
IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 1

Symmetry-based Abstractions for Hybrid
Automata

Hussein Sibai, member and Sayan Mitra, senior member

Abstract— A symmetry of a dynamical system is a map
that transforms any trajectory to another trajectory. Ab-
stractions have been a key building block in the theory and
practice of hybrid automata analysis. We introduce a novel
abstraction for hybrid automata based on the symmetries of
their modes. The abstraction procedure combines different
modes of a concrete automaton A , whose trajectories
are related by symmetries, into a single mode of the con-
structed abstract automaton B. The abstraction procedure
sets the invariant of an abstract mode to be the union of the
symmetry-transformed invariants of the concrete modes.
Similarly, it sets the guard and reset of an abstract edge
to be the union of the symmetry-transformed guards and
resets of the concrete edges. We establish the soundness
of the abstraction using a forward simulation relation (FSR)
and provide a running example. The abstraction achieves
an order of magnitude speedup when used for the safety
verification of vehicles pursuing reach-avoid tasks.

Index Terms— hybrid systems, abstraction, symmetry,
formal methods, reachability analysis.

I. INTRODUCTION

Hybrid system models bring together continuous and discrete
behaviors [1]–[3], and have proven to be useful in the design
and analysis of a wide variety of systems, ranging over automo-
tive, medical, manufacturing, and robotics applications. Exact
algorithmic solutions for many of the synthesis and analysis
problems for hybrid systems are known to be computationally
intractable [4]. Therefore, one aims to develop approximate
solutions, and the main approach is to work with an abstraction
of the hybrid system model. Roughly, an abstraction of a hybrid
automaton (HA) A is a simpler automaton B that subsumes
all behaviors of A . For example, B may have fewer variables
than A , or fewer modes, or it may have linear or rectangular
dynamics approximating A ’s nonlinear dynamics. A is called
the concrete, and B the abstract or virtual automaton. Ideally,
B is simpler and yet a useful over-approximation of A , and
the formal analysis and synthesis of B is tractable.

Several important verification and synthesis techniques for
HA have relied on abstractions. The early decidability results
for the verification of rectangular HA were based on creating
discrete and finite state abstractions [4]–[6]. Decidability results
based on abstractions for more general classes were presented

Hussein Sibai is with the Computer Science and Engineering
department at Washington University in St. Louis, St. Louis MO 63130,
USA (email: sibai@wustl.edu) and Sayan Mitra is with the Coordi-
nated Science Laboratory at the University of Illinois at Urbana-
Champaign, Urbana IL 61801, USA (email: mitras@illinois.edu). This
work was supported by AFOSR Research Grant (FA9550-23-1-0337)
HyDDRA Hybrid Dynamics - Deconstruction and Aggregation.

in [7], [8]. In a sequence of papers [9]–[11], metric-based
abstractions were developed for more general hybrid models
and shown to be useful for both verification and synthesis.
Techniques have been developed for automatically making
abstractions more precise using counterexamples [12]–[15].
Finally, several practical approaches have been proposed for
computing abstractions using linearization [16], state space
partitioning [13], [17], and hybridization [18].

An important characteristic of dynamical systems that has
not been explored for constructing abstractions is symmetry.
Symmetry in a dynamical system ẋ = f (x, p), with parameter
p, is a map γ that transforms solutions (or trajectories) of
the system to other trajectories. For example, consider a
trajectory ξ (t) = ξ (x0, p, t) for t ∈ R+, of a vehicle, starting
from x0 and following waypoint p. When ξ is shifted by a,
the result γa(ξ) is just the trajectory of the vehicle starting
from γa(x0) following ρa(p), which is p shifted by a. We call
this trajectory ξ ′, which is equal to ξ (γa(x0),ρa(p), ·). That
is, the symmetry γa relates different trajectories of the system.
Symmetries have been used for studying stability of feedback
systems [19], designing observers [20] and controllers [21],
[22], accelerating safety verification [23]–[25], performing
guaranteed integration [26], analyzing neural networks [27], and
deriving conservation laws [28] using Noether’s theorem [29].

Since both of ξ and ξ ′ are solutions of the system, and γa can
compute ξ ′ from ξ , then, in a sense, f has some redundancy.
A simpler version of f , would only have ξ as a solution, and
allows us to derive ξ ′ using γa. In this paper, we create such
versions by defining symmetry-based abstractions for HA.

Given a HA A having a set of discrete states (or modes) P
and a family of symmetry maps Φ, our abstraction partitions
P to create the abstract automaton Av. Each equivalent class
of the partition is represented by a single mode in Av. Any
trajectory ξ of any mode p ∈ P, can be transformed using a
particular symmetry map from Φ that is a function of p to
get a trajectory ξv of the representative abstract mode pv, and
vice versa. Accordingly, all concrete edges between any two
equivalent mode classes would be represented with a single
abstract edge. A set of concrete edges represented with the
same abstract edge forms an equivalent edge class. The edges
of A are annotated with guards and resets. These dictate
when the discrete transitions between modes can be taken and
how the state would be updated, respectively. The abstraction
transforms the guards and resets of all concrete edges using
the same symmetry maps in Φ used to transform trajectories.
Then, the abstraction procedure unions all of the transformed
guards and resets of an edge equivalent class to get the guard

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 2

and reset of the corresponding abstract edge. This means that
an execution of Av can transition over an edge ev if any of
the transformed guards of the edges of A that ev represents
is satisfied. Moreover, the execution would split into several
executions after a reset. Each of these executions start from a
transformed version of the state defined by the reset of an edge
of A that is represented by ev. We establish the soundness
of the abstraction using a forward simulation relation (FSR)
(Theorem 3). We present a running example of a robot with a 3-
dimensional kinematic single-track model following a sequence
of waypoints and use translation and rotation symmetries to
design its abstract automaton.

Our abstraction does not change the dimension of the state
space, nor does it change the complexity of the dynamics, while
resulting in an automaton with fewer modes. The abstraction
can be useful for solving several problems related to tractability
of synthesis and verification. In an earlier paper [30], we used
this abstraction to accelerate safety verification without formally
defining it. Safety verification requires us to check if there is any
execution of a HA that starts from a predefined compact set of
initial states and intersects a predefined set of unsafe states. In
[30], we presented a tool called SceneChecker that implements
the abstraction as well as a simple refinement algorithm. We
showed that it achieves an order of magnitude speedup in
verification time of several scenarios involving drones and cars
navigating cluttered environments with hundreds of obstacles
according to predefined plans with hundreds of waypoints.
In this technical note, we formally define the abstraction
using symmetries. We use SceneChecker for a simple safety
verification problem, concluding the running example.

A. HA Abstractions: brief literature review
Simulation relations and abstractions have been an essential

part of the formulation of HA [31], [32]. Several important
verification and synthesis techniques for HA have relied on
abstractions. We briefly discuss some of the existing abstraction-
refinement methods for verifying HA.

Doyen et al. presented a method that abstracts affine HA
using rectangular HA [33]. Jha et al. [34] presented an
abstraction-refinement algorithm for linear HA that leverages
the power of linear programming for counterexample validation
and refinement. Bogomolov et al. [35] defined an abstraction-
refinement algorithm that abstracts a given affine HA in two
steps. First, their algorithm overapproximates the dynamics
of each mode using a polytope-based differential inclusions.
Then, it combines different concrete modes in the same abstract
mode. Zutshi et al. [36] designed a counterexample-guided
abstraction refinement algorithm (CEGAR) for falsification,
instead of verification, for HA. Their algorithm implicitly
constructs tiling-based abstractions while searching for a valid
execution of the automaton that violates a given property. A line
of research by Prabhakar and Roohi et al. [14], [15] presented
a CEGAR-based verification algorithm for nonlinear HA. Their
method abstracts nonlinear hybrid atuomata by partitioning the
invariant state space of each mode and over-approximating the
dynamics using polytope-based differential inclusions.

Our abstraction method for HA is the first one that uses
symmetries. It maps the dynamics of the concrete modes

to the representative ones of the abstract modes through
symmetries instead of over-approximating them using rectan-
gular or polytopic differential inclusions. Thus, our algorithm
does not over-approximate continuous dynamics besides over-
approximating the invariants of the modes, while the other
methods do. That is a very important advantage for our method,
especially in safety verification and synthesis applications,
where over-approximation causes conservatism. Finally, the
other abstraction-refinement algorithms are orthogonal to ours
and can be composed with it.

II. MODEL AND PROBLEM STATEMENT

Notations: We denote by N, R, R>0, and R≥0 the sets of
natural numbers, reals, positive reals, and non-negative reals,
respectively; by |S|, the cardinality of a finite set S; by seq.len,
the length of a finite sequence seq; by seq[i : j], its elements
between i and j, inclusive; by [N], the set {0, . . . ,N−1}, where
N ∈ N. Given two vectors v ∈ Rn and u ∈ Rm, we define [v,u]
to be the vector of length n+m that results from appending
u to v. Given two vectors vl ,vr ∈ Rn, we define [vl ;vr] to be
the n-dimensional hyper-rectangle (l∞ ball) with vl defining
the left endpoints and vr defining the right endpoints of the
per-dimension intervals. Given ε ∈ (R+)n, we denote by B(v,ε)
the hyper-rectangle centered at v with the ith dimension sides
having a length of 2ε[i], for any i ∈ [n]. We denote diag(v)
to be the diagonal matrix with diagonal v. Given a function
γ : Rn →Rn and a set S ⊆Rn, we define γ(S) = {γ(x) | x ∈ S}.
We also define γ(v) = [γ(v1), . . . ,γ(vk)], ∀v ∈Rn×k. We define
arctan2(y,x) to be the phase of the complex number x+ jy.

A. Hybrid dynamics
We will use a standard HA modeling framework [32], [37].
Definition 1: A hybrid automaton is a tuple A =

⟨X ,P, inv,E,guard,reset, f ⟩, where
(a) X = Rn is the continuous state space and P ⊆ Rm is a

(possibly infinite) set of discrete states. Continuous states
are simply called states and the discrete ones are called
modes or parameters.

(b) inv : P → 2X defines the invariant set of states that the
automaton’s state must belong to when in a certain mode,

(c) E ⊆ P×P is the set of directed edges over modes that
define mode transitions,

(d) guard : E → 2X defines the set of states from which an
edge transition is enabled,

(e) reset : X ×E → 2X defines the updated (post) state after
a transition is taken, and

(f) f :Rn×Rm →Rn is a function, or vector field, that defines
the continuous state evolution. It is locally-Lipschitz
continuous in the first argument to guarantee the existence
and uniqness of solutions. We further assume that f
ensures that they exist for all t ∈ R≥0.

Formally, a function ξ : Rn ×Rm ×R≥0 → Rn defines the
trajectories of A if it is differentiable in its third argument,
and given an x0 ∈ Rn and a p ∈ Rm, ξ (x0, p,0) = x0 and for
all t ∈ R≥0,

d
dt

ξ (x0, p, t) = f (ξ (x0, p, t), p). (1)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 3

For any x0 ∈Rn and p ∈Rm, the function of time, or trajectory,
resulting from setting the first and second arguments of ξ to
x0 and p, respectively, is the unique solution ξ (x0, p, ·) of
system (1) starting from x0 following p, since f is locally-
Lipschitz continuous. We assume that it exists for any t ∈R≥0.
For any time-bounded trajectory ξ , i.e., defined over a finite
closed interval [0,T] in the third argument, dur(ξ) is T . The
first and last states, i.e., ξ (x0, p,0) (or, equivalently, x0) and
ξ (x0, p,T), are denoted by ξ .fstate and ξ .lstate, respectively.

The edge set E, the guard, and the reset together define the
discrete transitions. For simplicity, for an edge e = (p, p′) ∈ E,
we denote its source mode p by e.src and its destination
mode p′ by e.dest. Moreover, we abuse notation and denote
guard((p, p′)) by guard(p, p′). Then, guard(p, p′) is the set
from which a transition from mode p to mode p′ is possible.
For any state x ∈ guard(p, p′), the post-state x′ after the
transition has to be in reset(x,(p, p′)). Such state-mode pairs
((x, p),(x′, p′)) define the transitions of A and we write
(x, p)→ (x′, p′). Also, by representing edges as pairs of modes,
we assume without loss of generality that there exists at most a
single edge from any mode to any other mode. The abstraction
in Section IV generalizes straightforwardly to the case where
multiple edges between the same pair of modes exist. Finally,
urgent transitions can be enforced using inv: guards may be
ignored as long as the state belongs to the current mode
invariant. Otherwise, the automaton transitions or terminates.

The semantics of a HA is defined by its executions which
are sequences of trajectories and transitions. An execution
of A is a sequence of pairs of trajectories and modes
σ = (ξ0, p0),(ξ1, p1), . . . , where (a) each ξi is a trajectory
of A which belongs to inv(pi) at all times and (b) each
(ξi.lstate, pi) → (ξi+1.fstate, pi+1) is a transition as defined
above. A finite and time-bounded execution has a finite number
of discrete transitions and all of its trajectories are time-
bounded. The duration of a finite and time-bounded execution
σ = (ξ0, p0),(ξ1, p1) . . .(ξk, pk) is dur(σ) = ∑i dur(ξi) and its
last state is σ .lstate = ξk.lstate.

Example 1 (Robot following waypoints) Consider a robot
following a sequence of waypoints {wi ∈ R2 | i ∈ [4]} on the
plane connected with directed segments {ri ∈ R4 | i ∈ [5]}
forming an axis-aligned rectangle centered at the origin (see
Figure 1a). For any segment ri ∈ R4, we define ri.src to be
its first two coordinates ri[0 : 1] representing its start waypoint
and ri.dest to be its last two coordinates ri[2 : 3] specifying its
end waypoint. The robot starts from an arbitrary state in some
initial set Xinit ⊂R3, where the first two dimensions represent its
position and the third representing its heading angle, following
waypoint w0. We fix four possible rectangle dimensions: ε0, ε1,
ε2, εinv ∈ (R>0)2, with Xinit := B(r0.src,ε2) and εinv ≤ ε1 ≤ ε0
element-wise. We say that the robot reached w0 following
segment r0 if it is located in the rectangle B(w0,ε0). If it was
following segment r4 instead, we say it reached w0 if it is
located in the smaller rectangle B(w0,ε1). For any i ∈ {1,2,3},
we say that it reached the waypoint wi following segment ri if
it is located in B(wi,ε1). Once the robot reaches a waypoint
wi, it may start following the next segment, or keep following
the current one. However, once it is located in the rectangle
B(wi,εinv), it must switch to following the next segment.

To formalize the dynamics of the robot in this scenario,
we construct a corresponding hybrid automaton. We repre-
sent the five segments using five modes in the automaton,
i.e., P = {r0,r1,r2,r3,r4}. In each mode, the robot would
follow the destination waypoint of the corresponding seg-
ment. We define the resulting automaton as follows: B =
⟨X ,P, inv,E,guard,reset, f ⟩ (shown in Figure 1b), where
(a) X =R3, representing the position and heading angle with

respect to the x[0]-axis, and P := {pi := ri | i ∈ [5]} ⊆R4,
the set of segments in Figure 1a,

(b) ∀p ∈ P, inv(p) := R3\(B(p.dest,εinv)×R),
(c) E := {e0 := (p0, p1),e1 := (p1, p2),e2 := (p2, p3),e3 :=

(p3, p4),e4 := (p4, p1)},
(d)

guard(ei) :=

{
B(wi,ε0)×R, if i = 0,
B(wi,ε1)×R, if i ∈ {1,2,3,4}.

(e) ∀x ∈ X ,e ∈ E, reset(x,e) := {x}, and
(f) ∀x ∈ R3,∀p ∈ R4, f (x, p) := [vcos(x[2]),vsin(x[2]),

v tan(α)/L], where α is the steering angle which we
set to arctan2(p[3]− x[1], p[2]− x[0])− x[2] (the heading
angle tracking error) projected to a predefined interval
[αl ,αr]⊂ (−π/2,π/2), (x[0],x[1]) is the location of the
robot, x[2] is its heading angle, and v and L are its constant
speed and length. These dynamics are those of the rear
wheel in a kinematic single-track model, with v being
the forward speed and α being the steering angle of the
forward wheel [38].

III. SYMMETRY AND EQUIVARIANT DYNAMICAL SYSTEMS

In this section, we present an existing definition of symmetry
for continuous-time dynamical systems with parameters and a
sufficient condition for a map to be a corresponding symmetry.

A symmetry map γ acts on Rn, i.e. γ : Rn → Rn, such that
given a solution of the system, it maps it to another valid
solution. Throughout this manuscript, let Γ be a group of
differentiable transformations acting on Rn.

Definition 2 (Definition 1 in [39]) For any γ ∈Γ, we say it is
a symmetry of (1) if for any trajectory ξ (x0, p, ·), γ(ξ (x0, p, ·))
is a trajectory as well.
By γ(ξ (x0, p, ·)) in the definition above, we mean applying γ to
every state in the trajectory, or more formally, γ(ξ (x0, p, ·)) =
γ ◦ξ (x0, p, ·), where ◦ is the function composition operator.

Definition 3 ([39]) The vector field f : Rn ×Rm → Rn is
said to be Γ-equivariant if for any γ ∈ Γ, there exists ρ : Rm →
Rm such that,

∀x ∈ Rn,∀p ∈ Rm,
∂γ

∂x
f (x, p) = f (γ(x),ρ(p)). (2)

In this paper, we assume that the user of our abstraction
method will provide the symmetries and the HA. The following
theorem shows that it is sufficient to check the condition in
equation (2) to prove that the maps in Γ are symmetries of (1).

Theorem 1 (Theorem 10 in [39]) If f in (1) is Γ-equivariant,
then all maps in Γ are symmetries of (1). Moreover, for any
γ ∈ Γ and ρ : Rm →Rm that satisfy equation (2), x0 ∈Rn, and
p ∈ Rm, γ(ξ (x0, p, ·)) = ξ (γ(x0),ρ(p), ·).

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 4

(a)

(b)

Fig. 1: (1a) A robot, with a state containing its position and orientation, following a
sequence of 2D waypoints forming a rectangle starting from its initial set Xinit . It reaches
a waypoint if it reaches the rectangle centered at it. It has to reach the larger rectangle
centered at w0 when starting from Xinit . It can transition to following the next waypoint
once it reaches the one it is following, but might as well stay following the current one.
Once it enters a smaller rectangle centered at the waypoint (not shown in the figure for
simplicity) it must transition to following the next waypoint. (1b) The state machine
representing the discrete transitions of the hybrid automaton B describing the scenario
in Figure 1a with the segments being the modes. The resets are omitted since they are
just the identity map for all the modes. The invariants are also omitted for simplicity.

Note that if the maps in Γ are linear functions, then the
condition in equation (2) becomes γ(f (x, p)) = f (γ(x),ρ(p)).

Example 2 (Coordinate transformation symmetry) Consider
the robot presented in Example 1 and the corresponding
automaton of the scenario described in Figure 1a. Fix a p∗ ∈R4.
We define γct : R3 →R3 and ρct : R4 →R4 to be the maps that
transform the coordinate system of the plane where the robot
and segments reside. These maps transform the coordinate
system so that p∗ becomes collinear with the x[0]-axis and
p∗.dest be its origin. Formally, ∀x ∈ R3 and p ∈ R4,

γct(x) := [Rθ (x[0 : 1]− p∗.dest),x[2]−θ], (3)
ρct(p) := [Rθ (p.src− p∗.dest),Rθ (p.dest− p∗.dest)], (4)

where θ := arctan2(p∗.dest[1] − p∗.src[1], p∗.dest[0] −
p∗.src[0]) and

Rθ :=
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(5)

is the rotation matrix with angle θ . Then, we can check with
simple algebra, that for all x ∈ R3 and p ∈ R4, ∂γct

∂x f (x, p) =
f (γct(x),ρct(p)). An illustrating example of this coordinate
transformation and the resulting new trajectory and waypoint
being followed are shown in Figure 2.

Fig. 2: Changing the axes of the coordinate system so that the segment connecting
p∗.src = p∗[0 : 1] to p∗.dest = p∗[2 : 3] is the new x[0]-axis and p∗.dest is the new
origin. Such a transformation does not affect the intrinsic behavior of the robot, but only
transforms the states in its trajectories to conform with the new coordinate system. Such
a coordinate transformation is a valid symmetry.

IV. VIRTUAL OR ABSTRACT HYBRID AUTOMATON

In this section, we present our symmetry-based abstraction
for HA along with the corresponding FSR. Our abstract, or
virtual, automata have fewer numbers of modes and edges, than
their concrete counterparts. Our abstraction is an extension of
the concept of virtual system for parameterized dynamical
systems that we defined in [24], to HA. We use subscript v to
denote the components of the abstract, or virtual, automaton
and no subscript for those of the concrete, or real, one.

A. Creating the abstract automaton
In order to create the abstract, or virtual, HA, a family of

symmetries is needed.
Definition 4 (virtual map) Given a hybrid automaton A

with a Γ-equivariant vector field f , a virtual map is a set

Φ := {(γp,ρp)}p∈P, (6)

where {γp}p∈P ⊆ Γ and ∀p ∈ P, ρp : Rm →Rm satisfies, along
with γp, the following condition that is similar to equation (2):
∀x ∈ Rn,

∂γp
∂x f (x, p) = f (γp(x),ρp(p)).

To construct the abstract HA, for any p ∈ P, we are only
going to use ρp in Φ to transform p. Hence, for simplicity of
notation, we define the function rv : P → P, where ∀p ∈ P,

rv(p) := ρp(p). (7)

This function will be used in Definition 5 to map concrete
modes to representative abstract ones. Moreover, its preimage
will be the equivalent classes of concrete modes that the abstract
modes represent. From Theorem 1, it follows that for any p∈P,
γp transforms the trajectories of the concrete HA in mode p
to trajectories in mode rv(p).

A virtual map Φ ideally maps multiple concrete modes to
the same abstract mode. It is related to the concept of Cartan’s
moving frame [40]. A moving frame for a Γ-equivariant
dynamical system is a map from its state space to Γ. It selects
for each state a symmetry from Γ that when applied to that state,
it projects it to a lower-dimensional submanifold. This concept
has been used, for example, to design invariant observers [20]
and to reduce the dimensionality of dynamic programming [22].
In our case, one can potentially select a submanifold of Rm

and try to compute a moving frame that defines the virtual
map. The moving frame would map each p ∈ P to a pair (γ,ρ)
that satisfies the conditions in Definition 4 and has ρ that maps
p to the selected submanifold.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 5

Definition 5 (Abstract automaton) Given a hybrid automa-
ton A and a virtual map Φ, we define the abstract (virtual)
hybrid automaton as the following tuple:

Av := ⟨Xv,Pv, invv,Ev,guardv,resetv, fv⟩, where

(a) Xv := X and Pv := {rv(p)|p ∈ P},
(b) invv(pv) :=

⋃
p∈rv−1(pv)

γp
(
inv(p)

)
,

(c) Ev := rv(E) = {(rv(p1),rv(p2))|(p1, p2) ∈ E},
(d) ∀ev ∈ Ev, guardv(ev) :=

⋃
e∈rv−1(ev)

γe.src
(
guard(e)

)
,

(e) ∀xv ∈ Xv,ev ∈ Ev,

resetv(xv,ev) :=
⋃

e∈rv−1(ev)

γe.dest
(
reset

(
γ
−1
e.src(xv),e

))
, and

(f) ∀xv ∈ Rn, ∀pv ∈ Rm, fv(xv, pv) := f (xv, pv).
The trajectories and executions of the virtual hybrid au-

tomaton Av are defined as in Definition 1. In the case where
multiple edges exist between a pair of modes, the abstraction
can be straightforwardly generalized to represent these edges
too with the same abstract edge.

Example 3 (Abstract HA with a coordinate transformation
virtual map) To construct its abstract HA for the concrete HA
of Example 1, we need a virtual map Φ first. For every mode
p ∈ P, we define γp and ρp to be the coordinate transformation
maps γct and ρct that we presented in Example 2. Recall that
we need to fix a mode p∗ according to which γct and ρct
transform the coordinate systems of the state and mode spaces.
To construct the virtual system, when defining γp and ρp in
Φ, for each mode p ∈ P, we choose p∗ to be equal to p.
Figure 3a shows a visualization of transforming p2 using ρp2 .
The concrete mode p2 gets mapped to pv,2, which is a segment
on the x[0]-axis, as shown in Figures 3b and 3c. This means
that there will be as many abstract modes as there are segments
with distinct lengths of segments in the path.

Note that the robot in this example has dynamics that only
depend on the destination waypoint, instead of the whole
segment. Hence, modifying ρct to transform both the source and
destination waypoints to the origin, i.e., the segment becoming
a single point, while preserving γct to be the same as that of
Example 2, would also be a valid symmetry of the dynamics.
Thus, a set of symmetries that map all segments to the same
segment with zero length starting and ending at the origin
would also be a valid virtual map for the robot in this example.

Back to the abstract automaton definition, the set guard(e2),
becomes B(0, [ε1[1],ε1[0]])×R, after applying γp2 . This rect-
angle will be part of the guard of the abstract edge ev,2, per
Definition 5.(d). Its projection to the first two dimensions
is shown as the rectangle B(0, [ε1[1],ε1[0]]) centered at the
origin in Figure 3b. Similarly, the set inv(p2) becomes
R3\(B(0, [εinv[1],εinv[0]])×R) after applying γp2 , which in turn
becomes part of the invariant of the abstract mode pv,2.

Figure 3a also shows that the rectangle B(w1,ε1), which is
guard(e1)[0 : 1], becomes B(w1 −w2, [ε1[1],ε1[0]]), a rectangle
centered at w1 −w2 and rotated with π

2 radians, after applying
γp2 . Recall that the reset of any edge of B is just the identity
map. Hence, the rotated rectangle centered at w1−w2 represents
γp2(reset(guard(e1)),e1)[0 : 1]. This will be part of the set of

(a) A visualization of transforming p2 using ρp2 . The segment r2,
which is the concrete mode p2, becomes the x[0]-axis and its destination
waypoint p2.dest becomes the new origin. The original coordinate system
and the one resulting from transforming r0, or equivalently, p0, using
ρp0 are shaded along with the original scenario.

(b) The abstract (virtual) scenario. It consists of three segments of
waypoints, all aligned with the x[0]-axis and ending at the origin. The
(rotated) rectangles centered at the origin show the guards, projected to
the (x[0],x[1])-plane, of the abstract edges. The rotated rectangle closest
to the origin shows the abstract initial set. The further (rotated) rectangles
show the abstract reset applied to the states in the abstract guards, i.e.
the potential initial states of the robot following each abstract mode.

(c) The abstract automaton Bv modeling the scenario in Figure 3b,
where ∀i ∈ [0 : 4],θi = arctan2(ri.dest[1]− ri.src[1],ri.dest[0]− ri.src[0]).

Fig. 3: Constructing the abstract HA of Example 3.

possible reset states after transitioning over the virtual edge
ev,1 per Definition 5.(e). It is shown as the rectangle centered
at pv,2.src in Figure 3b.

The illustration above for p2 would be repeated for every
p ∈ P, to construct the abstract HA shown in Figure 3c. The
resulting abstract HA would be:

Bv = ⟨Xv,Pv, invv,Ev,guardv,resetv, fv⟩, where

(a) Xv = R3 and Pv = {pv,0 := rv(r0), pv,1 := rv(r1), pv,2 :=
rv(r2)},

(b) ∀i ∈ [3], invv(pv,i) = R3\γpi(B(pv,i.dest,εinv)×R),
(c) Ev = {ev,0 := (pv,0, pv,1),ev,1 := (pv,1, pv,2),ev,2 :=

(pv,2, pv,1)},

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 6

(d) ∀i ∈ [3], let pv,i = ev,i.src, then

guardv(ev,i) =

{
γpi(B(pv,i.dest,ε0)×R), if i = 0,
γpi(B(pv,i.dest,ε1)×R), if i ∈ {1,2},

(e) ∀xv ∈ Xv,

resetv(xv,ev,i) =

{γp1(γ

−1
p0

(xv))}, if i = 0,
{γp2(γ

−1
p1

(xv)),γp4(γ
−1
p3

(xv))}, if i = 1,
{γp3(γ

−1
p2

(xv)),γp1(γ
−1
p4

(xv))}, if i = 2,

(f) ∀xv ∈ R3,∀pv ∈ R4, fv(xv, pv) = f (xv, pv).
The resets of the guards of the three edges in Ev constitute
the set of all possible reseted states. They are shown as the
rectangles on the x[0]-axis, but not at the origin, in Figure 3b.

The abstract HA Bv has three modes and three edges versus
the five modes and five edges of B. In Figure 3b, the guards
and reseted guards are overlapping, as well as the (not shown)
invariants. This suggests that the reach set of Bv has a smaller
volume than that of B. That in turn means that the reach
sets or reachtubes computations would be generally easier and
faster for Bv than that for B.

B. Forward simulation relation (FSR)

In this section, we establish a correspondence from the
executions of the concrete HA to those of the abstract one
through a FSR [37], [41], [42]. A FSR is a standard approach
to relate the executions of two different HA.

Definition 6 (FSR [37]) A forward simulation relation from
a HA A1 to another one A2, is a relation R ⊆ (X1 ×P1)×
(X2 ×P2), such that

(a) for any state x1 ∈ X1 and mode p1 ∈ P1, there exist a state
x2 ∈ X2 and mode p2 ∈ P2, such that (x1, p1)R(x2, p2),

(b) for any discrete transition (x1, p1)→ (x′1, p′1) of A1 and
(x2, p2) ∈ X2 ×P2, where (x1, p1)R(x2, p2), there exists
(x′2, p′2)∈X2×P2 such that (x2, p2)→ (x′2, p′2) is a discrete
transition of A2 and (x′1, p′1)R(x′2, p′2), and

(c) for any trajectory ξ1(x1, p1, ·) of A1 and pair (x2, p2) ∈
X2 × P2, such that (x1, p1)R(x2, p2), there exists a
trajectory ξ2(x2, p2, ·), where dur(ξ1) = dur(ξ2) and
(ξ1.lstate, p1)R(ξ2.lstate, p2).

Existence of a FSR implies that for any execution of A1
there is a corresponding related execution of A2. The following
theorem is an adoption of Corollary 4.23 of [37] into our hybrid
modeling framework.

Theorem 2 (Executions correspondence [37]) If there exists
a FSR R from A1 to A2, then for every execution σ1 of A1,
there exists a corresponding execution σ2 of A2 such that

(a) σ1.len = σ2.len,
(b) ∀i ∈ [σ1.len], dur(ξ1,i) = dur(ξ2,i), and
(c) ∀i ∈ [σ1.len], (ξ1,i.lstate, p1,i)R(ξ2,i.lstate, p2,i).

Now we introduce a FSR from the concrete hybrid automaton
to the abstract one of Definition 5.

Theorem 3 (FSR: concrete to virtual) Consider the relation
Rrv ⊆ (X ×P)× (Xv ×Pv) defined as (x, p)Rrv(xv, pv) iff xv =
γp(x) and pv = rv(p). Then, Rrv is a FSR from A to Av.

Proof: Rrv satisfies Definition 6.(a) since for any x ∈
X and mode p ∈ P, γp(x) ∈ Xv, and pv = rv(p) ∈ Pv, by
Definition 5.(a).

To prove that Rrv satisfies Definition 6.(b), fix a discrete
transition (x, p)→ (x′, p′) of A and (xv, pv)∈ Xv×Pv such that
(x, p,xv, pv)∈Rrv. We will show that if we choose x′v = γp′(xv)
and p′v = rv(p′), then (x′v, p′v) ∈ Xv ×Pv, (x′, p′,x′v, p′v) ∈ Rrv,
and (xv, pv)→ (x′v, p′v) is a valid discrete transition of Av.

First, x′v ∈ Xv and p′v ∈ Pv, by Definition 5.(a). Second,
(x′, p′,x′v, p′v) ∈ Rrv since x′v = γp′(x′) and p′v = rv(p′). Third,
fix e = (p, p′). Then, by the definition of discrete transitions of
A , x ∈ guard(e) and x′ ∈ reset(x,e). Also, from the definition
of Ev in Definition 5.(c), the edge ev = (pv, p′v) ∈ Ev. By the
definition of Rrv and the assumption that x and xv are related
under Rrv, xv = γp(x). That means that xv ∈ γp(guard(e)),
since x ∈ guard(e). But, by Definition 5.(d), γp(guard(e)) ⊆
guardv(ev). Then, xv ∈ guardv(ev). Moreover, since x′ ∈
reset(x,e)) and x = γ−1

p (xv), then x′ ∈ reset(γ−1
p (xv),e). Hence,

x′v = γp′(x′) ∈ γp′(reset(γ−1
p (xv),e)). Using Definition 5.(e),

we know that γp′(reset(γ−1
p (xv),e)) ⊆ resetv(xv,ev). We have

x′v ∈ resetv(xv,ev). Therefore, (xv, pv) → (x′v, p′v) is a valid
discrete transition of Av.

To prove that Rrv satisfies Definition 6.(c), fix a solu-
tion ξ (x, p, ·) of A and a pair (xv, pv) ∈ Xv ×Pv, such that
(x, p,xv, pv) ∈ Rrv. Then, we will show that dur(ξ) = dur(ξv)
and (ξ (x, p,dur(ξ)), p, ξv(xv, pv,dur(ξ)), pv) ∈ Rrv. Since x
and xv are related under Rrv, then xv = γp(x). Moreover, using
Theorem 1, ∀t ∈ dur(ξ), ξ (γp(x),ρp(p), t)= γp(ξ (x, p, t)). But,
rv(p) = pv and using Definition 5.(f), ξ (γp(x),ρp(p), ·) =
ξv(γp(x), pv, ·), which is a solution of Av starting from
γp(x) = xv. Since ∀t ∈ [0,dur(ξ)], ξ (x, p, t) ∈ inv(p), then
γp(ξ (x, p, t)) ∈ γp(inv(p)). Since ξv(xv, pv, t) = γp(ξ (x, p, t))
and γp(inv(p))⊆ invv(pv), then ∀t ∈ [0,dur(ξ)], ξv(xv, pv, t) ∈
invv(pv), and thus ξv is valid as Av does not have to transition
or terminate because of an invariant violation. In addition,
from the assumption that the guards are non-urgent, we can
choose ξv that does not transition before dur(ξ). Therefore,
∀t ∈ dur(ξ), (ξ (x, p, t), p, ξv(xv, pv, t), pv) ∈ Rrv.

It is worth noting that there may not be a forward simulation
relation from Av to A . The guard and reset of an edge ev of Av
are the union of all the transformed versions of the guards and
resets of the edges of A that get mapped to ev. Hence, some
discrete transitions in Av may not have corresponding ones in
A . For example, consider two edges e1 = (p11, p12) and e2 =
(p21, p22) of A with rv(e1) = rv(e2) = ev = (pv1, pv2), an edge
of Av. Then, a transition over ev would be allowed in Av with
reseted state being γp22(reset(xv,e2)) if xv ∈ γp11(guard(e1)).
Such a transition may not have a correspondent one in A ,
since it resembles a transition from p11 to p22. Similarly, the
invariant of an abstract mode pv is the union of the transformed
versions of the invariants of the concrete modes mapped to it,
which might allow trajectories in the abstract automaton with
no corresponding concrete trajectories. Thus, some executions
of Av may not have corresponding executions in A . This
might lead to a scenario where Av might not satisfy a property
because of a spurious counter-example.

Example 4: We used SceneChecker [30] to verify the safety
of the automaton B of Example 1 against an unsafe set of

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 7

states with and without using the symmetry-based abstraction
Bv of Example 3. We used DryVR [43] as the reachability
engine in SceneChecker. The results are shown in Figure 4.
Instead of the state-based mode invariants of Example 1,
for simplicity, we used time-based ones, limiting the time
spent in p0 to 3 seconds, p1 and p3 to 8 seconds, and
p2 and p4 to 7 seconds. The unsafe set of states is the
hyper-rectangle U = [[−1,4,−∞]; [1,6,∞]] and the initial set
is Xinit = [[−5.1,−1.1,−0.1]; [−4.9,−0.9,0.1]]. The waypoints
are located at [−3,−2], [3,−2], [3,2], and [−3,2]. We set
v = 3, L = 2, αl = −π/4, αr = π/4, ε0 = [0.5,0.4,π], ε1 =
[0.2,0.2,π], and ε2 = [0.1,0.1,0.1]. To verify the safety of
Bv, SceneChecker transforms the concrete unsafe set to
corresponding unsafe sets for the abstract modes. Such a set
for an abstract mode pv would be Uv(pv) = ∪p∈rv−1(pv)

γp(U).
They are shown as the polygons with the red edges in Figure 4b.
SceneChecker then computes the reachable set of Bv by calling
DryVR to compute per-mode reachable sets and intersect them
with the guards to compute the per-mode initial sets of states.
For more details on SceneChecker, check [30]. Then, it checks
for each abstract mode pv, if its reachable set intersects Uv(pv).
If none of the per-mode abstract reachable sets intersect their
unsafe sets, then Bv is safe. Moreover, as a consequence of the
FSR defined earlier, B is safe as well. SceneChecker had to call
DryVR six times to compute per-mode reachable sets before
reaching a fixed point in the reachabililty computation of B
and verifying its safety directly (without using our abstraction),
taking a total of 158 ms of computation time. In contrast, it had
to call DryVR only four times to verify the safety of Bv (with
refinements disabled), and that of B as a consequence, taking a
total of 96 ms. The improvement in computation time increases
with the number of symmetric modes, as demonstrated in [30].

V. CONCLUSION

We presented the first symmetry-based abstractions of hybrid
automata. Our abstractions create automata with fewer number
of modes and edges than the concrete ones by aggregating sets
of modes into individual ones. Symmetry maps transform trajec-
tories of a concrete mode to ones of its representative abstract
one, and vice versa. We showed a forward simulation relation
that proves the soundness of our abstraction (Theorem 3). We
provided a running example to illustrate our approach. In our
previous paper [30], we implemented the abstraction with a
simple refinement algorithm to accelerate the safety verification
of vehicles navigating complex environments. We presented a
CEGAR algorithm based on our abstraction in [44].

REFERENCES

[1] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.
[Online]. Available: http://www.jstor.org/stable/j.ctt7s02z

[2] A. van der Schaft and H. Schumacher, An Introduction to Hybrid
Dynamical Systems. London: Springer, 2000.

[3] R. Alur, Principles of Cyber-Physical Systems. The MIT Press, 2015.
[4] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable

about hybrid automata?” Journal of Computer and System Sciences,
vol. 57, pp. 94–124, 1998.

[5] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstrac-
tions of hybrid systems,” in Proceedings of the IEEE, 2000.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[7] V. Vladimerou, P. Prabhakar, M. Viswanathan, and G. E. Dullerud,
“STORMED hybrid systems,” in Automata, Languages and Programming,
ICALP 2008, ser. LNCS, vol. 5126. Springer, 2008, pp. 136–147.

[8] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid systems,”
Mathematics of control, signals and systems, vol. 13, no. 1, pp. 1–21,
2000.

[9] A. Girard, “Controller synthesis for safety and reachability via
approximate bisimulation,” Automatica, vol. 48, no. 5, pp. 947 – 953,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S000510981200088X

[10] P. Tabuada, G. J. Pappas, and P. U. Lima, “Composing abstractions
of hybrid systems.” in HSCC 2002, ser. LNCS, C. Tomlin and M. R.
Greenstreet, Eds., vol. 2289. Springer, 2002, pp. 436–450.

[11] P. Tabuada and G. J. Pappas, “Hybrid abstractions that preserve timed
languages,” in Proceedings of the 4th International Workshop on Hybrid
Systems: Computation and Control, ser. HSCC ’01. Berlin, Heidelberg:
Springer-Verlag, 2001, p. 501–514.

[12] A. Fehnker, E. M. Clarke, S. K. Jha, and B. H. Krogh, “Refining
abstractions of hybrid systems using counterexample fragments,” in
HSCC‘2005, ser. Lecture Notes in Computer Science, M. Morari and
L. Thiele, Eds., vol. 3414. Springer, 2005, pp. 242–257.

[13] R. Alur, T. Dang, and F. Ivančić, “Counterexample-guided predicate
abstraction of hybrid systems,” Theoretical Computer Science, vol. 354,
no. 2, pp. 250–271, 2006.

[14] N. Roohi, P. Prabhakar, and M. Viswanathan, “HARE: A hybrid
abstraction refinement engine for verifying non-linear hybrid automata,”
in Tools and Algorithms for the Construction and Analysis of Systems
- 23rd International Conference, TACAS 2017, 2017, pp. 573–588.
[Online]. Available: https://doi.org/10.1007/978-3-662-54577-5_33

[15] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Hybrid
automata-based CEGAR for rectangular hybrid systems,” Formal
Methods in System Design, vol. 46, no. 2, pp. 105–134, 2015. [Online].
Available: https://doi.org/10.1007/s10703-015-0225-4

[16] S. Sankaranarayanan, “Change-of-bases abstractions for non-linear
hybrid systems,” Nonlinear Analysis: Hybrid Systems, vol. 19, pp. 107 –
133, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1751570X15000540

[17] K. Hsu, R. Majumdar, K. Mallik, and A.-K. Schmuck, “Lazy
abstraction-based control for safety specifications,” in 57th IEEE
Conference on Decision and Control, CDC 2018, Miami, FL, USA,
December 17-19, 2018, 2018, pp. 4902–4907. [Online]. Available:
https://doi.org/10.1109/CDC.2018.8619659

[18] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization of nonlinear
systems,” 01 2010, pp. 11–20.

[19] P. Mehta, G. Hagen, and A. Banaszuk, “Symmetry and symmetry-
breaking for a wave equation with feedback,” SIAM J. Applied Dynamical
Systems, vol. 6, pp. 549–575, 01 2007.

[20] S. Bonnabel, P. Martin, and P. Rouchon, “Symmetry-preserving observers,”
IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2514–2526,
2008.

[21] M. W. Spong and F. Bullo, “Controlled symmetries and passive walking,”
IEEE Transactions on Automatic Control, vol. 50, no. 7, pp. 1025–1031,
July 2005.

[22] J. Maidens, A. Barrau, S. Bonnabel, and M. Arcak, “Symmetry reduction
for dynamic programming,” Automatica, vol. 97, pp. 367–375, 2018.

[23] H. Sibai, N. Mokhlesi, and S. Mitra, “Using symmetry transformations in
equivariant dynamical systems for their safety verification,” in Automated
Technology for Verification and Analysis, 2019, pp. 1–17.

[24] H. Sibai, N. Mokhlesi, C. Fan, and S. Mitra, “Multi-agent safety
verification using symmetry transformations,” in Tools and Algorithms
for the Construction and Analysis of Systems, A. Biere and D. Parker,
Eds. Cham: Springer International Publishing, 2020, pp. 173–190.

[25] S. Mitra and H. Sibai, “Symmetry for boosting algorithmic proofs of
cyberphysical systems,” Computer, vol. 55, no. 10, pp. 88–93, 2022.

[26] J. Damers, L. Jaulin, and S. Rohou, “Lie symmetries applied to interval
integration,” Automatica, vol. 144, p. 110502, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0005109822003612

[27] L. G’erard and J.-J. E. Slotine, “Neuronal networks and controlled
symmetries, a generic framework,” 2006.

[28] J. Hanc, S. Tuleja, and M. Hancova, “Symmetries and conservation
laws: Consequences of noether’s theorem,” American Journal of Physics
- AMER J PHYS, vol. 72, pp. 428–435, 04 2004.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2017 8

−5.0 −2.5 0.0 2.5 5.0
x[0]

−4

−2

0

2

4

6

x[
1]

(a) Reachable set of the concrete automaton

−10 −8 −6 −4 −2 0 2 4
x[0]

−4

−2

0

2

4

6

8

10

x[
1]

(b) Reachable set of the abstract automaton

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
x[0]

−4

−2

0

2

4

6

x[
1]

(c) Reachable set of the concrete automaton obtained
through transforming those of the abstract one in Figure 4b.

Fig. 4: Reachable sets computed using SceneChecker for the automata in Examples 1 and 3. Each color corresponds to an abstract mode, with non-polgyon shapes representing
reachable sets. Each reachable set has a different color in Figure 4a since each abstract mode represents a single concrete mode as no abstraction is being done. Red rectangles in
Figures 4a and 4c represent the unsafe set, while the small blue rectangles represent the initial set. Polygons with red edges in Figure 4b represent the unsafe set in Figure 4a
transformed to the relative coordinates defined by the segments mapped to the same abstract mode as their filling color. Black segments are the segments between waypoints.

[29] E. Noether, “Invarianten beliebiger differentialausdrücke,” Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse, vol. 1918, pp. 37–44, 1918. [Online]. Available:
http://eudml.org/doc/59011

[30] H. Sibai, Y. Li, and S. Mitra, “Scenechecker: Boosting scenario
verification using symmetry abstractions,” in Computer Aided Verification,
A. Silva and K. R. M. Leino, Eds. Cham: Springer International
Publishing, 2021, pp. 580–594.

[31] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, pp. 105–157, August
2003.

[32] R. Alur, C. C. T. A. Henzinger, and P. H. Ho., “Hybrid automata:
an algorithmic approach to the specification and verification of hybrid
systems,” in Hybrid Systems, ser. LNCS, R. L. Grossman, A. Nerode,
A. P. Ravn, and H. Rischel, Eds., vol. 736. Springer-Verlag, 1993, pp.
209–229.

[33] L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Automatic rectangular
refinement of affine hybrid systems,” in Proceedings of the Third
International Conference on Formal Modeling and Analysis of Timed
Systems, ser. FORMATS’05. Berlin, Heidelberg: Springer-Verlag, 2005,
p. 144–161. [Online]. Available: https://doi.org/10.1007/11603009_13

[34] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke, “Reachability
for linear hybrid automata using iterative relaxation abstraction,” in
Proceedings of the 10th International Conference on Hybrid Systems:
Computation and Control, ser. HSCC’07. Berlin, Heidelberg: Springer-
Verlag, 2007, p. 287–300.

[35] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. Pasareanu,
A. Podelski, and T. Strump, “Assume-guarantee abstraction refinement
meets hybrid systems,” in Hardware and Software: Verification and
Testing, E. Yahav, Ed. Cham: Springer International Publishing, 2014,
pp. 116–131.

[36] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski,
“Multiple shooting, cegar-based falsification for hybrid systems,” in
Proceedings of the 14th International Conference on Embedded Software,
ser. EMSOFT ’14. New York, NY, USA: Association for Computing
Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2656045.
2656061

[37] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory
of Timed I/O Automata, ser. Synthesis Lectures on Computer Science.
Morgan Claypool, November 2005, also available as Technical Report
MIT-LCS-TR-917, MIT.

[38] B. Paden, M. Čáp, S. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[39] G. Russo and J.-J. E. Slotine, “Symmetries, stability, and control in
nonlinear systems and networks,” Physical Review E, vol. 84, no. 4, p.
041929, 2011.

[40] E. J. Cartan and J.-L. Leray, “La théorie des groupes finis et continus
et la géométrie différentielle traitées par la méthode du repère mobile :
leçons professées à la sorbonne,” 1937.

[41] S. Mitra, “A verification framework for hybrid systems,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA
02139, September 2007. [Online]. Available: http://people.csail.mit.edu/
mitras/research/thesis.pdf

[42] A. Girard, A. A. Julius, and G. J. Pappas, “Approximate simulation
relations for hybrid systems,” in IFAC Analysis and Design of Hybrid
Systems, Alghero, Italy, June 2006.

[43] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Data-driven verification
and compositional reasoning for automotive systems,” in Computer Aided
Verification. Springer International Publishing, 2017, pp. 441–461.

[44] H. Sibai, “Accelerating cerification of cyber-physical systems using sym-
metry,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
2021.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3327329

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on October 29,2023 at 18:07:06 UTC from IEEE Xplore. Restrictions apply.

