
© 2023 Haoqing Zhu

PARALLELIZATION AND INCREMENTAL ALGORITHMS IN THE VERSE HYBRID
SYSTEM VERIFICATION LIBRARY

BY

HAOQING ZHU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Adviser:

Professor Sayan Mitra

ABSTRACT

Hybrid systems is a popular model for modeling and verifying cyber physical systems,

combining the discrete transition logic and physical dynamics of agents. However, it is dif-

ficult for most users to adopt this technology without formal methods training. Verse is a

verification library which tries to address this issue and make the hybrid system technology

more usable. Verse has shown some promise and in a short amount of time is currently used

by several research groups. But Verse has scalability issues yet to be solved. In this thesis,

we present parallelization and incremental verification algorithms in Verse. Verse computes

reachsets of a system as a reachability tree, and the parallelization algorithm can compute

different parts of the tree concurrently in different processors. Using the popular Ray par-

allelization framework, we are able to efficiently parallelize the computations without the

use of locks. The incremental verification algorithm can reuse computation from previous

experiments and reduce computation time for similar scenarios. We evaluate the implemen-

tation of our algorithms on a variety of scenarios, and observed that we can achieve 2 to

4 times speedup on moderately large scenarios. In one experiment with 12 agents and 133

transitions, we are able to compute the reachsets in 8 minutes 30 seconds, a 3.5x speedup

over the previous 30 minutes.

ii

ACKNOWLEDGMENTS

This project would not have been possible without the support of many people. Many

thanks to my adviser, Professor Sayan Mitra, who provided much guidance throughout the

years and read numerous revisions of my paper and helped polish its presentation. Also

thanks to those who created and contributed to the Verse project, Yangge Li, Katherine

Braught, Keyi Shen, and Daniel Zhuang, without whom this work would not have com-

pleted.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 hybrid automaton Verification . 1
1.2 Hybrid Verification Usability Challenges and Verse 2
1.3 Parallel Algorithms for hybrid automaton Verification 3

CHAPTER 2 RELATED WORK . 5

CHAPTER 3 SCENARIOS IN VERSE . 6
3.1 Tracks, Modes, and Maps . 6
3.2 Agents . 7
3.3 Sensors and Scenarios . 9

CHAPTER 4 VERSE SCENARIO TO HYBRID VERIFICATION 11
4.1 Bounded Reach Sets . 12

CHAPTER 5 BUILDING VERIFICATION ALGORITHMS IN VERSE 14
5.1 Reachability Analysis . 14
5.2 Parallelization . 17
5.3 Incremental Verification . 20

CHAPTER 6 EXPERIMENTAL EVALUATION OF PARALLEL VERSE 24
6.1 Variety Experiments . 24
6.2 Parametric Intersection Scenario . 25
6.3 Incremental Verification Experiments . 26
6.4 Evaluation . 29

CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS 31

REFERENCES . 32

iv

CHAPTER 1: INTRODUCTION

Autonomous systems are becoming more important in our daily lives. Self driving cars

and autonomous delivery drones and robots bring us great convenience, but can also cause

great danger if not properly tested. Traditional testing methods have a hard time of re-

vealing potential fatal flaws of the system, while verification methods like hybrid automaton

verification can provide safety or reliability guarantees for a system.

1.1 HYBRID AUTOMATON VERIFICATION

Systems like an autonomous driving vehicle is what is called a cyber-physical system,

where computer software needs to interact with an environment with physical properties [1].

Software verification typically make use of discrete-event models like automata, which have

been studied extensively. However it is difficult to apply those technologies to cyber-physical

systems. In order to properly model the states of systems, one popular formalism is the

hybrid automaton model [1, 2].

A hybrid automaton model includes both the states and the behavior of a system it is

trying to model. The state of the system can be represented by a set of state variables.

These variables are divided into two categories: continuous variables and discrete modes

(or just modes). The continuous variables model the behavior of physical quantities in the

system, such as velocity and heading of a self-driving vehicle. The discrete modes model the

states in the software, such as states in a Finite State Machine.

The behavior of the system is modeled by discrete transitions and continuous trajectories.

The discrete transitions may be taken from the software in the system, and can be modeled

by transition graphs. A transition in the system is a discrete jump between two states of

the system with different modes. Formally, a transition is a relation between two system

states. The transition behavior of a hybrid automaton model is described by guards and

resets. The guards provide information on when transitions should occur, and resets describe

how the values of the state variables should change after the transition. The continuous

trajectories typically correspond to the physical environment surrounding the system, and

the most common way to model these physical interactions is through Ordinary Differential

Equations (ODEs). These equations describe changes in one continuous variable according

to the values in other parts of the system state. These concepts will be defined more formally

in Chapter 4.

As the system states evolve through time, it will produce a trajectory according to the

1

its behavior, which describes the values in each state variable with respect to time. For

some initial state S, a state in the system is said to be reachable if there exists a trajectory

starting from S that contains it. The set of all reachable states is then called the reachable

set or reachset. Note that reachsets can start from a single initial state, or more generally an

initial set of states. Hybrid automata verification tools usually don’t compute the reachset

continuously, but rather after some predefined small timesteps. The evolution of the reachset

after one timestep is encapsulated in the post operator. It can be separated into continuous

post for evolving the reachset using the dynamics, and discrete post for processing the guards

and resets. These two types of post operations are usually done in lockstep as the simulation

progresses.

The verification of hybrid automata involves checking that the reachset of a system does

not overlap the unsafe set of states. For example, in the context of autonomous driving

vehicles, the unsafe set can be the road curbs or a certain distance within pedestrians in

the environment. Ideally, the reachsets of a system is explored over an infinite amount of

time. However, this is often not possible in practice, and hybrid automaton verification

tools[3, 4, 5, 6] will instead compute a bounded reachset of a system, where the reachsets are

only computed over a bounded duration of time. This length of time will be referred to as

the time horizon.

1.2 HYBRID VERIFICATION USABILITY CHALLENGES AND VERSE

hybrid automaton verification tools have been used to analyze linear models with thou-

sands of continuous dimensions [7, 8, 9] and nonlinear models inspired by industrial applica-

tions [5, 8, 10, 11]. Chen and Sankaranarayanan provide a survey of the state of the art [12].

Despite the large potential user base, current usage of this technology remains concentrated

within the formal methods community. We conjecture that usability is one of the key bar-

riers. Most hybrid verification tools [6, 7, 9, 13, 14] require the input model to be written

in a tool-specific language. Tools like C2E2 [15] attempt to translate a subclass of models

from the popular Simulink/Stateflow framework, but the language-barrier goes deeper than

syntax. The verification algorithms are based on variants of the hybrid automaton [2, 16, 17]

which require the discrete modes to be spelled out explicitly as a graph, with guards and

resets labeling the edges.

In contrast, the code for simulating a multi-agent scenario would be written in an ex-

pressive programming language. Each agent will have a decision logic and some continuous

dynamics. A complex scenario would be composed by putting together a collection of agents;

it may use a map which brings additional structure and constraints to the agent’s decisions

2

and interactions. Describing or translating such scenarios for hybrid verification is a far cry

from the capabilities of current tools.

In our recent paper, we presented Verse [18]1, a Python library that aims to make hybrid

automaton technologies more usable for multi-agent scenarios. The key features implemented

are as follows:

1. Verse introduces an additional structure, called map, for defining the modes and the

transitions of a hybrid automaton. Map contains tracks that can capture geometric

objects (e.g. lanes or waypoints), making it possible to create new scenarios just by

instantiating agents on new maps. With track modes, users do not have to explicitly

write different modes for a vehicle following different waypoint segments.

2. In Verse, user-defined functions can be used to create complex agents, and invariant

requirements can be written as assert statements. Multiple of these agents can inter-

act with each other in the same map. The combination of a map and multiple agents is

called a scenario, all of which can be created using Python. Verse parses this scenario

and constructs an internal representation of the hybrid automaton for simulation and

analysis.

3. Verse comes with functions for simulation and safety verification via reachability anal-

ysis. Developers can implement new functions, plug-in existing tools, or implement

advanced algorithms.

1.3 PARALLEL ALGORITHMS FOR HYBRID AUTOMATON VERIFICATION

Complex scenarios can have many agents, each with many possible transitions. These

agents may also interact with each other repeatedly over a long analysis time horizon. These

factors can cause the number of transitions to blow up exponentially with increasing time

horizon. Intuitively, each of these transition branches should be independent of each other,

and there should be opportunities for parallelization. At the same time, the reachability

analysis algorithm currently implemented in Verse doesn’t take advantage of the multi-core

nature of contemporary processors. Being able to explore these opportunities will allow

Verse to be more scalable, particularly on larger scenarios.

In addition, we observed that many experiments we perform are based on the same map

and agent dynamics, and just change the initial condition and decision logic of the agents.

1Verse is available at https://github.com/AutoVerse-ai/Verse-library.

3

https://github.com/AutoVerse-ai/Verse-library

It’s useful to test out how different initial conditions can affect the behavior of the sys-

tem, or to tweak the decision logic to mitigate unsafe conditions. As some parts of the

scenario may have been computed in a previous experiment, it is possible to cache and reuse

those computations instead of computing everything from scratch. This is a particular type

of incremental verification—a more general idea that has been explored in software model

checking [19, 20, 21]. Our incremental verification algorithm tries to build on previous exper-

iment results and incrementally simulate or compute reachability of new, slightly different

scenarios.

In this thesis, we will present algorithms for parallelizing simulation and reachability

analysis and performing incremental verification in Verse. In our experiments, we see that

the parallelization algorithm can be effective in improving the performance, especially in

more complex hybrid automata models where more nondeterministic branching can occur.

The incremental verification algorithm is able to reuse some computations from experiment

runs and speed up analysis in some situations, while in others it provides no benefits.

For the rest of the thesis, we will first cover related work (Chapter 2). We will then

introduce the various constructs in Verse for creating multi-agent scenarios (Chapter 3) and

define how they translate to hybrid automaton models (Chapter 4). We will present the

design and proof correctness of our parallelization algorithms we have implemented in Verse

(Section 5), and lastly we present experimental data and evaluate the results (Section 6).

4

CHAPTER 2: RELATED WORK

This work is closely related to reachability analysis of hybrid automata, and there have

been many tools developed for creating, simulating and analysing hybrid automaton models.

Table 2.1: Parallelization methods used in hybrid automaton verification tools (None, CPU,
or GPU) and types of dynamics supported (linear or nonlinear; nonlinear includes both
linear and more general nonlinear ODEs)

Tool name Parallelization method Supported dynamics Implementation language
HyTech [22] None linear C
d/dt [23] None linear C
C2E2 [3] None nonlinear Python
checkmate [24] None nonlinear Matlab/Simulink
SpaceEx [6] None linear Java
Flow∗ [14] None nonlinear C++
DryVR [10] None nonlinear Python
XSpeed [25] CPU & GPU linear C++
JuliaReach [26] CPU nonlinear Julia
CORA [9] None nonlinear Matlab
dreach [27] CPU nonlinear C++
HyLAA [7] CPU & GPU linear Python
PIRK [28] CPU & GPU nonlinear C++
Verse [18] None nonlinear Python

Many hybrid automaton verification tools have incorporated parallelization as an opti-

mization technique. Table 2.1 briefly lists some hybrid automaton verification tools and the

parallelization optimizations they support. Tools like JuliaReach [26] and dreach [27] utilizes

CPU for parallelizing exploration of discrete mode transitions. Other tools like HyLAA [7]

and XSpeed [25] also support using GPU for accelerating the computation of continuous

posts. PIRK uses the pFaces [29] runtime to parallelize using CPUs and GPUs.

In particular, we have adapted the AsyncBFS algorithm implemented in XSpeed [25]

to Verse. However, there are some major differences between our implementations. First,

thanks to Ray, it is not necessary to explicitly handle locks in our implementation. Second,

due to Python’s limitations and Ray’s design, the parallelization happens across persistent

processes. This means that the cost of launching a parallelized computation becomes serial-

izing, communicating and deserializing the arguments and return values, instead of spawning

new threads. Lastly, we have chosen a different granularity of parallelization in Verse that

is coarser than the algorithm presented in XSpeed.

5

CHAPTER 3: SCENARIOS IN VERSE

In Verse, the main concept that specifies a hybrid system model is a scenario. It contains

a map, a collection of agents in that map, and a sensor function that defines the part of

each agent that is visible to other agents. We will describe these components below and in

Section 4 we will discuss how they formally define a hybrid system. We will use a running

example through this chapter to help illustrate these concepts.

Consider vehicles driving on a 4-way intersection, where vehicles can enter and exit the

intersection through each of the 4 cardinal directions (the lane boundaries of the map is

shown in 3.1). Each vehicle can have a simple collision avoidance logic, allowing it to switch

lanes when it sees another vehicle closely ahead on the same lane. It can choose to switch

to either the left or right lanes, provided that there is no other vehicle closely ahead in that

lane.

3.1 TRACKS, MODES, AND MAPS

A workspace W is a Euclidean space in which the agents reside.This corresponds to a

subset of R2 in the intersection example. An agent’s continuous dynamics makes it roughly

follow certain continuous curves in W , called tracks, and occasionally the agent’s decision

logic changes the track. Formally, a track is simply a continuous function ω : [0, 1]→ W , but

not all such functions are valid tracks. A mapM defines the set of tracks ΩM it permits. In

the intersection example, some of the tracks are along the center of the lanes, while others

corresponds to switches between the lanes.

We assume that an agent’s decision logic does not depend on exactly which of the infinitely

many tracks it can follow, but instead, it depends only on which type of track it follows, or the

track mode. A map has a finite set of track modes LM, a labeling function VM : ΩM → LM

that gives the track mode for a track. It also has a mapping gM : W × LM → ΩM that

gives a specific track from a track mode and a specific position in the workspace. In the

intersection example, a vehicle can come from the south side of the intersection, stay on

the leftmost lane at all times, and exit through the west side. We can refer to the lane it is

tracking as SW-0. A track mode corresponding to lane switches could be SW-0-1 for denoting

a switch from the leftmost lane to the right one, for the lanes going from south to west.

Finally, a Verse agent’s decision logic can change its internal mode or tactical mode. For

a simple car agent, its tactical mode may consist of Normal, SwitchLeft and SwitchRight.

These specify the current state the agent is in, and instructs the underlying controller to steer

6

Figure 3.1: A 4-way intersection map with 2 lanes in each direction, showing the lane boundaries.
Each lane extends very far outside of the picture.

the vehicle in a certain way. When an agent changes its tactical mode, it may also update

the track it’s following and this is encoded in another function: hM : LM × P × P → LM

which takes the current track mode, the current and the next tactical mode, and generates

the new track mode the agent should follow. For example, when the tactical mode of a

vehicle changes from Normal to SwitchRight while it is on SW-0, this map function informs

that hM(SW-0, Normal, SwitchRight) = SW-0-1 the vehicle should follow a track with mode

SW-1.

3.2 AGENTS

A Verse agent is defined by discrete modes and continuous state variables, a decision logic

that defines (possibly nondeterministic) discrete transitions, and a flow function that defines

continuous evolution. An agent A is compatible with a mapM if the agent’s tactical modes

P are a subset of the allowed input tactical modes for h. This makes it possible to instantiate

the same agent on different compatible maps. The mode space for an agent instantiated on

map M is the set D = L × P , where L is the set of track modes in M and P is the set

of tactical modes of the agent. The continuous state space is X = W × Z, where W is the

workspace (of M) and Z is the space of other continuous state variables. The (full) state

space is the Cartesian product Y = X × D. In the intersection example, the continuous

state variables can be x, y, θ, v for position, heading, and speed for the vehicle. The discrete

modes are ⟨Normal, SW-1⟩, ⟨SwitchRight, SW-0⟩ etc.

7

Figure 3.2: Computed reachsets with 3 agents (represented with 3 different colors) on the inter-
section map with 3 lanes in each direction. The red car goes from north to south, the green car
goes from east to west, and the blue car goes from east to south.

An agent A in mapM with k− 1 other agents is defined by a tuple A = ⟨Y, Y 0, G,R, F ⟩,
where Y is the state space, Y 0 ⊆ Y is the set of initial states. The guard G and reset R

functions jointly define the discrete transitions. For a pair of modes d, d′ ∈ D, G(d, d′) ⊆ Xk

defines the condition under which a transition from d to d′ is enabled. The R(d, d′) : Xk → X

function specifies how the continuous states of the agent are updated when the mode switch

happens. Both of these functions take as input the sensed continuous states of all the other

k − 1 agents in the scenario. Details about the sensor which transmits state information

across agents is discussed in Section 3.3. The G and the R functions are actually not defined

separately, but are extracted by the Verse parser from a block of structured Python code.

The discrete states in the if condition and the assignments define the source and destination

of discrete transition. The if conditions involving continuous states define the guard for the

transitions and the assignments of continuous states define the reset. Expressions with any

and all functions are unrolled to disjunctions and conjunctions according to the number of

agents k.

Figure 3.3 shows an example decision logic for a vehicle. For example, lines 60 to 63

can define a transition transitions ⟨SwitchRight, SW-0-1⟩ to ⟨Normal, SW-1⟩. The change

of track mode is given by the h function. The guard for this transition comes from the

if condition at Line 60. For example, G(⟨SwitchRight, SW-0-1⟩, ⟨Normal, SW-1⟩) = {x |
|SW-1.y − x.y| < 1∀x ∈ X}. Here continuous states remain unchanged after transition.

8

38 def decisionLogic(ego: State, others: List[State], track_map):

39 output = copy.deepcopy(ego)

40 if ego.sw_time >= 1:

41 car_front = car_ahead(ego, others, ego.track_mode, track_map, 7, 0)

42 if ego.agent_mode == AgentMode.Accel and car_front:

43 left_lane = track_map.h(ego.track_mode, ego.agent_mode,

AgentMode.SwitchLeft)↪→

44 right_lane = track_map.h(ego.track_mode, ego.agent_mode,

AgentMode.SwitchRight)↪→

45 if left_lane != None and not car_ahead(ego, others, left_lane,

track_map, 8, -3):↪→

46 output.agent_mode = AgentMode.SwitchLeft

47 output.track_mode = left_lane

48 output.sw_time = 0

49 if right_lane != None and not car_ahead(ego, others, right_lane,

track_map, 8, -3):↪→

50 output.agent_mode = AgentMode.SwitchRight

51 output.track_mode = right_lane

52 output.sw_time = 0

53 if ego.agent_mode == AgentMode.Brake and not car_front:

54 output.agent_mode = AgentMode.Accel

55 output.sw_time = 0

56 lat_dist = track_map.get_lateral_distance(ego.track_mode, [ego.x, ego.y])

57 lat = 2

58 if ego.agent_mode == AgentMode.SwitchLeft and lat_dist >= lat:

59 output.agent_mode = AgentMode.Accel

60 output.track_mode = track_map.h(ego.track_mode, ego.agent_mode,

AgentMode.Accel)↪→

61 output.sw_time = 0

62 if ego.agent_mode == AgentMode.SwitchRight and lat_dist <= -lat:

63 output.agent_mode = AgentMode.Accel

64 output.track_mode = track_map.h(ego.track_mode, ego.agent_mode,

AgentMode.Accel)↪→

65 output.sw_time = 0

66 return output

Figure 3.3: Decision Logic Code Snippet from intersection car.py.

The final component of the agent is the flow function F : X×D×R≥0 → X which defines

the continuous time evolution of the continuous state. For any initial condition ⟨x0, d0⟩ ∈ Y ,

F (x0, d0)(·) gives the continuous state of the agent as a function of time. In this thesis, we

use F as a black-box function (see footnote 2).

3.3 SENSORS AND SCENARIOS

For simplifying exposition, in this thesis we assume that observables have the same type

as the continuous state Y , and that each agent i is observed by all other agents identically.

9

22 ctlr_src = "demo/vehicle/controller/intersection_car.py"

23 scenario = Scenario()

24 dirs = "WSEN"

25 map = Intersection(lanes=LANES)

26 scenario.set_map(map)

27 for i in range(CAR_NUM):

28 car = CarAgentDebounced(f"car{i}", file_name=ctlr_src,

speed=rand(*CAR_SPEED_RANGE), accel=rand(*CAR_ACCEL_RANGE))↪→

29 scenario.add_agent(car)

30 dir = random.randint(0, 3)

31 src = dirs[dir]

32 dst_dirs = list(dirs)

33 dst_dirs.remove(src)

34 dst = dst_dirs[random.randint(0, 2)]

35 lane = random.randint(0, map.lanes - 1)

36 start, off = map.size + rand(0, map.length * 0.3), rand(0, map.width)

+ map.width * lane↪→

37 pos = { "N": (-off, start), "S": (off, -start), "W": (-start, -off),

"E": (start, off) }[src]↪→

38 init = [*pos, *(wrap_to_pi(dir * math.pi / 2 +

rand(*CAR_THETA_RANGE)), rand(*CAR_SPEED_RANGE)), 0]↪→

39 modes = (AgentMode.Accel, f"{src}{dst}_{lane}")

40 scenario.set_init_single(car.id, (init,), modes)

41 traces = scenario.verify(60, 0.1)

Figure 3.4: Code snippet for creating the intersection scenario.

This simple, overtly transparent sensor model, still allows us to write realistic agents that

only use information about nearby agents. In a highway scenario, the observable part of

agent j to another agent i may be the relative distance yj = xj − xi, and vice versa, which

can be computed as a function of the continuous state variables xj and xi.

A Verse scenario SC is defined by (a) a map M, (b) a collection of k agent instances

{A1...Ak} that are compatible with M, and (c) a sensor S for the k agents. Since all the

agents are instantiated on the same compatible map M, they share the same workspace.

Currently, we require agents to have identical state spaces, i.e., Yi = Yj∀i, j ∈ [0, k), but

they can have different decision logics and different continuous dynamics.

An example is shown in 3.4 for how the intersection scenario is created in Verse. In this

scenario, no sensor is explicitly set, thus every agent can observe all of the states for every

other agent.

10

CHAPTER 4: VERSE SCENARIO TO HYBRID VERIFICATION

In this section, we define the underlying hybrid system H(SC), that a Verse scenario SC

specifies. The verification questions that Verse is equipped to answer are stated in terms

of the behaviors or executions of H(SC). Verse’s notion of a hybrid automaton is close to

that in Definition 5 of [10]. As usual, the automaton has discrete and continuous states

and discrete transitions defined by guards and resets. The only uncommon aspect in [10]

is that the continuous flows may be defined by a black-box simulator functions, instead of

white-box analytical models2.

Given a scenario with k agents SC = ⟨M, {A1, ...Ak},S, P ⟩, the corresponding hybrid

automaton H(SC) = ⟨X,X0,D,D0,G,R,TL⟩, where

1. X :=
∏

iXi is the continuous state space. An element x ∈ X is called a state. X0 :=∏
i X

0
i ⊆ X is the set of initial continuous states.

2. D :=
∏

iDi is the mode space. An element d ∈ D is called a mode. D0 :=
∏

iD
0
i ⊆ D

is the finite set of initial modes.

3. For a mode pair d,d′ ∈ D, G(d,d′) ⊆ X defines the continuous states from which

a transition from d to d′ is enabled. A state x ∈ G(d,d′) iff there exists an agent

i ∈ {1, ..., k}, such that xi ∈ Gi(di,d
′
i) and dj = d′

j for j ̸= i.

4. For a mode pair d,d′ ∈ D, R(d,d′) : X → X defines the change of continuous

states after a transition from d to d′. For a continuous state x ∈ X, R(d,d′)(x) =

Ri(di,d
′
i)(x) if x ∈ Gi(di,d

′
i), otherwise = xi.

5. TL is a set of pairs ⟨ξ,d⟩, where the trajectory ξ : [0, T]→ X describes the evolution

of continuous states in mode d ∈ D. Given d ∈ D,x0 ∈ X, ξ should satisfy ∀t ∈
R≥0, ξi(t) = Fi(x

0
i ,di)(t).

Proposition 4.1. H(SC) is a valid hybrid system for a scenario with k agents SC =

⟨M, {A1, ...,Ak},S, P ⟩ if it satisfies the following:

1. map and the agents are compatible

2. all agents have identical sets of states and modes, Yi = Yj∀i, j ∈ [0, k)

2This design decision for Verse is relatively independent. For reachability analysis, Verse currently uses
black-box statistical approaches implemented in DryVR [10] and NeuReach [30]. If the simulator is available
as a white-box model, such as differential equations, then Verse could use model-based reachability analysis.

11

3. agent states match the input type of S

We denote by ξ.fstate, ξ.lstate, and ξ.ltime the initial state ξ(0), the last state ξ(T), and

ξ.ltime = T . For a sampling parameter δ > 0 and a length m, a δ-execution of a hybrid

automatonH = H(SC) is a sequence ofm labeled trajectories α := ⟨ξ0,d0⟩, ..., ⟨ξm−1,dm−1⟩,
such that

1. ξ0.fstate ∈ X0,d0 ∈ D0;

2. ∀i ∈ {1, ...,m− 1}, ξi.lstate ∈ G(di,di+1) and ξi+1.fstate = R(di,di+1)(ξi.lstate);

3. ∀i ∈ {1, ...,m− 1}, ξi.ltime = δ for i ̸= m− 1 and ξi.ltime ≤ δ for i = m− 1.

We define α(X0,d0) to be an execution β where β.fstate = X0 and β.fmode = d0.

We define the first and last state of an execution α = ⟨ξ0,d0⟩, ..., ⟨ξm−1,dm−1⟩ as α.fstate =
ξ0.fstate, α.lstate = ξm−1.lstate and the first and last mode as α.fmode = d0 and α.lmode =

dm−1.

4.1 BOUNDED REACH SETS

Consider a scenario SC with k agents and the corresponding hybrid automaton H(SC).

We define Stride(x0,d0, δ) to be
⋃

t∈[0,δ) ξ
i(t) for any initial state x0 ∈ X and mode d0 ∈ D,

for some valid labeled trajectory ⟨ξ0,d0⟩. For any set of initial states X0 ⊆ X, we define

Stride(X0,d0, δ) =
⋃

x∈X0 Stride(x,d0, δ).

For a pair of modes, d,d′ the standard discrete postd,d′ : X→ X and continuous postd,δ :

X→ X operators are defined as follows: For any state x,x′ ∈ X,

postd,d′(x) = x′ ⇐⇒ x ∈ G(d,d′) (4.1)

postd,δ(x) = x′ ⇐⇒ ∀i ∈ 1, ..., k,x′
i = Fi(xi,di, δ) (4.2)

x′ = R(d,d′)(x) (4.3)

These operators are also lifted to sets of states in the usual way.

Note that for some mode d0 ∈ D, initial set of states X0 ⊆ X and timestep δ, postd,δ(X
0)

gives the frontier after time δ, while Stride(X0,d0, δ) gives the set of states reachable through-

out the δ time.

We then denote the bounded reachable states of H(SC) by

Reach(X0, ⟨d0,d1, ...,dm−1⟩, δ, Tmax), where:

1. X0 ⊆ X and d0 ∈ D are the initial states of the hybrid automaton;

12

2. Tmax is the time horizon such that m ≤ Tmax

δ
;

3. ⟨d0,d1, ...dm−1⟩ is a path of discrete modes that the hybrid automaton follows.

Reach(X0, ⟨d0,d1, ...,dm−1⟩, δ, Tmax) can be defined recursively as:

Definition 4.1.

Reach(X0, ⟨⟩, δ, Tmax) = ∅ (4.4)

Reach(X0, ⟨d0,d1, ...,dm−1⟩, δ, Tmax) = ∅ if Tmax < δ (4.5)

Reach(X0, ⟨d0,d1, ...,dm−1⟩, δ, Tmax) = Reach(X1, ⟨d1, ...,dm−1⟩, δ, Tmax − δ) (4.6)

∪ Stride(X0,d0, δ) if Tmax ≥ δ (4.7)

where X1 = postd0,d1(postd0,δ(X
0))

Note that due to the nature of this definition there may be some subset X0′ ⊆ X0 which

doesn’t visit the whole path but only a prefix of it. Those states are also contained within

the same reachable set.

Finally, we define Reach(X0,d0, δ, Tmax) =
⋃

path Reach(X
0, path, δ, Tmax) for all valid paths

of modes path ∈ Dn with initial states starting from X0, and Reach(X0,d0, δ, Tmax).next =

{⟨X′,d′⟩ | the path ⟨path,d′⟩ is a valid path for all valid paths path}.
Next, we discuss Verse functions for verification via reachability.

13

CHAPTER 5: BUILDING VERIFICATION ALGORITHMS IN VERSE

In this section we will describe the parallel algorithms with have implemented in Verse. But

instead of presenting the algorithm itself directly, we will first introduce the basic serialized

algorithm, and then gradually adding in different optimizations before getting to the final

version of the algorithm.

5.1 REACHABILITY ANALYSIS

Recall that for a scenario SC and its hybrid system model H(SC), X and D are re-

spectively the continuous state space and discrete mode space of H(SC). Verse provides

postCont(d0, δ,X0) to compute both the reachable set Stride(X0,d0, δ) and the frontier

postd0,δ(X
0), and postDisc(d0,d1,X0) to compute postd0,d1(X0) for some set of states

X0 ⊆ X, modes d0,d1 ∈ D, and timestep δ. Instead of computing the exact post, postCont

and postDisc compute over-approximations using improved implementations of the algo-

rithms in [10].

Verse’s verify function implements a reachability analysis algorithm using these post

operators (Algorithm 5.1). This algorithm constructs an execution tree Tree = ⟨V,E⟩ up to

depth Tmax in breadth first order. Each vertex N = ⟨X,d, t, stride, children⟩ ∈ V is a tuple

of a set of states, a mode, the start time, the stride and children of the current node. In the

pseudocode, we will use the dot field access notation to refer to fields of a node. For example

for a node N , N.stride and N.X refers to the stride and the set of initial states in N . The

root is ⟨X0,d0, 0, stride, children⟩ given initial set of states X0 and mode d0. There is an

edge from ⟨X,d, t, stride, children⟩ to ⟨X′,d′, t′, stride′, children′⟩ iff X′ = postd,δ(postd,d′(X))

and t′ = t+ δ.

5.1.1 Correctness proof of verify algorithm

In order to show the correctness of the verify algorithm, we will first proof the properties

of the verify_step function in Proposition 5.1, and show the correctness of verify in

Proposition 5.2 based on that.

Following the previous definitions, given a scenario SC, we have the hybrid automaton

H(SC). Let X and D be the continuous and discrete state space of H(SC).

Proposition 5.1. For any set of states X0 ⊆ X, mode d0 ∈ D and time t, the node

14

Algorithm 5.1

1: function verify_step(N, δ) where N.stride = ∅, N.children = ∅
2: ⟨N.stride,X′⟩ ← postCont(N.X, N.d, δ)
3: for d′ ∈ D s.t. G(N.d,d′) ∩N.stride ̸= ∅ do
4: N.children← N.children ∪ ⟨postDisc(X′, N.d,d′),d′, N.t+ δ,∅,∅⟩
5: function verify(H,X0,d0, δ, Tmax)
6: queue ← [⟨X0,d0, 0,∅,∅⟩]
7: reachset ← ∅
8: while queue ̸= ∅ ∧ ∃N ∈ queue s.t. N.t < Tmax do
9: N ← queue.dequeue()
10: verify_step(N, δ)
11: for N ′ ∈ N.children do
12: queue.add(N ′)
13: reachset ← reachset ∪N.stride
14: return reachset

N = ⟨X0,d0, t, stride, children⟩, after verify_step(N, δ) executes,

Stride(X0,d0, δ) ⊆ N.stride (5.1)

and ∀C ∈ N.children

G(N.d, C.d) ∩N.stride ̸= ∅ (5.2)

postN.d,C.d(postN.d,δ(N.X)) ⊆ C.X (5.3)

Proof. For (1), from line 2, ⟨N.stride,X′⟩ = postCont(N.X, N.d, δ). As mentioned in the

start of section 5.1, N.stride ⊇ Stride(N.X, N.d, δ) and X′ ⊇ postN.d,δ(N.X).

For (2), for every children C ∈ N.children:

From the loop condition at line 3:

G(d0, C.d) ∩N.stride ̸= ∅ (5.4)

C.X = postDisc(X′, N.d, C.d) (5.5)

⊇ postN.d,C.d(X
′) (5.6)

⊇ postN.d,C.d(postN.d,δ(N.X)) (5.7)

QED.

15

Proposition 5.2. Given initial states X0 ⊆ X and d0 ∈ D, time horizon Tmax,

Reach(X0,d0, δ, Tmax) ⊆ verify(X0,d0, δ, Tmax) (5.8)

Proof. We will first proof the correctness based on paths ⟨d0,d1, ...,dm−1⟩

Reach(Xk, ⟨dk, ...,dm−1⟩, Tmax) ⊆ verify(Xk, ⟨dk, ...,dm−1⟩, Tmax) (5.9)

We will proof by induction on the length of the tail of the path ⟨d0,d1, ...,dm−1⟩.
The tree Reach(X0,d0, δ, Tmax) is with height m is just the same reachable set with time

horizon equal to m× δ, i.e. Reach(X0,d0, δ,m× δ), resp. verify.

Base case:

Reach(X0,d0, δ, δ) ⊆ verify(X0,d0, δ, δ) (5.10)

and that the children of both trees are equal.

If let ⟨stride, frontier⟩ = postCont(X0,d0, δ), and N = ⟨X0,d0,∅,∅⟩, then

verify(X0,d0, δ, δ) = verify_step(N, δ) (5.11)

= stride (5.12)

⊇ Stride(X0,d0, δ) (5.13)

= Reach(X0,d0, δ, δ) (5.14)

In addition, according to proposition 5.1 point 2, the children of verify(X0,d0, δ, δ) which

is N.children after verify_step(N, δ) is the same as that of Reach(X0,d0, δ, δ).

Induction hypothesis: Given Reach(X0,d0, δ, k × δ) ⊆ verify(X0,d0, δ, k × δ) where k ∈
[1,m), show Reach(X0,d0, δ, (k + 1)× δ) ⊆ verify(X0,d0, δ, (k + 1)× δ)

Induction step:

verify(Xk, ⟨dk, ...,dm−1⟩, Tmax) = reachStep(Xk,dk) (5.15)

∪ verify(Xk+1, ⟨dk+1, ...,dm−1⟩, Tmax) (5.16)

Reach(Xk, ⟨dk, ...,dm−1⟩, Tmax) = Stride(Xk,dk, δ) ∪ Reach(Xk+1, ⟨dk+1, ...,dm−1⟩, Tmax)

(5.17)

From the induction hypothesis:

Reach(Xk+1, ⟨dk+1, ...,dm−1, Tmax) ⊆ verify(Xk+1, ⟨dk+1, ...,dm−1⟩, Tmax) (5.18)

16

and from 5.1 with substitutions:

Stride(Xk,dk, δ) ⊆ reachStep(Xk,dk) (5.19)

Combining both we get:

Reach(Xk, ⟨dk, ...,dm−1⟩, Tmax) ⊆ verify(Xk, ⟨dk, ...,dm−1⟩, Tmax) (5.20)

QED.

5.2 PARALLELIZATION

In this section we show how we parallelize the verification algorithm shown above using

Ray. Ray is a framework for parallelizing workloads in Python. It uses remote functions

as an abstraction for performing parallelization. These are functions that can be called on

one process, but will be executed in another process. These processes can be configured to

be executed either on other cores of the same machine, or cores on other network-connected

machines. Throughout this thesis we will assume that the remote functions execute on other

cores within the same machine.

For some normal Python function with arguments f(args), the function f can be turned

into a remote function by decorating the definition of the function with the ray.remote

decorator. Such remote functions can be called via f.remote(args). In order to simplify

the pseudocode, we will simply use a remote keyword before a function call to denote that

it is a remote function call.

In Ray, two processes communicate through a distributed database. For a remote function,

both the arguments and the return value will be stored in the database. From the caller’s side,

When a remote function is called, the arguments to the function will be sent automatically

to the database, and a reference to the return value of the function is returned immediately.

For the remote process, the arguments are first fetched from the database, then the function

will run, and lastly the return value is sent back to the database. The main process can poll

and fetch the value back by using the ray.wait() function. ray.wait(refs) blocks until

one of the references in refs is available, fetches and returns that value along with the rest

of the references.

The basic parallelized algorithm is shown in Algorithm 5.2. The verify_parallel algo-

rithm uses a queue to explore the tree just like verify, however there are 2 branches in the

loop. One of them pops nodes from the queue and calls the verify_step on the node as

17

remote functions, while the other waits for the results to come back, processes the result, and

adds new nodes to the queue. Because of the branching, the algorithm prioritizes sending

out computations, which means there can be multiple remote computations inflight at the

same time and the node computation can happen in a different order. The verify_parallel

uses a slightly modified version of verify_step, as it’s needed to recover the time and node

information.

Algorithm 5.2

1: function verify_parallel_step(N, δ) where N.stride = ∅, N.children = ∅
2: ⟨N.stride,X′⟩ ← postCont(N.X, N.d, δ)
3: for d′ ∈ D s.t. G(N.d,d′) ∩N.stride ̸= ∅ do
4: N.children← N.children ∪ ⟨postDisc(X′, N.d,d′),d′, N.t+ δ,∅,∅⟩
5: return N
6: function verify_parallel(H,X0,d0, δ, Tmax)
7: root ← ⟨X0,d0, 0,∅,∅⟩
8: queue ← [root]
9: refs ← ∅
10: reachset ← ∅
11: while (queue ̸= ∅ ∨ refs ̸= ∅) ∧ ∃N ∈ queue s.t. N.t < Tmax do
12: if queue ̸= ∅ then
13: N ← queue.dequeue()
14: refs.add(remote verify_parallel_step (N, δ))
15: else ▷ wait only when queue is empty
16: ⟨N, refs⟩ ← ray.wait(refs)
17: reachset ← reachset ∪N.stride
18: for N ′ ∈ N.children do
19: queue.add(N ′)

20: return reachset

5.2.1 Correctness proof of verify_parallel algorithm

For the verify_parallel algorithm to be sound, the reachset it computes needs to be an

overapproximation over the result of verify. However, due to how the verify_parallel

algorithm is implemented, this condition can be made stronger:

Proposition 5.3. For any set of states X0 ⊆ X and mode d0 ∈ D,

verify_parallel(X0,d0, δ, Tmax) = verify(X0,d0, δ, Tmax)

Proof. To prove the equality, we can show that the set of calls to verify_step in verify

18

and verify_parallel are the same. In verify, verify_step is called at line 10; in

verify_parallel, verify_step is called at line 14 as a remote function call. We assume

that remote calls in Ray will always return, and that given the same arguments, remote

function calls to verify_step will return the same values as non-remote calls. We can then

compare the tree generated by both verify and verify_parallel and proof by induction

on the height of the tree currently computed. Note that due to the nondeterministic ordering

of node traversal, the verify_parallel can begin computing nodes that have k + 1 depth

before finishing nodes at depth k.

Base case:

verify(X0,d0, δ, 1× δ) = verify_parallel(X0,d0, δ, 1× δ) (5.21)

and the children of both trees are the same.

Proof:

Let N = ⟨X0,d0, 0,∅,∅⟩. After verify_step(N, δ) is called,

verify(X0,d0, δ, 1× δ) = N.stride (5.22)

let N ′ = verify_parallel_step(N, δ), then:

verify_parallel(X0,d0, δ, 1× δ) = N ′.stride (5.23)

Under our previous assumptions, N = N ′. The children for each tree are simply N.children

and N ′.children, and they are equal.

Induction step:

Given verify(X0,d0, δ, k × δ) = verify_parallel(X0,d0, δ, k × δ) where k ∈ [1,m), show

verify(X0,d0, δ, (k + 1)× δ) = verify_parallel(X0,d0, δ, (k + 1)× δ) (5.24)

Proof:

since the children of all nodes at depth k for verify and verify_parallel are the same,

they must generate the same set of nodes at depth k + 1.

QED.

Note that in practice, computing verify_parallel_step is cheap. Calling small remote

functions like this will incur a lot of overhead due to the cost of communication and serializa-

tion/deserialization of data. When implementing the verify_parallel algorithm, we have

chosen to batch together these computations, so that each remote function call computes as

19

many timesteps as possible until a discrete mode transition is hit.

5.3 INCREMENTAL VERIFICATION

During the design-analysis process, users perform many simulation and verification runs

on slightly tweaked scenarios. Can we do better than starting each verification run from

scratch? In Verse, we have implemented an incremental analysis algorithm that improves

the performance of simulate and verify by reusing data from previous verification runs.

This algorithm also illustrates how Verse can be used to implement different algorithms.

Consider two hybrid automata Hi = H(SCi), i ∈ {1, 2} that only differ in the discrete

transitions. That is, (1) X2 = X1, (2) D2 = D1, and (3) TL2 = TL1, while the initial

conditions, the guards, and the resets are slightly different3. SC1 and SC2 have the same

sensors, maps, and agent flow functions. Let Tree1 = ⟨V1, E1⟩ and Tree2 = ⟨V2, E2⟩ be the

execution trees for H1 and H2. Our idea of incremental verification is to reuse some of the

computations in constructing the tree for H1 in computing the same for H2.

Recall that in verify, expanding each vertex ⟨X1,d1⟩ of Tree1 with a possible mode

involves a guard check, a computation of postd,d′ , and postd,δ. The verify_incremental

algorithm avoids performing these computations while constructing Tree2 by reusing those

computations from Tree1, if possible. To this end, verify_incremental uses a cache that

stores the result of a batch of verify_step. This is the same as that in Section 5.2,

which simply batches together all the adjacent verify_step that have the same discrete

modes. We’ll call this batch operation verify_batch, and the corresponding cache C.

verify_batch takes a set of states, a discrete mode, the timestep and time horizon, and

returns a pair consisting of a set of reachable states and a set of all children nodes generated

for that set of reachable states. Formally, here are the properties of verify_batch:

Proposition 5.4. For any set of states X0 ⊆ X, mode d0 ∈ D, time step δ and time horizon

3Note that in this section subscripts index different hybrid automata, instead of agents within the same
automaton (as we did in Sections 3 and 4).

20

Tmax, if let ⟨reachset, branches⟩ = verify_batch(X0,d0, δ, Tmax), then:

branches =
⋃

i∈[0,m)

{N ′ | N ′ ∈ N i.children s.t. N ′.d ̸= N i.d} (5.25)

reachset =
⋃

i∈[0,m)

N i.reachset (5.26)

∀N ∈ Nm−1.children, N.d ̸= Nm−1.d (5.27)

m× δ ≤ Tmax (5.28)

where m is the number of nodes in the batch, which we will refer to as the batch size, and

N i ∈ N i−1.children after verify_step(N i−1, δ) (5.29)

N i.d = N i−1.d (5.30)

N0 = ⟨X0,d0, 0,∅,∅⟩ (5.31)

For verify_batch(X0,d0, δ, Tmax), the cache C will be indexed by ⟨X0,d0⟩, and the value

will be the same as that of verify_batch. Unlike normal caches, a cache hit can happen

for C when the incoming key ⟨X′,d′⟩ satisfies X′ ⊆ X0 ∧ d′ = d0.

The incremental verification algorithm is presented in Algorithm 5.3. verify_incremental

checks C before every post computation to retrieve and reuse computations when possible.

The caches can save information from any number of previous executions, so verify_incremental

can be even more efficient than verify_parallel when running many consecutive verifica-

tion runs. Note that in the pseudocode, in addition to what is described above, verify_batch

will also take the current time as an argument, and return the initial conditions along with

the end time. This is needed so that the contents of the cache can be correctly updated.

5.3.1 Correctness proof of verify_incremental algorithm

The correctness property of verify_incremental is the same as that of verify_parallel

in Section 5.2, i.e. the reachset computed by verify_incremental for SC2, when given a

cache populated with data from SC1, is an overapproximation of the reachset computed by

verify. More formally:

Proposition 5.5. Given scenarios SC1 and SC2 with the same sensors, map and agent

flow functions, for some empty cache C = ∅, any initial conditions X0
1,X

0
2 ⊆ X, d0

1,d
0
2 ∈

D, timestep δ and time horizon Tmax, after verify_incremental(H1,X
0
1,d

0
1, δ, Tmax, C) is

21

Algorithm 5.3

1: function verify_incremental(H,X0,d0, δ, Tmax, C)
2: queue ← [⟨X0,d0, 0,∅,∅⟩]
3: refs ← []
4: reachset ← ∅
5: while (queue ̸= ∅ ∨ refs ̸= ∅) ∧ t < Tmax do
6: if queue ̸= ∅ then
7: N ← queue.dequeue()
8: if C(N.X, N.d) ̸= ∅ then ▷ queries the cache
9: ⟨subreachset, branches⟩ ← C(N.X, N.d)
10: reachset ← reachset ∪ subreachset
11: for N ′ ∈ branches do
12: queue.add(N ′)

13: else
14: refs.add(remote verify_batch (X,d, δ, Tmax, t))

15: else ▷ wait only when queue is empty
16: ⟨⟨subreachset, branches, N⟩, refs⟩ ← ray.wait(refs)
17: C(X,d)← ⟨subreachset, branches⟩ ▷ update the cache with results
18: reachset ← reachset ∪ subreachset
19: for N ′ ∈ branches do
20: queue.add(N ′)

21: return reachset

executed,

verify(H2,X
0
2,d

0
2, δ, Tmax) ⊆ verify_incremental(H2,X

0
2,d

0
2, δ, Tmax, C)

Proof. For any initial conditions X0
1,X

0
2 ⊆ X, d0

1,d
0
2 ∈ D, let:

⟨reachset1, branches1⟩ = verify_batch(X0
1,d

0
1, δ, Tmax, t) (5.32)

⟨reachset2, branches2⟩ = verify_batch(X0
2,d

0
2, δ, Tmax, t) (5.33)

Given that verify_batch simply batches together postCont and postDisc operations,

X0
1 ⊆ X0

2 =⇒ reachset1 ⊆ reachset2 (5.34)

As the cache C just stores the result of verify_batch

X0
1 ⊆ X0

2 =⇒ reachset1 ⊆ C(X0
2,d

0
2) (5.35)

22

That is,

verify_incremental(H2,X
0
2,d

0
2, δ, Tmax, C) ⊇ verify_incremental(H2,X

0
2,d

0
2, δ, Tmax,∅)

(5.36)

In other words, the reachset returned from a version of verify_incremental with caches

would be an overapproximation of a version that doesn’t have caches.

From Proposition 5.4, a verify_batch call can simply be decomposed into verify_step

calls.

With the 2 conditions stated above, the algorithm for verify_incremental can be sim-

plified to be the same as that of verify_parallel, which we have proven to be equivalent

to verify. Thus,

verify(H2,X
0
2,d

0
2, δ, Tmax) = verify_parallel(H2,X

0
2,d

0
2, δ, Tmax) (5.37)

⊆ verify_incremental(H2,X
0
2,d

0
2, δ, Tmax) (5.38)

QED.

23

CHAPTER 6: EXPERIMENTAL EVALUATION OF PARALLEL VERSE

We evaluate the performance of our parallel and incremental verification algorithms com-

pared with the basic serial algorithm through various examples. The experiments will be

divided into parts. We will first evaluate our parallel algorithm on a variety of examples.

We will then evaluate the parallel algorithm on the 4-way intersection example introduced

in Chapter 3. Finally, we compare the serial, parallel, and cached parallel algorithms using

repeated runs of similar scenarios.

The algorithms will be evaluated in scenarios with different computation requirements.

We will mainly use the number of agents and timesteps as the criteria for computation

complexity. More agents in a scenario means that more reachsets need to be computed

and more guards need to be checked, assuming the number of timesteps remain the same.

More timesteps means that the agents potentially get to interact more often, and cause more

transitions and branches to be explored.

In Chapter 5, we described verification algorithms where the initial conditions of continu-

ous state variables are sets of states, we will also evaluate the effectiveness of these algorithms

using simulation, which computes reachsets with the initial state as a point.

In these experiments, we consider two types of agents: a 4-d ground vehicle with bicycle

dynamics and the Stanley controller [31] (labeled in the table below as C) and a 6-d drone

with a NN-controller [32] (labeled as D). Each of these agents can be fitted with one of two

types of decision logic: (1) a collision avoidance logic (CA) by which the agent switches to

a different available track when it nears another agent on its own track, and (2) a simpler

non-player vehicle logic (NPV) by which the agent does not react to other agents (and just

follows its own track at constant speed).

6.1 VARIETY EXPERIMENTS

In this first set of experiments, we use four 2-d maps (map1 to map4) and two 3-d maps

(map5 and map6). map1 and map2 have 3 and 5 parallel straight tracks, respectively. map3

has 3 parallel tracks with circular curve. map4 is a race track imported from OpenDRIVE.

map5 is 3 vertically stacked straight tracks, and map6 is 3 vertically stacked figure-8 tracks.

The scenario name denotes the number and type of agents and the map used in the

scenario. For example, the scenario 3 C map1 has 3 ground vehicle agents using map1. The

last 4 rows respectively denote a Vanderpol, spacecraft, gearbox and thermostat scenarios.

Note that in the scenario 7 C map2, only 3 of the 7 agents have collision avoidance logic,

24

while all agents in all other experiments are collision avoiding.

Table 6.1: Runtime for simulating examples in Section 6. Columns are: scenario name,
sensor type (Noisy S), number of mode transitions (#TR), number of leaves in the execution
tree (#leaves), the run time of the serial algorithm (Rt Ser), the run time of the parallel
algorithm (Rt Par), and the ratio between the number of the serial and parallel algorithms
(Speedup). N/A for not available. The unit of run time is second.

Scenario Noisy S #Tr #leaves Rt Ser Rt Par Speedup
2 D map6 No 1 1 0.59 3.58 0.16
2 D map5 No 5 2 0.84 5.6 0.15
3 D map5 No 7 2 1.49 6.65 0.22
7 C map2 No 33 5 14.92 15.22 0.98
3 C map1 No 5 2 0.50 4.23 0.12
3 C map3 No 5 2 0.84 4.8 0.18
3 C map4 No 7 2 4.12 8.52 0.48
3 C map1 Yes 5 2 0.50 4.18 0.12
2 C map1 No 5 2 0.73 4.56 0.16
1 V N/A 1 1 0.04 1.78 0.02
1 S N/A 3 1 0.05 1.85 0.03
1 G N/A 3 1 0.12 2.05 0.06
2 T No 85 64 0.42 6.85 0.06

From Table 6.1 we can see that the parallelization algorithm doesn’t improve the runtime

but rather increase them. The low computation requirements of these scenarios mean that

the time it takes to simulate is too low and the overhead the algorithm brings is too high.

This is especially evident for the last row, where the large number of branches would have

meant more parallelism thus shorter runtime.

From Table 6.2 we can see roughly the same thing as before. However, because reachability

analysis requires more computation, even though the number of transitions or leaves stay

about the same compared to the simulation results, some experiments are able to benefit

from the algorithm.

6.2 PARAMETRIC INTERSECTION SCENARIO

In the second set of experiments, we will use ground vehicles on the 4-way intersection map

introduced in Chapter 3. All of the agents involved are collision avoiding agents. We will vary

the number of tracks between 2 and 5, and the number of agents between 3 and 20 to show

the effects of the parallelization algorithm under different levels of required computation.

From Table 6.3 we can see configurations with more than 1 leaf have a shorter runtime

using verify_parallel. This means that a scenario can benefit from the parallel algorithm

if it contains branches in the execution tree. Moreover, as the scenario gets more complex

25

Table 6.2: Runtime for computing reachable sets using examples in Section 6. Columns are:
scenario name, sensor type (Noisy S), number of mode transitions (#TR), number of leaves
in the execution tree (#leaves), the run time of the serial algorithm (Rt Ser), the run time of
the parallel algorithm (Rt Par), and the ratio between the number of the serial and parallel
algorithms (Speedup). N/A for not available. The unit of run time is second.

Scenario Noisy S #Tr #leaves Rt Ser Rt Par Speedup
2 D map6 No 8 4 96.91 71.91 1.35
2 D map5 No 5 2 28.38 32.46 0.87
3 D map5 No 7 2 63.07 72.64 0.87
7 C map2 No 37 7 493.00 228.82 2.15
3 C map1 No 5 2 39.32 36.40 1.08
3 C map3 No 4 2 58.22 58.66 0.99
3 C map4 No 7 2 175.82 134.11 1.31
3 C map1 Yes 5 2 50.92 43.59 1.17
2 C map1 No 5 2 24.19 27.84 0.87
1 V N/A 1 1 0.44 5.26 0.08
1 S N/A 3 1 3.75 8.93 0.42
1 G N/A 3 1 122.25 137.22 0.89
2 T No 877 512 274.21 48.51 5.65

with increasing number of agents and lanes, the more benefit the parallel algorithm can

provide. This can be clearly seen from Figure 6.4.

From Table 6.5 we can see that these results roughly match that of the simulation in

terms of smaller scenarios. The agent and track numbers here are reduced compared to

the simulation experiments as the run time quickly explodes for reachability analysis into a

matter of hours. We decided experiments running for such a long time are not usable for

benchmarking.

6.3 INCREMENTAL VERIFICATION EXPERIMENTS

In the third set of experiments, we will run repeated experiments on similar scenarios

to test the effectiveness of the incremental verification algorithm. For each test, we will

run experiments on 2 similar scenarios, one immediately after the other, and only record

the result from the second run. Each will use map2 and contain 7 agents, only 3 of which

are collision avoiding agents. The agent dynamics and maps for all of the scenarios in this

experiment will remain the same, as per the assumptions in Chapter 5.3. For simulation

and reachability analysis, we will change the scenarios in 3 different ways:

1. under repeat, the 2 scenarios are identical;

2. under change init, the initial conditions of one of the agents will be changed;

26

Table 6.3: Runtime for simulating the intersection examples in Section 6. Columns are:
number of tracks (#track), number of agents (#agent), number of mode transitions (#Tr),
the number of leaves of the execution tree (#leaves), the total run time of the verify (Rt
Ser), the total run time of verify_parallel (Rt Par), and the ratio between the number
of the serial and parallel algorithms (Speedup). The unit of run time is in seconds.

#track #agent #timesteps #nodes #leaves Rt Ser Rt Par Speedup
2 3 1200 1 1 5.32 9.81 0.54
2 4 1200 1 1 10.12 14.84 0.68
2 5 1200 3 1 17.58 23 0.76
2 6 1200 5 1 26.91 32.21 0.84
2 9 1200 5 1 55.81 63.51 0.88
2 12 1200 20 1 101.75 117.37 0.87
2 15 1200 20 1 155.52 178.03 0.87
3 3 1200 1 1 7 11.57 0.61
3 4 1200 1 1 14.1 18.9 0.75
3 5 1200 5 2 40.46 30.6 1.32
3 6 1200 5 2 59.14 40.22 1.47
3 9 1200 5 2 126.27 78.98 1.6
3 12 1200 37 8 544.07 185.73 2.93
3 15 1200 37 8 810.73 277.14 2.93
4 3 1200 1 1 6.48 10.52 0.62
4 4 1200 1 1 13.95 18.69 0.75
4 5 1200 5 2 43.52 31.35 1.39
4 6 1200 7 2 67.7 48.69 1.39
4 9 1200 7 2 143.27 90.19 1.59
4 12 1200 129 29 1527.05 465.22 3.28
4 15 1200 129 29 2688.21 779.13 3.45
5 3 1200 1 1 6.51 11.16 0.58
5 4 1200 1 1 14.21 18.48 0.77
5 5 1200 5 2 45.21 32.91 1.37
5 6 1200 5 2 64.18 44.7 1.44
5 9 1200 5 2 142.7 86.34 1.65
5 12 1200 133 32 1787.07 510.8 3.5
5 15 1200 133 32 2749.73 772.4 3.56

3. under change dl, the decision logic for one of the agents will be changed slightly.

27

Figure 6.4: Runtime in simulation vs. the number of agents in the scenario

Table 6.5: Runtime for verifying the intersection examples in Section 6. Columns are:
number of tracks (#track), number of agents (#agent), number of mode transitions (#Tr),
the number of leaves of the execution tree (#leaves), the total run time of the verify (Rt
Ser), the total run time of verify_parallel (Rt Par), and the ratio between the number
of the serial and parallel algorithms (Speedup). The unit of run time is second.

#track #agent #timesteps #nodes #leaves Rt Ser Rt Par Speedup
2 3 600 5 2 19.15 22.83 0.84
2 4 600 5 2 22.85 26.47 0.86
2 5 600 5 2 27.43 30 0.91
2 6 600 20 6 91.95 47.8 1.92
2 7 600 91 20 524.36 121.25 4.32
2 8 600 91 20 584.04 137.41 4.25
2 9 600 91 20 670.1 155.28 4.32
3 3 600 5 2 20.76 22.77 0.91
3 4 600 5 2 23.67 26.07 0.91
3 5 600 5 2 27.78 30.54 0.91
3 6 600 20 6 91.85 49.05 1.87
3 7 600 91 20 519.61 123.77 4.2
3 8 600 91 20 575.27 137.44 4.19
3 9 600 91 20 664.01 154.7 4.29
4 3 600 5 2 19.26 22.49 0.86
4 4 600 5 2 24.37 25.67 0.95
4 5 600 5 2 27.5 29.84 0.92
4 6 600 20 6 95.93 49.48 1.94
4 7 600 91 20 499.17 136.82 3.65
4 8 600 91 20 577.69 138.37 4.17
4 9 600 91 20 658.98 154.29 4.27
5 3 600 5 2 19.96 22.44 0.89
5 4 600 5 2 23.98 26.3 0.91
5 5 600 5 2 26.96 30.17 0.89
5 6 600 20 6 93.53 47.59 1.97
5 7 600 91 20 523.32 121.04 4.32
5 8 600 91 20 578.22 136.57 4.23
5 9 600 91 20 652.64 154.77 4.22

28

Figure 6.6: Runtime in verification vs. the number of agents in the scenario

Table 6.7: Experimental results for the verify_incremental algorithm in simulation, compared
to the verify and verify_parallel algorithms. The columns are runtime in seconds (run time),
the total memory usage of Verse in megabytes (memory), the size of C in megabytes (cache size),
and the hit rate of the cache (hit rate).

#Tr algorithm run time memory cache size hit rate

repeat 45
verify 14.08 300 N/A N/A
verify_parallel 14.25 358 N/A N/A
verify_incremental 0.98 375 2.63 100%

change init 24
verify 16.5 300 N/A N/A
verify_parallel 9.35 388 N/A N/A
verify_incremental 9.19 398 3.72 84.9%

change dl 45
verify 13.75 301 N/A N/A
verify_parallel 13.29 358 N/A N/A
verify_incremental 8.73 388 3.51 71.9%

Table 6.8: Experimental results for the verify_incremental algorithm in verification, compared
to the verify and verify_parallel algorithms. The columns are runtime in seconds (run time),
the total memory usage of Verse in megabytes (memory), the size of C in megabytes (cache size),
and the hit rate of the cache (hit rate).

#Tr algorithm run time memory cache size hit rate

repeat 105
verify 383 357 N/A N/A
verify_parallel 106 441 N/A N/A
verify_incremental 24.38 633 4.61 100%

change init 49
verify 202 365 N/A N/A
verify_parallel 99.8 1126 N/A N/A
verify_incremental 83.08 1142 6.24 89.06%

change dl 45
verify 334 367 N/A N/A
verify_parallel 153 1231 N/A N/A
verify_incremental 148 1247 6.51 72.6%

6.4 EVALUATION

From the experimental results we can see that the parallelization algorithm can provide

significant run time benefits. For scenarios with more branching in the execution tree, the

29

speedup can be up to 3 to 4x. For smaller scenarios or those without any branching, the

algorithm only adds delay to running the experiment due to cold starts. However, the added

delays don’t seem to be serious.

For the incremental verification algorithm, we can see that for the repeat cases, the

algorithm is able to provide more than 10 times speed up. However, it doesn’t handle

agent state changes very well. For the change init cases, incremental verification provides

almost no improvement over just the parallelization algorithm, as the change happened at

the start of the experiment. For the change dl cases, the change in system behavior does

start changing around the half point through the experiment, and from the data we can see

that the algorithm is able to reuse the cached result, lowering the runtime to around half of

the original.

30

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we presented algorithms for parallelization and incremental verification in

the Verse library. The parallelization algorithm verify_parallel allows experiments using

the Verse library to be finished in a shorter time, without incurring too much overhead. When

given larger scenarios, the parallel algorithms can give significant improvements, up to 4 or

5 times. However when given smaller scenarios the algorithm either gives no improvement

or simply introduces delays. The incremental verification algorithm verify_incremental

makes it easier to iterate on previous scenarios and decision logics. When the states and

decision logic of the agents are not changed much, the algorithm can give 100% run time

improvements, or even up to 10 times the speed for identical scenarios. In the worst cases,

the algorithm doesn’t seem to introduce any penalties.

There are several directions along which improvements can be made.

As can be seen from the experiments, the parallelization algorithm doesn’t do well with

small scenarios. There are two improvements that can be made here. First, we could imple-

ment some kind of heuristics in the future so that the library can sense whether parallelization

needs to enabled so that there is less overhead. In addition, currently the algorithms paral-

lelize the computation on a per-branch basis. This is fine for scenarios with large amounts

of branching, as from the experiment data. One method to improve on this is to parallelize

with a granularity of agents. Being able to divide up tasks at a finer scale would mean

more opportunities for parallelization, but we would also need to be careful of too small task

sizes and develop batching algorithms that both take advantage of the parallelization while

minimizing the overhead induced.

In incremental verification, the algorithm currently redoes the computation as soon as any

of the agents reaches states or exhibit behaviors never seen before. This is fairly evident

from the experiments, where the caching is not able to provide run time improvements for

the change init cases. Finer grained analysis of agent interactions can be done so that

changes in agents’ states or behaviors will only trigger recomputation of agents that will be

affected.

31

REFERENCES

[1] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press.

[2] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of Timed I/O
Automata, ser. Synthesis Lectures on Computer Science. Morgan Claypool, November
2005, also available as Technical Report MIT-LCS-TR-917.

[3] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: A verification tool
for stateflow models,” in Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems - Volume 9035. Berlin,
Heidelberg: Springer-Verlag, 2015, p. 68–82.

[4] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu, “Xspeed: Ac-
celerating reachability analysis on multi-core processors,” in Hardware and Software:
Verification and Testing, N. Piterman, Ed. Cham: Springer International Publishing,
2015, pp. 3–18.

[5] B. Qi, C. Fan, M. Jiang, and S. Mitra, “Dryvr 2.0: A tool for verification and
controller synthesis of black-box cyber-physical systems,” in Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (Part of CPS
Week), ser. HSCC ’18. New York, NY, USA: Association for Computing Machinery,
2018. [Online]. Available: https://doi.org/10.1145/3178126.3187008 p. 269–270.

[6] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in
Computer Aided Verification (CAV), 2011, pp. 379–395.

[7] S. Bak and P. S. Duggirala, “Hylaa: A tool for computing simulation-equivalent reacha-
bility for linear systems,” in Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control. ACM, 2017, pp. 173–178.

[8] S. Bak, H.-D. Tran, and T. T. Johnson, “Numerical verification of affine systems with
up to a billion dimensions,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, ser. HSCC ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 23–32.

[9] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[10] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “Dryvr: Data-driven verification and com-
positional reasoning for automotive systems,” in Computer Aided Verification (CAV),
R. Majumdar and V. Kunčak, Eds. Cham: Springer, 2017, pp. 441–461.

32

https://doi.org/10.1145/3178126.3187008

[11] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotated models from
executions,” in Proceedings of the Eleventh ACM International Conference on Embedded
Software, ser. EMSOFT ’13. IEEE Press, 2013.

[12] X. Chen and S. Sankaranarayanan, “Reachability analysis for cyber-physical systems:
Are we there yet?” in NASA Formal Methods, J. V. Deshmukh, K. Havelund, and
I. Perez, Eds. Cham: Springer, 2022, pp. 109–130.

[13] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu, “Xspeed: Ac-
celerating reachability analysis on multi-core processors,” in Hardware and Software:
Verification and Testing, N. Piterman, Ed. Cham: Springer, 2015, pp. 3–18.

[14] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear
hybrid systems,” in Computer Aided Verification (CAV). Springer, 2013, pp. 258–263.

[15] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S. Duggirala, “Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2,” in Computer Aided Verification
(CAV), 2016, pp. 531–538.

[16] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical
Computer Science, vol. 138, no. 1, pp. 3–34, 1995.

[17] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid
automata?” Journal of Computer and System Sciences, vol. 57, no. 1, pp. 94–124, 1998.

[18] Y. Li, H. Zhu, K. Braught, K. Shen, and S. Mitra, “Verse: A python library for rea-
soning about multi-agent hybrid system scenarios,” 2023, accepted for Computer Aided
Verification (CAV ’23).

[19] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental verification framework
for component-based software systems,” in Proceedings of the 16th International ACM
Sigsoft Symposium on Component-Based Software Engineering, ser. CBSE ’13. New
York, NY, USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2465449.2465456 p. 33–42.

[20] H. Günther and G. Weissenbacher, “Incremental bounded software model checking,” in
Proceedings of the 2014 International SPIN Symposium on Model Checking of Software,
ser. SPIN 2014. New York, NY, USA: Association for Computing Machinery, 2014.
[Online]. Available: https://doi.org/10.1145/2632362.2632374 p. 40–47.

[21] G. Fedyukovich, A. Gurfinkel, and N. Sharygina, “Incremental verification of compiler
optimizations,” in NASA Formal Methods, J. M. Badger and K. Y. Rozier, Eds. Cham:
Springer International Publishing, 2014, pp. 300–306.

[22] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker for hybrid
systems,” in Computer Aided Verification (CAV ’97), ser. LNCS, vol. 1254, 1997, pp.
460–483.

33

https://doi.org/10.1145/2465449.2465456
https://doi.org/10.1145/2632362.2632374

[23] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability analysis of
piecewise-linear dynamical systems,” in Hybrid Systems: Computation and Control, ser.
LNCS, B. Krogh and N. Lynch, Eds., vol. 1790. Hybrid Systems: Computation and
Control, 2000, pp. 20–31.

[24] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational techniques for the
verification of hybrid systems,” Proceedings of the IEEE, vol. 91, no. 7, pp. 986–1001,
2003.

[25] A. Gurung, R. Ray, E. Bartocci, S. Bogomolov, and R. Grosu, “Parallel reachability
analysis of hybrid systems in xspeed,” International Journal on Software Tools for
Technology Transfer, vol. 21, no. 4, pp. 401–423, Aug 2019. [Online]. Available:
https://doi.org/10.1007/s10009-018-0485-6

[26] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Juliareach: a
toolbox for set-based reachability,” in Proceedings of the 22nd ACM International Con-
ference on Hybrid Systems: Computation and Control, 2019, pp. 39–44.

[27] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ-reachability analysis for hybrid
systems,” in International Conference on TOOLS and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 200–205.

[28] A. Devonport, M. Khaled, M. Arcak, and M. Zamani, “Pirk: Scalable interval
reachability analysis for high-dimensional nonlinear systems,” in Computer Aided
Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21–24, 2020, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 2020. [Online].
Available: https://doi.org/10.1007/978-3-030-53288-8 27 p. 556–568.

[29] M. Khaled and M. Zamani, “Pfaces: An acceleration ecosystem for symbolic control,” in
Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3302504.3311798 p.
252–257.

[30] D. Sun and S. Mitra, “Neureach: Learning reachability functions from simulations,”
in Tools and Algorithms for the Construction and Analysis of Systems - 28th Interna-
tional Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I, 2022, pp. 322–337.

[31] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous automobile
trajectory tracking for off-road driving: Controller design, experimental validation and
racing,” in 2007 American Control Conference, 2007, pp. 2296–2301.

[32] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: verifying safety
properties of hybrid systems with neural network controllers,” in Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control,
2019, pp. 169–178.

34

https://doi.org/10.1007/s10009-018-0485-6
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1145/3302504.3311798

	CHAPTER 1 INTRODUCTION
	hybrid automaton Verification
	Hybrid Verification Usability Challenges and Verse
	Parallel Algorithms for hybrid automaton Verification

	CHAPTER 2 RELATED WORK
	CHAPTER 3 SCENARIOS IN VERSE
	Tracks, Modes, and Maps
	Agents
	Sensors and Scenarios

	CHAPTER 4 VERSE SCENARIO TO HYBRID VERIFICATION
	Bounded Reach Sets

	CHAPTER 5 BUILDING VERIFICATION ALGORITHMS IN VERSE
	Reachability Analysis
	Correctness proof of verify algorithm

	Parallelization
	Correctness proof of verify`parallel algorithm

	Incremental Verification
	Correctness proof of verify`incremental algorithm

	CHAPTER 6 EXPERIMENTAL EVALUATION OF PARALLEL VERSE
	Variety Experiments
	Parametric Intersection Scenario
	Incremental Verification Experiments
	Evaluation

	CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

