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Abstract. Parallel and distributed computing holds a promise of scal-
ing verification to hard multi-agent scenarios such as the ones involv-
ing autonomous interacting vehicles. Exploiting parallelism, however,
typically requires handcrafting solutions using knowledge of verification
algorithms, the available hardware, and the specific models. The Ray
framework made parallel programming hardware agnostic for large-scale
Python workloads in machine learning. Extending the recently developed
Verse Python library for multi-agent hybrid systems, in this paper we
show how Ray’s fork-join parallelization can help gain up to 6× speedup
in multi-agent hybrid model verification. We propose a parallel algorithm
that addresses the key bottleneck of computing the discrete transitions
and exploits concurrent construction of reachability trees, without locks,
using dynamic Ray processes. We find that the performance gains of
our new reachset and simulation algorithms increase with the availabil-
ity of larger number of cores and the nondeterminism in the model. In
one experiment with 20 agents and 399 transitions, reachability analysis
using the parallel algorithm takes 35min on a 8 core CPU, which is a
6.28× speedup over the sequential algorithm. We also present an incre-
mental verification algorithm that reuses previously cached computations
and compare its performance.

1 Introduction

The hybrid automaton framework is useful for precisely describing and simulat-
ing scenarios involving interacting autonomous vehicles and other types of intel-
ligent agents [1,4,8,9,11,15,20,23]. Parallel computing holds promise in scaling
the verification of such hybrid models to scenarios with many agents, which in
turn, multiply the number of expensive mode transitions that have to be com-
puted. Despite several recent efforts [3,7,12] that we discuss in Sect. 2, build-
ing effective parallel verification algorithms remains a difficult art. It requires
detailed knowledge of the computing hardware, the parallelism in the target
models and how parallelism could be exploited in the verification algorithm.
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Parallelization is particularly important for multi-agent hybrid scenarios. As
the agents interact, they make decisions that are modeled as discrete transitions
and the number of transitions to be computed usually blows up over the analysis
time horizon. For reachability analysis algorithms—a mainstay for verification—
the set of reachable states is computed using two functions: (a) a postCont func-
tion computes the set of states that can be reached over a fixed time, while the
agents follow a given dynamics (or mode). And, (b) a postDisc function com-
putes the change in state when an agent makes a decision or a transition. For
nondeterministic decisions (e.g., brake or steer to avoid collision), multiple post-
Disc computations have to be performed. A reachability algorithm thus builds a
tree, the reachtree, where each branch corresponds to the unique choices made
by all the relevant agents. Even with deterministic models, as a set of states is
propagated forward in reachability analysis, this set can trigger multiple transi-
tions. All of this contributes to an explosion of the reachtree, which often grows
exponentially with longer analysis horizons and larger numbers of agents.

The Ray framework from RISELab has made it easier for application devel-
opers to scale-up their data science and machine learning algorithms through
parallel computing, without having them worry about compute infrastructure
details [19,21]. Ray supports the fork-join style of parallelization with remote
function calls that run on other cores on the same machine or other machines.
This style of parallelization is hardware agnostic and is easier to use as it does
not involve the explicit use of synchronization primitives like locks.

In this paper, we propose and implement a Ray-based parallel reachability
algorithm that utilizes the fact that different branches in the reachtree can be
computed independently. This approach allows us to compute multiple branches
of the tree simultaneously, which improves analysis performance. We use the
recently developed Python Verse library [18] for multi-agent hybrid systems, as
the underlying framework within which we develop our parallelized algorithm. In
our experiments, we see that the parallel reachability algorithm can be effective
in improving performance, especially in more complex hybrid automata models
where more nondeterministic branching can occur. In an experiment involving
several vehicles in a 4-way intersection (called isect(4,20) in Sect. 5), we get a
6.28× performance boost over the original sequential version of the reachability
algorithm in Verse.

In industrial applications, verification procedures can be integrated in the
CI/CD pipelines [6,22]. For engineers to use the verification results, it has been
observed that the algorithms should run in 15–20 min and not over hours [5,
22,24]. One of the ways in which this level of performance is achieved in the
above studies is by performing incremental verification. That is, the verification
algorithm only runs on the relevant part of the codebase that changes in each
developer commit, and the algorithm reuses proofs from in previous verification
runs. Inspired by these observations, our second contribution in this paper is the
development of an incremental verification algorithm for hybrid scenarios.

This algorithm maintains a cache which contains information on previously
computed trajectories and discrete transitions. These results are indexed with
the state of the system. If the system reaches a state similar to one in the cache,



Parallel and Incremental Verification of Hybrid Automata 97

then its result can be reused. Instead of caching the result of every timestep,
the incremental verification algorithm uses the same task unit as the parallel
algorithm, making it possible to use both algorithms at the same time and
have the best of both worlds. In the experiments we see that the incremental
verification algorithm is able to reuse some computations and significantly speed
up analysis in some situations, while in others it provides no benefits.

The rest of the paper is organized as follows: In Sect. 2 we discuss related
work on parallel verification of hybrid systems. Section 3 introduces hybrid multi-
agent scenarios and how they translate into hybrid automata. We will present the
design and the correctness of our parallel and incremental verification algorithms
in Sect. 4. Finally, in Sect. 5 we will present the experimental evaluation of these
algorithms.

2 Related Work

A number of software tools have been developed for creating, simulating, and
analyzing hybrid system models. Table 1 summarizes the actively maintained
tools and those that have incorporated some form of parallelization.

Table 1. Parallelization methods used in hybrid verification tools.

Tool name Parallelization
target

Supported
dynamics

Language/library

C2E2 [8] None nonlinear C++
SpaceEx [11] None linear Java
Flow∗ [4] None nonlinear C++
DryVR [10] None nonlinear Python
XSpeed [12] CPU & GPU linear C++
JuliaReach [3] CPU nonlinear Julia
CORA [1] None nonlinear Matlab
dreach [17] None nonlinear C++
HyLAA [2] None linear Python
PIRK [7] CPU & GPU nonlinear C++, pFaces
this paper CPU nonlinear Python, Ray

Both CPUs and GPUs can be used to parallelize computation, but they differ
in the type of tasks suitable for parallelization on each. The complex cores of
CPUs today make them good at computing complex algorithms serially, but
common desktop-grade CPUs only have 8 to 32 cores. On the other hand, GPUs
have much simpler cores but many of them, from hundreds to thousands. This
makes them efficient at performing many numerical calculations at the same
time, but unsuitable for any algorithm involving complex logic.



98 H. Zhu et al.

JuliaReach [3] utilizes CPU-based parallelization for boosting the perfor-
mance of reachability computation. PIRK [7] uses the pFaces [16] runtime to par-
allelize reachability of continuous states using both CPUs and GPUs. XSpeed [12]
besides CPU also support using GPUs for accelerating the computation of con-
tinuous and discrete state evolutions. The Ray framework [21] was developed at
RISELab at UC Berkeley with the aim to make parallel and distributed com-
puting easier for researchers by helping them focus on application development
work, regardless of the specifics of their compute cluster. The Ray framework has
been used in several successful projects, including Uber using it for performing
large-scale deep learning training for autonomous vehicles. To the best of our
knowledge, our work is the first to parallelize hybrid system reachability analysis
with Ray.

One approach to parallelize reachability analysis algorithms is to spawn a
collection of threads, each of which explores a part of the reachable state space.
The downside of this approach is that resources, such as memory, are shared
between different threads, which in turn, implies the need for locking. We have
chosen to use Ray [21], a popular parallelization framework for Python, for imple-
menting parallel verification algorithms. The use of Ray allows us to implement
algorithms without using locks.

XSpeed is a hybrid automaton verification tool that incorporated several par-
allelization algorithms [12]. We have adapted the AsyncBFS algorithm imple-
mented in XSpeed to Verse. However, there are several differences in the designs.
First, XSpeed is only able to handle linear systems, more specifically, invertible
linear systems, while our algorithm is able to handle non-linear systems. Second,
explicit locking is no longer necessary due to Ray’s design. Last but not least,
we have chosen a different granularity of parallelization in Verse that is coarser
than the algorithm presented in XSpeed. XSpeed’s algorithm assigns one pair of
postCont and postDisc as the task for a single thread. However, we have cho-
sen to use a batch of several post operations as a task. This is mainly due to
one of Python’s limitations. The Python interpreter uses a Global Interpreter
Lock (GIL) which prevents Python code from utilizing multi-threading capabil-
ities, and multiple processes have to be used instead to achieve parallelism. In
this case, all the resources, including the input hybrid automaton and computed
reachable sets, have to be copied back and forth between different processes
and the overhead for this can be high. Therefore, we choose to use the batch
operation to reduce the number of copying needed.

3 Preliminaries: Hybrid Multi-agent Scenarios

In this paper, we are basing our algorithms on hybrid multi-agent scenarios. Each
of these scenarios contains a collection of agents interacting in an environment.
We will describe the agents and scenario in this section and in Sect. 3.2 we will
discuss how a scenario formally defines a hybrid system.
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Fig. 1. Left: A 4-way intersection scenario with 2 lanes in each direction, showing the
lane boundaries. Each lane extends very far outside of the picture. Right: Computed
reachsets with 3 agents (represented with 3 different colors) on the intersection scenario
with 3 lanes in each direction. The red car goes from north to south, the green car goes
from east to west, and the blue car goes from east to south. (Color figure online)

3.1 Agents in Hybrid Scenarios

An agent is a hybrid automaton that reacts based on the states of all agents in
the scenario. An A in a scenario with k − 1 other agents is defined by a tuple
A = 〈X,D,X0, d0, G,R, F 〉, where

1. X and D are the continuous state space and discrete mode space respectively,
X0 is the set of initial continuous states and d0 is the initial mode;

2. G and R are the guards and resets functions for the agent, which jointly define
the discrete transitions for the agent;

3. F is the flow function, which defines the evolution of the continuous states.

We will describe each of these components briefly.
X is the agent’s continuous state space. In Fig. 1 we show the environment

of an intersection example. The continuous state variables can be x, y, θ, v for
the position, heading, and speed for the vehicle agents in this example. D is the
agent’s discrete mode space. In the intersection example, some of the modes can
correspond to the internal state of the agent, while others can correspond to its
location in the environment. One possible discrete mode could be 〈SW-0, Normal〉,
where SW-0 means the agent is tracking the leftmost lane going from south to
west, and Normal means the agent is cruising along the road.

The guard G and reset R functions jointly define the discrete transitions.
For a pair of modes d, d′ ∈ D, G(d, d′) ⊆ Xk defines the condition under which
a transition from d to d′ is enabled, and R(d, d′) : Xk → X defines how the
continuous states of the agent are updated when the mode switch happens.
Both of these functions take as input the full continuous states of all the other
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k − 1 agents in the scenario. This means that the transitions of every agent can
depend on its own state that also on the observable1 state of the other agents.
For a single agent, we refer to the combination of guards and resets for that
agent as a decision logic.

The flow function F : X×D×R
≥0 → X defines the continuous time evolution

of the continuous state. For any initial condition 〈x0, d0〉 ∈ Y , F (x0, d0)(·) gives
the continuous state of the agent as a function of time. In this paper, we use F
as a black-box function (see footnote2).

3.2 Scenario to Hybrid Verification

A scenario SC is defined by a collection of k agent instances {A1...Ak}. We
assume agents have identical state spaces, i.e., ∀i, j ∈ {0, ..., k − 1},Xi =
Xj ,Di = Dj , but they can have different decision logics and different continu-
ous dynamics. We make this assumption to simplify the implementation of the
handling of the decision logic. This does not affect the expressive power of Verse
as different state variable and mode types could be unioned into a single type.

Next, we define how a scenario SC specifies a hybrid automaton H(SC). We
will use a hybrid automaton close to that in Definition 5 of [10]. As usual, the
automaton has discrete and continuous states and discrete transitions defined
by guards and resets.

Given a scenario with k agents, SC = {A1, ...Ak}, the corresponding hybrid
automaton H(SC) = 〈X,X0,D,D0,G,R,TL〉, where

1. X :=
∏

i Xi is the continuous state space. An element x ∈ X is called a state.
X0 :=

∏
i X0

i ⊆ X is the set of initial continuous states.
2. D :=

∏
i Di is the mode space. An element d ∈ D is called a mode. d0 :=∏

i d0i ⊆ D is the initial mode.
3. For a pair of modes d,d′ ∈ D, G(d,d′) ⊆ X defines the continuous states

from which a transition from d to d′ is enabled. A state x ∈ G(d,d′) iff there
exists an agent i ∈ {1, ..., k}, such that xi ∈ Gi(di,d′

i) and dj = d′
j for j �= i.

4. For a pair of modes d,d′ ∈ D, R(d,d′) : X → X defines the change of
continuous states after a transition from d to d′. For a continuous state
x ∈ X, R(d,d′)(x) = Ri(di,d′

i)(x) if x ∈ Gi(di,d′
i), otherwise = xi.

5. TL is a set of pairs 〈ξ,d〉, where the trajectory ξ : [0, T ] → X describes the
evolution of continuous states in mode d ∈ D. Given d ∈ D,x0 ∈ X, ξ should
satisfy ∀t ∈ R

≥0, ξi(t) = Fi(x0
i ,di)(t).

1 The observable state is defined by a sensor function; here we assume that the full
state is observable.

2 This design decision is relatively independent. For reachability analysis, we currently
uses black-box statistical approaches implemented in DryVR [10] and NeuReach [25].
If the simulator is available as a white-box model, such as differential equations, then
the algorithm could use model-based reachability analysis.
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In [18] it is shown that H(SC) is indeed a valid hybrid automaton for a
scenario with k agents SC = {A1, ...,Ak} provided that all agents have identical
sets of states and modes, Yi = Yj ,∀i, j ∈ {0, ..., k − 1}.

For some trajectory ξ we denote by ξ.fstate, ξ.lstate, and ξ.ltime the initial
state ξ(0), the last state ξ(T ), and ξ.ltime = T . For a sampling parameter δ > 0
and a length m, a δ-execution of a hybrid automaton H = H(SC) is a sequence
of m labeled trajectories α(x0,d0;m) := 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉, such that

(1) ξ0.fstate = x0 ∈ X0,d0 ∈ D0;
(2) ∀i ∈ {1, ...,m − 1}, ξi.lstate ∈ G(di,di+1) and

ξi+1.fstate = R(di,di+1)(ξi.lstate);
(3) ∀i ∈ {1, ...,m − 1}, ξi.ltime = δ for i �= m − 1 and

ξi.ltime ≤ δ for i = m − 1.

We define the first and last state of an execution β = α(x0,d0;m) =
〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉 as β.fstate = ξ0.fstate = x0, β.lstate = ξm−1.lstate
and the first and last mode as β.fmode = d0 and β.lmode = dm−1.

3.3 Bounded Reach Sets

We will define a pair of post operators, that will be useful in the computation of
executions. Consider a scenario SC with k agents and the corresponding hybrid
automaton H(SC). For any δ > 0, continuous state x ∈ X and a pair of modes
d,d′, the discrete postd,d′ : X → X and continuous postd,δ : X → X operators
are defined as follows:

postd,d′(x) = x′ ⇐⇒ x ∈ G(d,d′) and x′ = R(d,d′)(x)

postd,δ(x) =
⋃

t∈[0,δ)

∏

i∈{1,...,k}
Fi(xi,di, t)

These operators are also lifted to sets of states in the usual way. If part of the
input states are not contained within the guard conditions, they will be ignored
in the returned result by postd,d′ .

In addition, we define postd,δ(x).lstate =
∏

i∈{1,...,k} Fi(xi,di, δ), in other
words postd,δ(x).lstate represents the frontier of the continuous states after δ-
time. We conclude this section with the definition of the bounded reachable
states of H(SC).

Definition 1. The bounded reachable states of H(SC) is

Reach(X0,d0, δ, Tmax) =
⋃

x0∈X0

α(x0,d0;m)
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where: (1) X0 ⊆ X and d0 ∈ D are the initial states of the hybrid automaton; (2)
Tmax is the time horizon; (3) α(x0,d0;m) is a valid execution; (4) m = �Tmax

δ 
is the length of execution.

4 Parallel and Incremental Verification Algorithms

In this section, we will describe the parallel and incremental algorithms for com-
puting reachable states that we have implemented in Verse. We will also discuss
their correctness. For the sake of a self-contained presentation, we will first intro-
duce several important notations and subroutines in the context of the sequential
reachability algorithm. Then in Sect. 4.2 and 4.3, we will add in optimizations
before getting to the final version of the algorithm.

4.1 Reachability Analysis

Recall that for a scenario SC and its hybrid system model H(SC), X and D
are respectively the continuous state space and discrete mode space. The build-
ing blocks for all reachability algorithms are two functions postCont(d0, δ,X0)
and postDisc(d0,d1,X0) that compute (or over-approximate) postd0,δ(X

0) and
postd0,d1(X0), respectively. Similar to Sect. 3.3, we will use postCont(d0, δ,X0).
lstate to denote the frontier of postCont(d0, δ,X0). In Verse, postCont is imple-
mented using algorithms in [10,25].

The sequential verify function implements a reachability analysis algorithm
using these post operators (Algorithm 1). This algorithm constructs an exe-
cution tree Tree = V up to depth Tmax in breadth-first order. Each node
N = 〈X,d, t, stride, children〉 ∈ V is a tuple of a set of states, a mode, the start
time, the stride, which can be computed by postCont, and children of the current
node. The root is 〈X0,d0, 0, stride, children〉 given a initial set of states X0 and
mode d0. The children field of each node provides the edge relations for the tree.
There is an edge from 〈X,d, t, stride, children〉 to 〈X′,d′, t′, stride′, children′〉 if
and only if X′ = postd,δ(postd,d′(X)).lstate and t′ = t + δ. We will use the dot
field access notation to refer to fields of a node. For example for a node N ,
N.stride and N.X refers to the stride and the set of initial states in N .

Note that one of the arguments to the verify_step function is a node with
only the X, d and t fields populated. After this function executes, it populates
the stride and children fields of the node N and returns a completed node.

To show the correctness of the verify algorithm, we will first show some
key properties of the verify_step function in Proposition 1. Throughout this
section, we fix a scenario SC and the corresponding hybrid automaton H(SC).
Let X and D be the continuous and discrete state spaces of H(SC).
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Algorithm 1
1: function verify_step(N, δ) where N.stride = ∅, N.children = ∅

2: N.stride ← postCont(N.X, N.d, δ)
3: for d′ ∈ D s.t. G(N.d,d′) ∩ N.stride.lstate �= ∅ do
4: X′ ← postDisc (N.stride.lstate, N.d, d’)
5: N.children ← N.children ∪ 〈X′,d′, N.t+ δ, ∅, ∅〉
6: return N

7: function verify(H,X0,d0, δ, Tmax)
8: queue ← [〈X0,d0, 0, ∅, ∅〉]
9: reachset ← ∅

10: while queue �= ∅ do
11: N ← queue.dequeue()
12: N ← verify_step(N, δ)
13: reachset ← reachset ∪ N.stride
14: for N ′ ∈ children s.t. N ′.t < Tmax do
15: queue.add(N ′)

16: return reachset

Proposition 1. For any set of states X0 ⊆ X, mode d0 ∈ D and time t, the
node N = verify_step(〈X0,d0, t, ∅, ∅〉, δ) satisfies the following:

postd,δ(X) ⊆ N.stride (1)

∀N ′ ∈ N.children,G(N.d, N ′.d) ∩ N.stride.lstate �= ∅ (2)
∀N ′ ∈ N.children,postN.d,N ′.d(postN.d,δ(N.X).lstate) ⊆ N ′.X. (3)

Proof. For (1), from line 2 in Algorithm 1, N.stride = postCont(N.X, N.d, δ).
As we assumed about postCont in the start of Sect. 4.1, postN.d,δ(N.X) ⊆
N.stride and postN.d,δ(N.X).lstate ⊆ N.stride.lstate.

For (2), from the loop condition at line 3, for every children N ′ ∈ N.children:
G(d0, N ′.d) ∩ N.stride.lstate �= ∅

For (3), for every children N ′ ∈ N.children:

postN.d,N ′.d(postN.d,δ(N.X).lstate) ⊆ postN.d,N ′.d(N.stride.lstate)

⊆ postDisc(N.stride.lstate, N.d, N ′.d)
= N ′.X

��
Proposition 2. Given initial states X0 ⊆ X and d0 ∈ D, time step δ and time
horizon Tmax,

Reach(X0,d0, δ, Tmax) ⊆ verify(X0,d0, δ, Tmax).
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Proof. Let m = �Tmax
δ  be the height of the reachset tree, and ε = Tmax −

(m − 1)× δ. According to the Definition 1 of bounded reachable states, we have
Reach(X0,d0, δ, (m − 1) × δ + ε) =

⋃
x0∈X0 α(x0,d0;m).

We will prove by induction on the height of the reachset tree
Reach(X0,d0, δ, (m − 1) × δ + ε). For the base case, Reach(X0,d0, δ, ε) ⊆
verify(X0,d0, δ, δ). Let N = 〈X0,d0, 0, ∅, ∅〉, then it follows immedi-
ately that Reach(X0,d0, δ, ε) = postd0,ε(X

0) ⊆ postCont(X0,d0, δ) =
verify_step(N, δ).stride = verify(X0,d0, δ, δ).

Induction hypothesis: Given Reach(X0,d0, δ, k × δ + ε) ⊆ verify(X0,d0, δ, (1 +
k) × δ) where k ∈ [1,m − 1), show Reach(X0,d0, δ, (k + 1) × δ + ε) ⊆
verify(X0,d0, δ, (k + 2) × δ).

Induction step:

verify(X0,d0, δ, (k + 2) × δ) = verify(X0,d0, δ, (k + 1) × δ)

∪
⋃

Xk,dk

verify_step(Xk,dk, δ).stride

Reach(X0,d0, δ, (k + 1) × δ + ε) =
⋃

x0∈X0

α(x0,d0; k + 1)

=
⋃

x0∈X0

α(x0,d0; k) ∪
⋃

x′,d′
α(x′,d′; 1)

where d′ ∈ D s.t. α(x0,d0; k).lstate ∈ G(α(x0,d0; k).lmode,d′) and x′ =
R(α(x0,d0; k).lmode,d′)(α(x0,d0; k).lstate).

Xk and dk come from the nodes in the queue. Since the verify algo-
rithm uses BFS, these nodes will be all the children from the last layer
in verify(X0,d0, δ, (k + 1) × δ), thus

⋃
Xk,dk verify_step(Xk,dk, δ) ⊇

⋃
x′,d′ α(x′,d′, ε).

Combining this with the induction hypothesis:

Reach(X0,d0, δ, k×δ+ε) =
⋃

x0∈X0

α(x0,d0, k+1) ⊆ verify(X0,d0, δ, (1+k)×δ)

we get Reach(X0,d0, δ, (k + 1) × δ + ε) ⊆ verify(X0,d0, δ, (k + 2) × δ), which
completes the proof. ��

4.2 Parallel Reachability with Ray

In this section, we show how we parallelize the verification algorithm shown
above using Ray [21]. Ray uses remote functions as an abstraction for performing
parallelization. Remote functions in Ray can be called on one process but will
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be executed in another process. These processes can be on different cores of
the same machine, or cores on other network-connected machines. Throughout
this paper, we will assume that the remote functions execute on other cores
within the same machine. However, we note that thanks to Ray’s abstraction,
our implementation can as easily take advantage of networked clusters.

For a Python function with arguments f(args), the function f can be turned
into a remote function by decorating the definition of the function with the
ray.remote decorator. Such remote functions can be called via f.remote(args).
In order to simplify the pseudocode, we will simply use a remote keyword
instead.

In Ray, two processes communicate through a distributed database. For a
remote function, both the arguments and the return value will be stored in the
database. From the caller’s side, when a remote function is called, the arguments
to the function will be sent automatically to the database, and a reference to
the return value of the function is returned immediately. For the remote process,
the arguments are first fetched from the database, then the function will run,
and lastly, the return value is sent back to the database. The caller can poll and
fetch the value back by using the ray.wait() function. For an array of value
references refs, ray.wait(refs) blocks until one of the references in refs is
available, fetches and returns that value along with the rest of the references.

The basic parallel algorithm is shown in Algorithm 2. The verify_parallel
algorithm uses a queue to explore the tree just like verify, however there are
two branches in the loop. One of them pops nodes from the queue and calls
verify_step on the node as a remote function, while the other waits for the
results to come back, processes the result, and adds new nodes to the queue.
The algorithm prioritizes sending out computations, which means there can be
multiple remote computations inflight at the same time, increasing parallelism
and thus speedup. As more branching in the scenario benefits the algorithm
more, we can use the number of leaves in the reachtree as a simple metric to
measure this potential benefit. In other words, the more leaves there are in a sce-
nario’s reachtree, the more speedup we expect to see. Note that as several nodes
can happen in parallel, they may be computed in a different order compared to
verify.

Proposition 3. For any set of states X0 ⊆ X and mode d0 ∈ D,

verify_parallel(X0,d0, δ, Tmax) = verify(X0,d0, δ, Tmax)

Proof. To prove the equality, we can show that the set of calls to verify_step in
verify and verify_parallel are the same. In verify, verify_step is called
at line 12; in verify_parallel, verify_step is called at line 8 as a remote
function call. We assume that remote calls in Ray will always return and that
given the same arguments, remote function calls to verify_step will return
the same values as non-remote calls. We can then compare the tree generated
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Algorithm 2
1: function verify_parallel(H,X0,d0, δ, Tmax)
2: queue ← [〈X0,d0, 0, ∅, ∅〉]
3: refs ← ∅

4: reachset ← ∅

5: while queue �= ∅ ∨ refs �= ∅ do
6: if queue �= ∅ then
7: N ← queue.dequeue()
8: refs.add(remote verify_step (N, δ))
9: else � wait only when queue is empty

10: 〈N, refs〉 ← ray.wait(refs)
11: reachset ← reachset ∪ N.stride
12: for N ′ ∈ N.children do
13: if N ′.t < Tmax then
14: queue.add(N ′)

15: return reachset

by both verify and verify_parallel and prove by induction on the height
of the tree currently computed. Note that due to the nondeterministic ordering
of node traversal, the verify_parallel can begin computing nodes that have
k + 1 depth before finishing nodes at depth k.

Base Case: Given a set of initial states X0 ⊆ X and initial mode d0 ⊆ D, we
want to show that

verify(X0,d0, δ, 1 × δ) = verify_parallel(X0,d0, δ, 1 × δ)

and the children of both trees are the same.
Let N = verify_step(〈X0,d0, 0, ∅, ∅〉, δ), then:

verify(X0,d0, δ, 1 × δ) = N.stride

= verify_parallel(X0,d0, δ, 1 × δ)

Thus, the two trees are equal. The children for both are N.children, and they
are equal.

Induction Step: Given verify(X0,d0, δ, k × δ) = verify_parallel(X0,d0, δ,
k × δ) where k ∈ [1,m), and their children are equal, show

verify(X0,d0, δ, (k + 1) × δ) = verify_parallel(X0,d0, δ, (k + 1) × δ)

Since the children of all nodes at depth k for verify and verify_parallel
are the same, they must generate the same set of nodes at depth k + 1, which
gives the same set of reachable states. ��
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Note that in practice, computing verify_step is cheap. Calling small remote
functions like this will incur a lot of overhead due to the cost of communica-
tion and serialization/deserialization of data. When implementing the algorithm
verify_parallel, we have chosen to batch together these computations, so that
each remote function call computes as many timesteps as possible until a discrete
mode transition is hit.

4.3 Incremental Verification

In this section, we show how we implement an incremental verification algorithm
on top of verify_parallel.

Consider two hybrid automata Hi = H(SCi), i ∈ {1, 2} that only differ in the
discrete transitions. That is, (1) X2 = X1, (2) D2 = D1, and (3) TL2 = TL1,
while the initial conditions, the guards, and the resets are slightly different3. SC1

and SC2 have the same sensors, maps, and agent flow functions. Let Tree1 =
V1 and Tree2 = V2 be the execution trees for H1 and H2. Our idea of incremen-
tal verification is to reuse some of the computations in constructing the tree for
H1 in computing the same for H2.

Recall that in verify, expanding each vertex N1 of Tree1 with a possible
mode involves a guard check, a computation of postd,δ and postd,d′ . The algo-
rithm verify_incremental avoids performing these computations while con-
structing Tree2 by reusing those computations from Tree1, if possible. To this
end, verify_incremental uses a cache (C) that stores the result of a batch
of verify_step. This is the same as that in Sect. 4.2, which simply batches
together all the adjacent verify_step that have the same discrete modes. We’ll
call this batch operation verify_batch. The pseudocode for verify_batch is
described in Algorithm 3. Formally, here are the properties of verify_batch:

Proposition 4. For any set of states X0 ⊆ X, mode d0 ∈ D, time step δ and
time horizon Tmax, let 〈reachset, branches, N0〉 = verify_batch(〈X0,d0, 0, ∅,
∅〉, δ, Tmax). Then for the ith node explored in verify_batch, we have:

N i ∈ verify_step(N i−1, δ).children

N i.d = N i−1.d

we further have:

branches =
⋃

i∈[0,k)

{N ′ | N ′ ∈ N i.children s.t. N ′.d �= N i.d}

reachset =
⋃

i∈[0,k)

N i.stride

N0 = 〈X0,d0, 0, ∅, ∅〉;∀N ∈ branches, N.d �= d0; k ≤ �Tmax

δ


where k is the number of nodes in the batch.
3 Note that in this section subscripts index different hybrid automata, instead of agents

within the same automaton (as we did in Sects. 3 and 3.2).
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For verify_batch(X0,d0, δ, Tmax), the cache C will be indexed by 〈X0,
d0〉, and the value will be the same as that of verify_batch. Unlike normal
caches, a cache hit can happen for C when the incoming key 〈X′,d′〉 satisfies
X′ ⊆ X0 ∧ d′ = d0.

The incremental verification algorithm is presented in Algorithm 3. The func-
tion verify_incremental checks C before every post computation to retrieve
and reuse computations when possible. The cache can save information from any
number of previous executions, so verify_incremental can be even more effi-
cient than verify_parallel when running many consecutive verification runs.

The correctness property of verify_incremental is the same as that of
algorithm verify_parallel in Sect. 4.2, i.e. the reachset computed by algo-
rithm verify_incremental for SC2, when given a cache populated with data
from SC1, is an overapproximation of the reachset computed by verify. More
formally:

Proposition 5. Given scenarios SC1 and SC2 with the same sensors,
map, and agent flow functions, for cache C = ∅, any initial condi-
tions X0

1,X
0
2 ⊆ X, d0

1,d
0
2 ∈ D, timestep δ and time horizon Tmax, after

verify_incremental(H1,X0
1,d

0
1, δ, Tmax, C) is executed,

verify(H2,X0
2,d

0
2, δ, Tmax) ⊆ verify_incremental(H2,X0

2,d
0
2, δ, Tmax, C)

Proof. For any initial conditions X0
1,X

0
2 ⊆ X, d0 ∈ D, timestep δ, time horizon

Tmax and time t, let:

〈reachset1, branches1〉 = verify_batch(X0
1,d

0, δ, Tmax, t)

〈reachset2, branches2〉 = verify_batch(X0
2,d

0, δ, Tmax, t)

Given that verify_batch simply batches together postCont and postDisc
operations, X0

1 ⊆ X0
2 =⇒ reachset1 ⊆ reachset2. As the cache C just stores

the result of verify_batch, X0
1 ⊆ X0

2 =⇒ reachset1 ⊆ C(X0
2,d

0). That
is, verify_incremental(H2,X0

2,d
0, δ, Tmax, ∅) ⊆ verify_incremental(H2,

X0
2,d

0, δ, Tmax, C). That is, the reachset returned from a verify_incremental
with caches would be an overapproximation of a version that doesn’t have caches.

From Proposition 4, a verify_batch call can simply be decomposed into mul-
tiple verify_step calls. With the two conditions stated above, the algorithm
for verify_incremental can be simplified to be the same as the algorithm of
verify_parallel, which we have proven to be equivalent to verify. Thus, it fol-
lows that verify(H2,X0

2, d
0
2, δ, Tmax) = verify_parallel(H2,X0

2,d
0
2, δ, Tmax)

⊆ verify_incremental(H2,X0
2, d

0
2, δ, Tmax). ��
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Algorithm 3
1: function verify_batch(N0, δ, Tmax) where N0.stride = ∅, N0.children = ∅

2: branches ← ∅

3: reachset ← ∅

4: N ← N0

5: while t < Tmax do
6: N ← verify_step(N, δ)
7: reachset ← reachset ∪ N.stride
8: if ∃N ′ ∈ N.children s.t. N ′.d = N.d then
9: branches ← branches ∪ (N.children \ N ′)

10: N ← N ′

11: t ← t+ δ
12: else
13: return reachset, branches ∪ N.children, N0

14: function verify_incremental(H,X0,d0, δ, Tmax, C)
15: queue ← [〈X0,d0, 0, ∅, ∅〉]
16: refs ← []
17: reachset ← ∅

18: while queue �= ∅ ∨ refs �= ∅ do
19: if queue �= ∅ then
20: N ← queue.dequeue()
21: if C(N.X, N.d) �= ∅ then � queries the cache
22: 〈subreachset, branches〉 ← C(N.X, N.d)
23: reachset ← reachset ∪ subreachset
24: for N ′ ∈ branches s.t. N ′.t < Tmax do
25: queue.add(N ′)

26: else
27: refs.add(remote verify_batch (N, δ, Tmax))
28: else � wait only when queue is empty
29: 〈〈subreachset, branches, N〉, refs〉 ← ray.wait(refs)
30: C(N.X, N.d) ← 〈subreachset, branches〉 � update the cache with results
31: reachset ← reachset ∪ subreachset
32: for N ′ ∈ branches s.t. N ′.t < Tmax do
33: queue.add(N ′)

34: return reachset

5 Experimental Evaluation

We have implemented parallel and incremental verification algorithms in the
Verse library [18], and in this section we will evaluate their performance against
Verse’s original sequential algorithm. Our goal is to glean qualitative lessons.
We are not comparing against parallel tools mentioned in Sect. 2 because (a)
it is not straightforward to implement multi-agent models in these other tools
and (b) it is hard to draw fair conclusions comparing running time and memory
usage across C++ and Python tools.

We perform these experiments on scenarios described in Table 2. Besides the
intersection scenario, we also adopt some examples from [18]. Types of agents
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include: (1) 4-d vehicle with bicycle dynamics and Stanley controller [13], and (2)
6-d drone with a NN-controller [14]. Some of the agents have collision avoidance
logics (CA) for switching tracks. All experiments were performed on a desktop
PC with 8 core (16 thread) Intel Xeon E5-2630.

Table 2. Name and description of scenarios.

Scenario Description

isect(l,n) 4-way intersection of Fig. 1 with l lanes and n vehicles, all
having CA

drone 3 straight parallel tracks in 3D space with 3 drones, one
having CA

drone8 3 Figure-8 tracks in 3D space with 2 drones, both having CA
curve 3-lane curved road with 3 vehicles, one having CA
wide(n,a) 5-lane straight road with n vehicles, a of which having CA
race 3-lane circular race track with 3 vehicles, one having CA

5.1 Parallel Reachability Speeds up with Cores and Branching

Table 3 shows the experimental results on running verify_parallel on these
scenarios on using 2, 4, and 8 CPU cores. The data is sorted according to the
number of leaves of the reachtree, which we use as a metric to measure the
potential parallelism in a scenario, as we discussed in Sect. 4.2.

Table 3. Runtime for verifying the examples in Table 2. Columns are: name of the
scenario (name), number of timesteps simulated (length), number of mode transitions
(#Tr), the width of the execution tree (#leaves), the run time of the verify (serial),
the run time of verify_parallel using 2, 4, or 8 cores and the corresponding speedup
in parentheses. All running times are in seconds.

name length #Tr #leaves serial 2 cores 4 cores 8 cores

curve 400 4 2 50 56 (0.89) 55 (0.91) 56 (0.89)
drone 450 7 2 29 37 (0.78) 30 (0.97) 29 (1)
race 600 7 2 220 162 (1.36) 156 (1.41) 157 (1.4)
drone8 400 8 4 31 36 (0.86) 36 (0.86) 37 (0.84)
wide(7,2) 1600 37 7 188 135 (1.39) 136 (1.38) 137 (1.37)
isect(4,9) 1000 37 11 342 349 (0.98) 190 (1.8) 130 (2.63)
isect(4,10) 800 59 15 587 606 (0.97) 318 (1.85) 197 (2.98)
wide(8,3) 600 105 20 311 313 (0.99) 172 (1.81) 104 (2.99)
isect(4,15) 1000 102 37 2115 2085 (1.01) 1081 (1.96) 653 (3.24)
isect(4,20) 1060 399 140 13100 8416 (1.56) 4477 (2.93) 2085 (6.28)
isect(4,12) 800 589 225 7136 4445 (1.65) 2214 (3.3) 1302 (5.62)
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First, we observe that for scenarios with more than 37 transitions, paral-
lelization speeds up reachability analysis with at least 4 cores. Secondly, the
number of leaves in a scenario roughly correlates to the speedup gained. This is
illustrated in the experiments as we move down the table, we can see that the
speedup ramp-up. Lastly, for each scenario the speedup generally increases with
the number of cores. Maximum gains are made with the isect(4,20) scenario,
which has a wide execution tree with many transitions. The verify_parallel
algorithm reduces the running time from over 3 and a half hours to a little over
30min. This performance gain can make a tool usable, where previously it was
not [22,24].

Because of the overhead of parallelism, some scenarios can be slower while
using verify_parallel than verify. The overhead mainly comes from 2 areas:
process creation and communication costs. As the number of parallel tasks
increase, Ray creates more processes dynamically to handle those work, and the
time caused by creating and initializing those processes can be larger than the
benefit provided by parallelism. In addition, it takes time to send the inputs to
and receive the results from the remote processes. This overhead gets larger with
more agents in the scenario, larger state and/or mode spaces, longer time hori-
zon, and more complex decision logics. However, from our results, this overhead
does not overshadow the savings the verify_parallel algorithm introduce.

5.2 Incremental Verification Can Speed up Reachability Across
Model Updates

To test our incremental verification algorithm, we apply it to several scenar-
ios undergoing changes and edits. In this section we will report on the drone8,
wide(8,3), and isect(4,15) scenarios. We will modify the initial condition or
behavior of agents in the scenario. We measure the similarity across the mod-
els using the earliest time (Tchange) when the automaton’s behavior changes:
for two identical scenarios Tchange would be ∞, when the initial conditions
of one of the agents is changed then Tchange = 0%, and when the decision
logic code of one of the agents is changed Tchange indicates the time where
the change affects runtime behavior. We run each of the experiments with
the verify, serialized verify_incremental, verify_parallel, and parallelized
verify_incremental algorithms. The results are shown in Table 4.

From the table we can observe that when compared to the non-incremental
versions of the algorithms, the incremental versions provide more speedup when
the behavior of the automata are closer. We can see from the table that as Tchange
goes higher, the speedups provided by incremental verification trend upwards.
In the ideal case, where the same scenario is verified again, the verification time
is reduced from 575 s to 20 s for isect(4,15). For a case when the scenario is
changed, the maximum gain we observe is from 404 s to 82 s for isect(4,15).

Secondly, we observe that combination of incremental verification and paral-
lelization can sometimes give us more savings. For example, in row 5 of Table 4,
we can observe that the parallelized verify_incremental algorithm, which
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Table 4. Runtime for verifying the examples in Table 2. Columns are: name of the
scenario (name), number of timesteps simulated (T ), single or repeated runs (single),
number of mode transitions (#Tr), the width of the execution tree (#leaves), the
time for the first change in automaton behavior (Tchange), the run time of verify
(ser), the run time and hit rate of verify_incremental without parallelization (inc
ser, hit rate), the run time of verify_parallel (par), the run time and hit rate of
verify_incremental with parallelization (inc par, hit rate). The unit of run time is in
seconds.

name T #Tr #leaves Tchange ser inc ser hit rate par inc par hit rate

drone 450 9 3 75% 53 29 90% 51 30 90%
wide(8,3) 600 51 10 15.67% 173 20 100% 80 51 96.74%
wide(8,3) 600 105 20 ∞ 335 17 100% 104 16 100%
wide(8,3) 600 49 8 0% 182 129 95.31% 72 53 87.95%
isect(4,15) 400 5 2 0% 116 98 59.57% 100 83 29.79%
isect(4,15) 400 37 12 ∞ 575 36 100% 189 20 100%
isect(4,15) 400 24 9 82.25% 404 35 100% 159 82 39.7%

takes 83 s to finish, out performs both the serialized verify_incremental algo-
rithm and the verify_parallel algorithm alone, which takes 98 s and 100 s
respectively. However, in some situations the serial verify_incremental algo-
rithm can be much faster than the parallel verify_incremental algorithm. This
typically happened when the number of leaves is small as shown in row 7 of the
table. The situation is caused by the overhead introduced from parallelization.
Even though the cache provides run time savings, the trajectories will need to
be copied to the remote processes when they are in the cache, which causes more
overhead.

6 Conclusions and Future Directions

In this paper, we presented parallel and incremental verification algorithms for
hybrid multi-agent scenarios using Ray and Verse. For large scenarios with more
than 10 agents, and large number of branches, the speedup can be 3 or 6 times.
The incremental verification algorithm verify_incremental makes it faster to
iterate on models. When the states and decision logics do not change much, the
algorithm can give significant speedups.

This work suggests several directions for future research. Currently the algo-
rithms parallelize the computation on a per-branch basis. Agent-level paralleliza-
tion could be useful for large scenarios with clusters of non-interacting agents.
Being able to divide up tasks at a finer scale would mean more opportuni-
ties for parallelization, but we would also need to be careful of too small task
sizes and develop batching algorithms that both take advantage of the paral-
lelization and minimizing the overhead induced. In incremental verification, the
algorithm currently redoes the computation as soon as any of the agents reaches
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states or exhibits behaviors never seen before. This is fairly evident from the
experiments, where the caching is not able to provide runtime improvements
when the initial conditions change. Finer-grained analysis of agent interactions
can be done so that changes in agents’ states or behaviors will only trigger
recomputation of agents that will be affected. Moreover, in some situations the
verify_incremental algorithm can become slower due to enabling paralleliza-
tion. We can improve this by avoiding using remote functions when the result is
already in the cache.
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