Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells

Zhenqi Huang¹, Chuchu Fan¹, Alexandru Mereacre²,

Sayan Mitra¹ and Marta Kwiatkowska²

¹University of Illinois at Urbana-Champaign ²University of Oxford

Hybrid Automata (HA)

HA = Finite-State Machine + Differential Equation

Hybrid Automata Model of Cardiac Cells [Grosu12]

Invariant Verification for Hybrid Automata

Computing reach set exactly is undecidable [Henzinger]

- Over-approximations
- Bounded time
- Static analysis and symbolic approaches
 - E.g. HyTech[Henzinger97], CheckMate[Silva00], d/dt[Dang98], SpaceEx[Frehse11], flow*[Chen13]
- Dynamic+Static analysis using numerical simulations
 - E.g. Breach[Donzé10], S-TaLiRo[Annapureddy11], C2E2[Duggirala13]

Simulation-Based Bounded Reachability

 $\dot{x} = f(x), \Theta \subseteq \mathbb{R}^n$

- Finite cover of Θ
- Simulate from the center of each cover
- Bloat the simulation with some factor, such that the bloated tube contains all trajectories starting from the cover
- Union of all such tubes gives an over-approximation of reach set

- The bloating factor can be computed using sensitivity analysis [Donzé07]
- Or given as an annotation for the model [Duggirala13,Huang14].

Challenge: HA Network

We assume the network is annotated by the user per automaton per mode.

 $40.01x_{31}$

Annotation: Input-to-State (IS) Discrepancy

Definition[Duggirala13,Huang14]. IS discrepancy is defined by β and γ such that for any initial states θ , θ' and any inputs u, u',

$$|x(t) - x'(t)| \le \beta(|\theta - \theta'|, t) + \int_0^t \gamma(|u(s) - u'(s)|) ds$$

- $\beta \to 0$ as $\theta \to \theta'$, and $\gamma \to 0$ as $u \to u'$
- Linear *f*(): found automatically
- Nonlinear f(): several heuristics were proposed

Bloating a Trajectory with IS Discrepancy

- The bloated tube contains all trajectories start from the δ -ball of θ .
- The over-approximation can be computed arbitrarily precise.

Reachability Algorithm for HA Networks

- Bloat α piece-wisely
- Generate α' for missing jumps
- Refinement
 - finer initial cover
 - more precise numerical simulation

Θ

α

 $(q_a^{\prime\prime},q_b^{\prime\prime},q_c^{\prime\prime})$

 (q_a, q_b, q_c) (q'_a, q'_b, q'_c)

Soundness and Relative Completeness

- Definition. *c*-perturb(*A*) is the set of all HA *A*', such that *A*' and *A* are identical except that
 - The initial sets: $d_H(\Theta_A, \Theta_{A'}) \leq c$, and
 - The differential equations in every mode: $d_{\infty}(f_A, f_{A'}) \leq c$
- Definition. A Robustly satisfies (violates) *Inv* iff there exists c > 0 such that all c-perturb(A) satisfy (violate) *Inv*.
- **Theorem**: the algorithm is sound and relatively complete.
 - i.e. the algorithm terminates if A robustly satisfies (violates) Inv.

Experiments

Network	# Variables	# Modes	# Sims	Run Time (s)
8 cells (FH)	16	1	24	33
3 cells	12	2.4×10^{4}	16	105
5 cells	20	2.1×10^{7}	170	945
8 cells	32	5.0×10^{10}	73	2377

Discussion and Future work

- A scalable technique to verify nonlinear hybrid automata networks using annotations
 - IS discrepancies are used to construct a reduced model of the overall network whose trajectory gives the bloating factor
 - Both original network and the reduced model
 - Sound and relatively complete algorithm
- Cardiac cell networks upto 8 cells, 32 var. and 29⁸ modes are verified using 29 annotations
- Future work:
 - Find IS discrepancy automatically
 - Verify properties of more biological importance