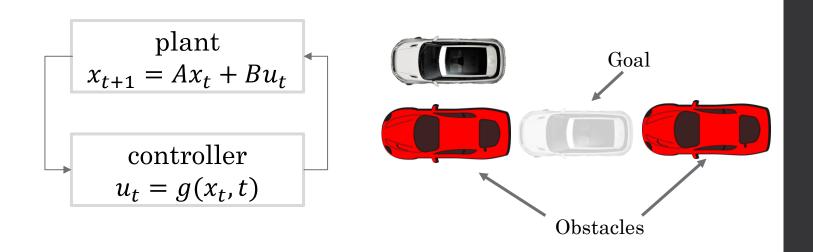
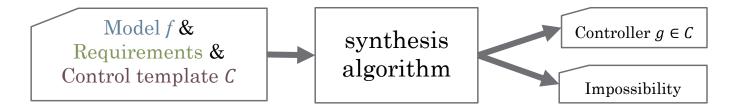
Inductive controller synthesis for piecewise linear systems with SMT


Zhenqi Huang¹, Yu Wang¹

Sayan Mitra¹, Geir Dullerud¹, and Swarat Chaudhuri²

¹Coordinated Science Lab University of Illinois at Urbana-Champaign

²Department of Computer Science Rice University


Typical synthesis problem: reach-avoid

Reach-avoid problem is defined by:

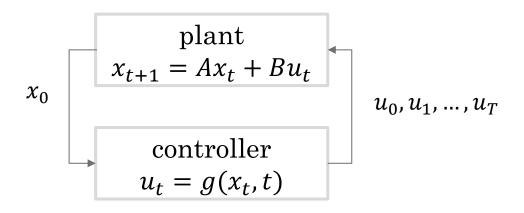
- Controller class C such that $g \in C$
- Initial set Init s.t. $x_0 \in Init$
- Goal set *Goal* s.t. $x_T \in Goal$ for some T
- Safe set Safe s.t. $x_t \in Safe$ for all $t \leq T$

Controller synthesis algorithm

given a system *model*, *safe* and *goal*, <u>find</u> control such that all behaviors are safe and reach goal

- yes (controller strategy *g*)
- no (impossibility certificate "no controller exists")

Existing reach-avoid synthesis


- Constraint model predictive control (e.g., [Bemporad02])
 - · Cast the reach-avoid problem into a constraint optimization
 - Apply receding-horizon strategy
 - Challenges: soundness, completeness, nested constraints

- Finite automata abstraction (e.g., [Tabuada06])
 - Construct finite automata of the dynamical system and the reach-avoid property
 - Model check the product automata
 - Challenges: completeness, scalability

SMT-based synthesis: overview

- First order logic formula have quantifiers over variables
 - Example: $\exists y \forall x. (x^2 \le y + 1) \Rightarrow (\sin x > \cos(\log y))$
- Satisfiability modulo theories (SMT) solvers
 - · Finding satisfying solutions for first order logic formula, or
 - Prove no solution satisfies the formula
 - E.g. Z3, CVC4, VeriT, dReal
 - Scales up to hundreds of real variables & thousands of constraints for <u>quantifier-free linear formula</u>
- SMT-based synthesis: generate boolean constraints for a correct controller using the problem specifications and directly solve using SMT solvers.

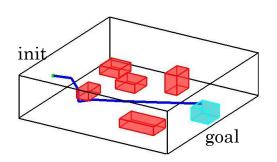
Naïve SMT synthesis: open-loop control

Consider $C = \{[0, ..., T] \rightarrow U\}$ for open-loop control with a single initial state $Init = \{x_0\}$

•
$$\exists u_0, u_1, \dots, u_T$$
:
$$(\land_{t \leq T} x(t) \in safe) \land x(T) \in Goal$$
 with $x(t) = A^t x_0 + \sum_{s=0}^{t-1} A^{t-s-1} B u_s$

Application: helicopter autopilot

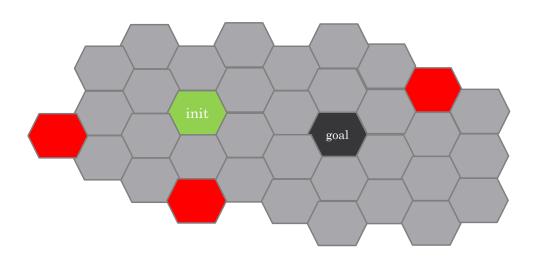
Autonomous helicopter

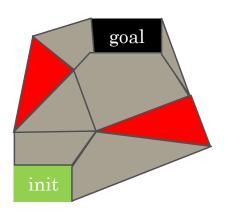

• 16 dimensions, 4 inputs

Advantage

 Method is automatics, can be used by users with limited experience in control

- Performance deteriorates with larger disturbances
- Relies on unrolling the system dynamics with disturbance for bounded time---does not scale beyond linear, short horizon




Т	φ	Result	R.time (s)
9	402	Sat	24.5
12	338	Sat	60.6
15	576	Sat	158.8
18	640		

Idea of inductive synthesis: (a) state feedback

Lookup table controller:

- **P**: cover of the state space, sensor quantization or heuristic
- $C = \{ P \rightarrow U \}$
- We denote post(p, g) as the set of partition reached in one-step from a partition p using controller g.

Idea of inductive synthesis: (b) two correctness certificates

- Safety certificate
 - An invariant set *Inv* that is reachable from *init*
- Progress certificate
 - A ranking function *rank* like a Lyapunov function

Idea of inductive synthesis: (c) inductive synthesis rules

```
Find g: P \to U, rank: P \to \mathbb{N}, Inv: P \to \{0,1\} such that:
```

- (initial condition) $Init \subseteq Inv$
- (control invariant) $post(Inv, g) \subseteq Inv$
- (safe) $Inv \subseteq safe$
- (goal) $p \subseteq goal \Leftrightarrow rank(p) = 0$
- (progress) $rank(p) > 0 \Rightarrow rank(p) > \max rank(post^{k}(p, g))$

Strengthening & relaxation of rules

The post operator is generally hard to symbolically compute, but can be over-/under-approximated

- replace *post* by over-approximated \overline{post} , we get a set of strengthened rules
- replace *post* by under-approximated *post*, we get a set of relaxed rules
- If the strengthened rules are solved by control *g* with certificates *Inv*, *rank*, so is the original rules.
- If the relaxed rules does not have a solution, so is the original rules.
- If the relaxed rules are solved by control g with certificates <u>Inv</u>, rank, but the strengthened rules does not have a solution, the set <u>Inv</u> can be used to guide refinement of post
 - Refine in <u>Inv</u> helps derive progress proof, and
 - Refine in <u>Inv</u>^C helps derive <u>safety</u> proof.

Soundness & relative completeness

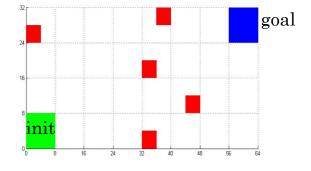
Given controller class C and ranking function templates R, a problem M is robust if there exists $\epsilon > 0$:

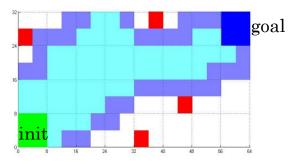
- exists $g \in C, V \in R$ such that for any problem M' whose dynamic is ϵ -close to M, the g, V solves the inductive rules for M', OR
- for none of the problems M' that are ϵ -close to M, have solutions to the synthesis problem with any $g \in C, V \in R$

Theorem. If synthesis problem M is <u>robust</u>, then there exists a sufficiently accurate computation of *post* to

- (a) either find control g and proof rank, Inv or
- (b) give a proof that there exists no such controller in *C*, *R*.

Application: path planning


implemented using CVC4 SMT solver


4D nonlinear vehicle navigation with noise and obstacles

P: regions in state space

 $rank: p \rightarrow \mathbb{N}$

 768 cells, 3072 realvalued/boolean variables, solved in less than 10 minutes

Light (under) and over (dark) approximation of post

Summary and outlook

- We propose inductive controller synthesis algorithm using SMT solvers
- Idea: synthesize an invariant set and a ranking function serving as the correctness proofs together with the controller actions
- Algorithms can also give impossibility certificates
- Ongoing and Future work:
 - Connect synthesis with our high-level programming language of distributed robots [Lin et al. LCTES 2015]
 - Synthesis of attacks on power networks