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A	benchmark	problem	for	verified	control

ARPOD	problem:	Automous
rendezvous,	proximity	operation,	
and	docking	for	spacecraft	
[Jewison and	Erwin,	CDC	2016]

Hybrid	dynamical	system

Control	design	

Automatic	safety	verification



Plant	model

State	vector:	𝑥̅ = [𝑥, 𝑦, 𝑥̇, 𝑦̇]
Input	vector:	𝑢* = [𝐹,, 𝐹-]

Separation:	𝜌 = 𝑥/	 + 𝑦/�

Angle	of	approach:	𝜃 = arctan(-
,
)	

non-inertial relative coordinate frame
with target located at the origin.



Underlying	plant	dynamics
Nonlinear
Derived	from	Kepler’s	laws	and	two-body	problem

𝑥̈ = 𝑛/𝑥 + 2𝑛𝑦̇ +
𝜇
𝑟/ −

𝜇
𝑟AB

𝑟 + 𝑥 +
𝐹,
𝑚A

𝑦̈ = 𝑛/𝑦 − 2𝑛𝑥̇ −
𝜇
𝑟AB
𝑦 +

𝐹-
𝑚A

𝑟A = 𝑟 + 𝑥 / + 𝑦/� ,	𝑛 = D
EF

� , 𝜇, 𝑟,𝑚A	are	given	constants

Linear
Clohessy-Wiltshire-Hill	(CWH)	equations	

𝑥̈ = 𝑛/𝑥 + 2𝑛𝑦̇ +
𝐹,
𝑚A

𝑦̈ = −2𝑛𝑥̇ +
𝐹-
𝑚A

𝑥̇̅ = 𝐴𝑥̅ + 𝐵𝑢* 	= 𝐴 − 	𝐵𝐾 𝑥̅



Modes	in	hybrid	dynamics
Phase	1:	Only	measure	𝜃	and	not	𝜌; system	is	not	
observable.	(not	in	paper)

Phase	2: Chaser	rendezvous	with	target	without	
constraint.	

Phase	3: Chaser	continues	rendezvous	with	constraints	
on	its	path	and	velocity,	target	location.	

Phase	4:	Plant	mass	changes	and	the	terminal	
constraint	is	a	new	location.	(not	in	this	paper)

Abort/passive:	Chaser	shuts	off	its	thrusters	if	a	failure	
is	detected

𝜌 ≤ 100

𝜌 ≥ 100

𝑡 ∈ 𝑡Q, 𝑡/

𝑡 ∈ 𝑡Q, 𝑡/

Phase	2

𝑥̇̅ = 𝐴𝑥̅ + 𝐵𝑢*/
𝜌 ≥ 100; 𝑡 ≤ 𝑡/

Phase	3

𝑥̇̅ = 𝐴𝑥̅ + 𝐵𝑢*B
𝜌 ≤ 100; 𝑡 ≤ 𝑡/

Passive

𝑥̇̅ = 𝐴𝑥̅
𝑡 ≥ 𝑡Q



Safety	constraints
Max	thrust

𝐹, , 𝐹- ≤ 10𝑁

Closing	velocity	

𝑥̇/ + 𝑦̇/� ≤ 5𝑐𝑚/𝑠𝑒𝑐
Line	of sight

𝜃 ∈ [− XY
Z
, − [Y

Z
]

Problem:	Design	a	controller for	ARPOD	
and verify that all reachable states (from
a	set	of initial states (Θ)	and given set	of
disturbance inputs)	meet these
constraints.	

Unsafe

𝜏 𝑡

time

𝜏(0)

Θ	
𝑅𝑒𝑎𝑐ℎ



Control	and	verification	strategies

MPC-based	controller	using	ellipsoidal	constraints	
[Jewison,	Erwin,	and	Saenz-Otero	2015]	
Optimal	control	using	Reach-Avoid	set	computation	
[Oishi et	al.	CDC	2016]	

Hybrid	supervisory	control	
[Malladi,	Sanfelice,	Butcher,	and		Wang,	2016-2017	]	

Trajectory	planning	using	MPC	(Phase	2)	and	differential	
flatness	(Phase	1) [Farahani,	Papusha,	McGhan,	and	Murray]

Optimal	control	policy	via	stochastic	reachability	analysis	
[Poonawala and	Topcu,	CDC	2016]

State-dependent	LQ	(SDLQ)	and	verification	
[Chan	and	Mitra,	2016-17]
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Simulation-driven	bounded	verification
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Unsafe

𝜏 𝑡

time

𝜏(0)

Θ	
𝑅𝑒𝑎𝑐ℎ

Safety	problem:	given	initial	set	𝛩 and	
unsafe	set	𝑈,	decide	𝑅𝑒𝑎𝑐ℎ ∩ 𝑈	 = 	∅?



Controller	Design:	SDLQ
	𝑥̇̅ = 𝐴𝑥̅ + 𝐵𝑢* 	= 𝐴 − 	𝐵𝐾f 𝑥̅

• Extend	LQR	to	multiple	stages;	gives	flexibility	to	handle	local	
constraints

• Weights	Q(·),	R(·)	of	the	quadratic	cost	are	functions	of	the	
sampled	state	𝑥̅(𝑡);	at	ith period	𝐾f is	computed	as:	

min
ij
	k 𝑥̅l𝑄 𝑥̅ 𝑡f 𝑥̅ + 𝑢*l𝑅 𝑥̅ 𝑡f 𝑢*]𝑑𝑡

o

p

• Solution	𝐾f 	= 	𝑅qQ𝐵l𝑃f	,	where	𝑃f is	solution	to	algebraic	Riccati
equation

• Challenge:	Simulations	behave	correctly,	but	analytical	solution	
not	available	(needed	for	previous	verification	approaches)
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Unsafe

Simulation-driven	verification	for	a	single	mode	𝑣

1.	simulate	→	2.	check	safety	→	3.	refine	

Discrepancy	𝛽 bounds	distance	between	neighboring	
trajectories	 ‖𝜏Q	(𝑡) − 𝜏/	(𝑡)‖ ≤ 𝛽(𝜏Q(0), 𝜏/(0), 𝑡),

From	a	single	simulation	𝜏Q(𝑡) + 𝛽 over-approximate	
reach	set	from	neighborhood	of	𝜏Q 0

Earlier	approaches	use	𝑓 𝑥 , z{ ,
z	,

	

[C2E2:	Duggirala et	al.	TACAS	15,	Fan	et	al.	CAV	15-16]

For	LQR,	closed-loop	system	admits	analytical	
solution,	sensitivity	analysis,	and	verification	with	
existing	algorithms	(tools	like	SpaceEx and	C2E2)

[Chan	and	Mitra,	ARCH	2017]

Simulation-driven	bounded	verification

10

time

𝜏Q

𝜏/
Θ	

𝜏p



Reachability	analysis	for	LQ	controller
Algorithm Linear	with	

passive
Linear w/o	
passive

Nonlinear	
w/o	passive

SDVTool [1] Safe Safe n/v

SpaceEx [2] Safe Safe n/v

C2E2	[3] n/v Safe Safe

[2]	Frehse,	et	al. http://spaceex.imag.fr/
[3]	Duggirala,	et	al. http://publish.illinois.edu/c2e2-tool/
[1]	Chan	and	Mitra,	MATLAB	implementation	of	C2E2	algorithm	
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DryVR:	A	new	view	of	hybrid	verification
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Transition	graph
Trace:		𝑙Q, 𝑡Q, 𝑙/, 𝑡/, … , 𝑙~

+

Black-box	simulator
Trajectory:	𝜏(𝑡)

Labeled	trajectory	set:	
𝜏, 𝑙 ∈ 𝒯ℒ

=

Hybrid	system	ℋ = ℒ, Θ, 𝐺, 𝒯ℒ
State:	a	point	in	ℝ�×ℒ

𝑅𝑒𝑎𝑐ℎ = 𝑥, 𝑙 	for	some	𝑣, 𝑡, 𝑥, 𝑙 is	
reachable	from	Θ}

𝑅𝑒𝑎𝑐ℎ|𝑣: all	states	reachable	in	vertex	𝑣

[𝑎, 𝑏]

[Fan,	Qi,	Mitra,	and	Viswanathan,	CAV	2017]
[DryVR:	http://dryvr.readthedocs.io/en/latest/index.html#]
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𝑅𝑒𝑎𝑐ℎ ⊇ 	𝑅𝑒𝑎𝑐ℎ

If			𝑅𝑒𝑎𝑐ℎ|𝐵	 ⊆ 	𝑅𝑒𝑎𝑐ℎ|𝐴 then	

A B

𝐺Q ∘ 𝐺/

…

𝐺Q ∘ 𝐺/f
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Reasoning	about	behavior	containment	
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Trace	containment	𝐺Q ≼ 𝐺/
Trajectory	containment	𝒯ℒQ ≼ 𝒯ℒ/	
If	ΘQ ⊆ Θ/, 𝐺Q ≼ 𝐺/, 𝒯ℒQ ≼ 𝒯ℒ/,	then	

𝐺Q 𝐺/≼

𝑅𝑒𝑎𝑐ℎ ⊆ 		𝑅𝑒𝑎𝑐ℎ
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Learning	discrepancy	from	data
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Global	exponential	discrepancy	function

	𝛽 𝑥Q, 𝑥/, 𝑡 = 𝑥Q − 𝑥/ 𝐾𝑒��

For	any	pair	of	trajectories	𝜏Q and	𝜏/ in	mode	□
∀𝑡 ∈ 0, 𝑇 , 𝜏Q 𝑡 − 𝜏/ 𝑡 ≤ 𝜏Q 0 − 𝜏/ 0 𝐾𝑒��

Taking	logarithm	and	rearrange:

∀𝑡, ln
𝜏Q 𝑡 − 𝜏/(𝑡)
𝜏Q 0 − 𝜏/(0)

≤ 𝛾𝑡 + ln𝐾
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Learning	linear	separators

For	S ⊆ ℝ×ℝ,	a	linear	separator	is	a	pair	 𝑎, 𝑏 ∈ ℝ/ s.t. ∀ 𝑥, 𝑦 ∈ S, 𝑥 ≤ 𝑎𝑦 + 𝑏

Algorithm:

1.	Draw	𝑘 pairs	 𝑥Q, 𝑦Q , … , (𝑥~, 𝑦~) from	𝑆 according	to	𝒟.

2.	Find	 𝑎, 𝑏 ∈ ℝ/ such	that	𝑥f ≤ 𝑎𝑦f + 𝑏 for	all	𝑖 ∈ {1, … , 𝑘}.	

Proposition	[Valiant	84]: Let	𝜖, 𝛿 ∈ ℝ�. If	𝑘 ≥ Q
�
ln Q

�
then	with	probability	1 − 𝛿,	

the	above	algorithm	finds	(𝑎, 𝑏) such	that	𝑒𝑟𝑟𝒟 𝑎, 𝑏 < 𝜖;

𝑒𝑟𝑟𝒟 𝑎, 𝑏 = 𝒟( 𝑥, 𝑦 ∈ S	 	𝑥 > 𝑎𝑦 + 𝑏})

Solve	LP:	min 	2𝑐	ln𝐾 + 	𝑐 𝑐 + 1 𝛾𝑇

s. t. 			∀𝑖, 𝑗, 𝑠, ln ¤¥ �¦ q¤§ �¦
¤¥(p)q¤§(p)

≤ 𝛾𝑡¨ + ln𝐾

16
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Bounded	safety	algorithm
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Compute	reach	set	from	Θ:	proceeds	
on	G	in	a	topologically	sorted	order

Refinement
Split	Θ to	smaller	sets
Split	transition	time	intervals

Guarantee:	Assuming	that	the	learned	
discrepancy	function	is	correct:
Soundness
Relative	completeness

Θ	

Restrict	to	[𝑎, 𝑏]

Restrict	to	[𝑐, 𝑑]

…

2 3 4

1 7

65

[𝑎, 𝑏]

[𝑐, 𝑑]



Conclusions
DryVR proves	safety	for	Thrust	
and	LOS	constraints	and	a	
counterexample	(unsafe)	for	
Total	Velocity	constraint.	

Simulation-driven	verification,	
promising	approach	for	grey-
box	models	(try	it)

Design	and	verification	for	
complete	ARPOD	(with	
disturbance	inputs)

Reachable	positions	(blue)	and	unsafe	
positions	(red).	(b)	Reachable	thrusts:	
Fx (blue)	and	Fy (green).	
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Composition	for	unbounded	time	analysis
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If			𝑅𝑒𝑎𝑐ℎ|𝐵	 ⊆ 	𝑅𝑒𝑎𝑐ℎ|𝐴 then	

𝐺Q ∘ 𝐺/

…

𝐺Q ∘ 𝐺/f𝐺Q 𝐺/∘ =

A B …


