State Estimation of Dynamical Systems with Unknown Inputs: Entropy and Bit Rates

Hussein Sibai and Sayan Mitra

HSCC'18 – April 13th, 2018

University of Illinois at Urbana-Champaign

Coordinated Science Laboratory

Motivation: Harrier Jump Jet⁽¹⁾

$$\begin{split} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= -g \sin \theta_1 - \frac{c}{m} x_2 + \frac{u_1}{m} \cos \theta_1 - \frac{u_2}{m} \sin \theta_1, \\ \dot{y}_1 &= y_2, \\ \dot{y}_2 &= g(\cos \theta_1 - 1) - \frac{c}{m} y_2 + \frac{u_1}{m} \sin \theta_1 + \frac{u_2}{m} \cos \theta_1, \\ \dot{\theta}_1 &= \theta_2, \\ \dot{\theta}_2 &= \frac{r}{J} u_1. \end{split}$$

State variables: $x_1, x_2, y_1, y_2, \theta_1, \theta_2$

Input variables: u_1 , u_2

What is the bit rate between the jet and the command center needed to estimate the state of the jet up to an ϵ error?

Problem Setup

What is the minimum number of bits per second needed to estimate the state of the system up to an ε error.

- f globally Lipschitz in both arguments with constants L_x and L_u
- K a compact set in \mathbb{R}^n
- $\boldsymbol{\mathcal{U}}$ a set of input signals (will be defined next) in \mathbb{R}^m

Related Work

- Entropy and Minimal Data Rates for State Estimation and Model Detection [Liberzon and Mitra, HSCC'16, CDC'16, TAC'17]
 - Autonomous dynamical systems (no inputs), exponential convergence of error
- Optimal Data Rate for State Estimation of Switched Nonlinear Systems [Our paper in HSCC'17]
 - Switched systems, finite number of modes, combination between constant and exponentially converging error

[A. V. Savkin. Automatica'06, F. Colonius. SIAM'12, M. Rungger and M. Zamani. HSCC'17...]

Space of Input Signals: $U(\eta, \mu, u_{max})$

Given η , μ and $u_{max} \ge 0$, if $u: [0, \infty) \to \mathbb{R}^m$ belongs to $\mathbf{U}(\eta, \mu, u_{max})$, then $\forall t, \tau \ge 0$, $||u(t) - u(t + \tau)|| \le \mu \tau + \eta$ and $|u(t)| \le u_{max}$.

Entropy Definition

A function of the system dynamics and the allowed estimation error that lower bounds the needed bit rate of the channel

Approximating Functions

 $z: \mathbb{R}^+ \to \mathbb{R}^n$ is an (ε, T) -approximating function for $\xi(x_0, u, t)$ if: $\|\xi(x_0, u, t) - z(t)\| \le \varepsilon$ for all $t \in [0, T]$.

Approximating Sets and Entropy

 $\hat{Z} = \{\hat{z}_1, \hat{z}_2, ... \hat{z}_M\}$ is a (T, ε, K) -approximating set if: $\forall x_0 \in K$ and $u \in \mathcal{U}(\eta, \mu, u_{max})$, there exists $\hat{z}_i \in \hat{Z}$ that is (ε, T) -approximating for $\xi(x_0, u, t)$ over [0, T].

 $s_{est}(T, \varepsilon, K)$ is the minimum cardinality of such approximating set.

Entropy:

$$h_{est}(\varepsilon, K) := \limsup_{T \to \infty} \frac{1}{T} \log s_{est}(T, \varepsilon, K).$$

State Estimation Algorithms with Fixed Bit Rates

Impossibility of Estimating Below Entropy Rates

First result:

Theorem 1: There is no algorithm with fixed bit rate that, for any $x_0 \in K$, $u \in \mathcal{U}(\eta, \mu, u_{max})$ and $T \geq 0$, constructs an (ε, T) -approximating function for the trajectory $\xi(x_0, u, \cdot)$ while achieving a bit rate less than the entropy of the system.

Proof: Existence of such algorithm implies the existence of an (ε, T, K) -approximating set of cardinality smaller than s_{est} , contradiction.

Upper Bound on Entropy of Nonlinear Systems

Computing entropy is hard. Computing bounds is easier.

Distance between trajectories after t seconds

$$M_{x} = nL_{x} + \frac{1}{2}; M_{u} = m\sqrt{m}L_{u}$$

$$\|x - x'\|^{2} \downarrow_{x} \qquad \qquad \xi(x', u', \cdot)$$

$$\downarrow_{u'} \qquad \qquad \xi(x, u, \cdot) \qquad \qquad \qquad \leq e^{2M_{x}t} (\|x - x'\|^{2} + M_{u}^{2} \int_{0}^{t} \|u(s) - u'(s)\|^{2} ds)$$

(ε, T) -approximating function construction

(K, ε, T) —approximating set construction

- As x_0 and u vary, what is the number of functions that can be constructed by the algorithm in the previous slide?
- At the first step, the construction chooses:

 One from $\left(\frac{diam(K)}{2\delta_{\chi}}\right)^n$ possible quantization points

 One from $\left(\frac{u_{max}}{\delta_{u}}\right)^m$ possible quantization points
- At each time step of size T_p , the construction chooses:

 One from $\left(\frac{\epsilon}{\delta_x}\right)^n$ possible quantization points in the state space

 One from $\left(\frac{u_{max}}{\delta_u}\right)^m$ possible quantization points in the input space

 There are $\left[\frac{T}{T_p}\right]$ time steps

(K, ε, T) —approximating set construction

The number of functions that can be constructed by the procedure is upper bounded by:

$$\left(\frac{diam(K)}{2\delta_{x}}\right)^{n} \left(\frac{u_{max}}{\delta_{u}}\right)^{m} \left(\left(\frac{\epsilon}{\delta_{x}}\right)^{n} \left(\frac{u_{max}}{\delta_{u}}\right)^{m}\right)^{\left[\frac{I}{T_{p}}\right]}$$

Intermediate upper bound on entropy

Substituting the bound on the cardinality of the approximating set in the entropy definition while fixing $\delta_x = \frac{\varepsilon}{2} e^{-M_x T_p}$, leads to:

$$h_{est}(\varepsilon, K) \le \frac{2nM_{\chi}}{\ln 2} + \frac{1}{T_p} \left(n \log 2 + m \log \frac{u_{max}}{\delta_u} \right)$$

As $u_{max} \to 0$, $h_{est}(\varepsilon, K) \le \frac{nM_\chi}{\ln 2}$, similar the earlier bound $\frac{nL_\chi}{\ln 2}$ by Liberzon and Mitra in HSCC'16 (remember $M_\chi \le nL_\chi + \frac{1}{2}$)

Entropy upper bound

Fix an $\varepsilon > 0$, $h_{est}(\varepsilon, K)$ is upper bounded by:

$$\frac{2nM_x}{\ln 2} + \frac{1}{\min\left\{\rho(\mu,\eta,\varepsilon),\frac{1}{M_x}\right\}} \left(n\log 2 + m\log \frac{u_{max}}{\eta}\right),\,$$

where
$$\rho(\mu, \eta, \varepsilon) = \frac{2\eta}{\mu} \left(-1 + \left(1 + \left(\frac{\varepsilon}{M_u e} \right)^2 \frac{9\mu}{32\eta^3} \right)^{\frac{1}{3}} \right)$$
 and $M_\chi = nL_\chi + \frac{1}{2}$

Remember:

 u_{max} is the maximum $||\cdot||_{\infty}$ of the input signal,

$$||u(t) - u(t+\tau)||_{\infty} \le \mu\tau + \eta$$
 and

n and m are the state and input dimensions.

Upper bound discussion

- It increases quadratically with η
- It increases as $\frac{1}{1-O(\mu)}$ with μ
- ullet It increases ${\it logarithmically}$ with u_{max}
- It increases as $\Omega(\varepsilon^{-\frac{2}{3}})$ as ε goes to zero

Back to the Harrier Jump Jet Example

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -g \sin \theta_{1} - \frac{c}{m} x_{2} + \frac{u_{1}}{m} \cos \theta_{1} - \frac{u_{2}}{m} \sin \theta_{1}$$

$$\dot{y}_{1} = y_{2}$$

$$\dot{y}_{2} = g(\cos \theta_{1} - 1) - \frac{c}{m} y_{2} + \frac{u_{1}}{m} \sin \theta_{1} + \frac{u_{2}}{m} \cos \theta_{1}$$

$$\dot{\theta}_{1} = \theta_{2}$$

$$\dot{\theta}_{2} = \frac{r}{J} u_{1}$$

Input variables: u_1 , u_2

What is the bit rate between the jet and the command center needed to estimate the state of the jet up to an ϵ error? $h_{est}(\epsilon, K) \le 61$ Kbps (when $\epsilon = 0.5, \mu = 10, \eta = 20$)

Bound variation as μ and η change

When only small variation of input with large jumps is allowed:

For $\mu = 0.1$ and $\eta = 45$, $h_{est}(\varepsilon, K) \le 255$ Kbps

When large variation of input with only small jumps is allowed:

For $\mu = 20$ and $\eta = 0.1$, $h_{est}(\varepsilon, K) \le 2.6$ Kbps

Upper Bound on Entropy of Systems with Linear Inputs

Systems with Linear Inputs

$$\dot{x} = f(x) + u,$$

where $x_0 \in K$, a compact set in \mathbb{R}^n and $u \in \mathcal{U}(\eta, \mu, u_{max})$.

Distance between trajectories after t seconds

Use the same (ε, T) -approximating function construction

Entropy upper bound

Fix an $\varepsilon > 0$, $h_{est}(\varepsilon, K)$ is upper bounded by:

$$\frac{2nM_{\chi}}{\ln 2} + \frac{1}{\min\left\{\rho(\mu,\eta,\varepsilon),\frac{1}{L_{\chi}}\right\}} \left(n\log 2 + m\log\frac{u_{max}}{\eta}\right),$$
 where
$$\rho(\mu,\eta,\varepsilon) = \frac{2\eta}{\mu} \left(-1 + \sqrt{\left(1 + \frac{\mu\varepsilon}{4\eta}\right)}\right).$$

Pendulum example

$$\dot{x}_2 = \frac{\dot{x}_1 = x_2}{-Mgl} \sin x_1 + \frac{u}{I}$$

where Mgl=0.98, I=1, $u_{max}=2$, $\mu=0.1$, $\eta=1$ and $\varepsilon=0.5$. Using the upper bound on entropy:

- For general nonlinear systems: $h_{est}(\varepsilon, K) \leq 1386$ Kbps,
- For systems with linear inputs: $h_{est}(\varepsilon, K) \leq 0.6$ Kbps.

The latter bound can be much tighter than the former.

Ongoing Work

Relating the bounds in this paper with previous bounds on switched systems

Thank you