
Control barrier functions: theory and applications. In: 2019 18th European control
conference (ECC), pp. 3420–3431. IEEE (2019)

3. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandboxing controllers for cyber-
physical systems. In: 2011 IEEE/ACM Second International Conference on Cyber-
Physical Systems, pp. 3–12. IEEE (2011)

4. Cofer, D., et al.: Flight test of a collision avoidance neural network with run-time
assurance. In: Digital Avionics Systems Conference (2022)

5. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: Soter: a run-
time assurance framework for programming safe robotics systems. In: 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 138–150. IEEE (2019)

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban
driving simulator. In: Conference on robot learning, pp. 1–16. PMLR (2017)

7. Dunlap, K.: Run Time Assurance for Intelligent Aerospace Control Systems. Ph.D.
thesis, University of Cincinnati (2022)

8. Dunlap, K., Hibbard, M., Mote, M., Hobbs, K.: Comparing run time assurance
approaches for safe spacecraft docking. IEEE Control Syst. Lett. 6, 1849–1854
(2021)

RTAEval: A Framework for Evaluating Runtime Assurance Logic 313

9. Dunlap, K., Mote, M., Delsing, K., Hobbs, K.L.: Run time assured reinforcement
learning for safe satellite docking. J. Aerosp. Inf. Syst. 20(1), 25–36 (2023)

10. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for
nonlinear vehicle models. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 629–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 31

11. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 63–78 (2019)

12. Hibbard, M., Topcu, U., Hobbs, K.: Guaranteeing safety via active-set invariance
filters for multi-agent space systems with coupled dynamics. In: 2022 American
Control Conference (ACC), pp. 430–436. IEEE (2022)

13. Mehmood, U., Sheikhi, S., Bak, S., Smolka, S.A., Stoller, S.D.: The black-box
simplex architecture for runtime assurance of autonomous cps. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 231–250. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-06773-0 12

14. Mote, M.L., Hays, C.W., Collins, A., Feron, E., Hobbs, K.L.: Natural motion-
based trajectories for automatic spacecraft collision avoidance during proximity
operations. In: 2021 IEEE Aerospace Conference (50100), pp. 1–12. IEEE (2021)

15. Schierman, J., Ward, D., Dutoi, B., et al.: Run-time verification and validation for
safety-critical flight control systems. In: AIAA Paper 2008–6338, Proceedings of
the AIAA Guidance, Navigation, and Control Conference, Honolulu, Hawaii, Aug.,
2008 (2008)

16. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: American Control Conference (ACC) (1998)

17. Sha, L., et al.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28
(2001)

18. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and
Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-67361-5 40

19. Wadley, J., et al.: Development of an automatic aircraft collision avoidance system
for fighter aircraft. In: AIAA Infotech@ Aerospace (I@ A) Conference, p. 4727
(2013)

https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1007/978-3-030-53288-8_31
https://doi.org/10.1007/978-3-031-06773-0_12
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/978-3-319-67361-5_40

	RTAEval: A Framework for Evaluating Runtime Assurance Logic
	1 Introduction
	2 Overview of the RTAEval Framework
	2.1 Scenario Definition and Execution
	2.2 RTA Logics
	2.3 Data Collection, Evaluation, and Visualization

	3 RTAEval Examples
	4 Conclusion
	References

