
SDCWorks: A Formal Framework for
Smart Manufacturing Systems

MATTHEW POTOK, CHIEN-YING CHEN, SAYAN MITRA, SIBIN MOHAN
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Introduction
Unscheduled downtimes in manufacturing systems
◦ Affect Overall Equipment Effectiveness (OEE)
◦ Cyberattacks, machine failures, random faults

Production changes
◦ Introduction of new product line
◦ Demand fluctuations

Software-defined control (SDC)
◦ Inspired by software-defined networks (SDN)
◦ Global view of manufacturing plant
◦ Separates the control (logical) plane from rest of system

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 2

Modern [Discrete] Manufacturing Systems
Components of manufacturing systems
◦ Material handling devices
◦ Controllers: low-level or high-level

Abstractions
◦ Controller
◦ Plant

MC RC CC

SC LC
Cell 1

LCSC

Cell 2

Monitoring and
Plant Control

IT Network

Plant

Controller

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 3

Modern Manufacturing Hierarchies
Levels

◦ Level 0: Production processes

◦ Level 1: Sensing and manipulation

◦ Level 2: Monitoring, supervisory

and automated control

◦ Level 3: Work flow control and

optimization

◦ Level 4: Business Logistics

Plant

Controller

https://commons.wikimedia.org/wiki/File:Functional_levels_of_a_Distributed_Control_System.svg 4

Overview
Formal modeling framework for discrete manufacturing systems
◦ Captures cyber and physical aspects of systems
◦ Enables verification of controller properties
◦ Expressive to model variety of plant assets and configurations

Simulator implementation as instance of framework
◦ Provides analysis and performance metrics
◦ Flexibility to support custom controllers
◦ Open source

SDCWorks

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 5

SDCWorks Framework

Manufacturing Data

Plant Layout

Predictive Metrics

Throughput

WIP

Part-to-part
delay

Plant
(YAML Format)

Requirements
(YAML Format)Formal Model

SDCWorks Simulator

SDCWorks Framework

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 6

SDCWorks Framework Overview
Discrete Transition System
◦ Plant
◦ Controller

Major components:
◦ Controller
◦ Parts
◦ Plant
◦ Requirements

C1

! 10

" 20

Operation table

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 7

Cells and Plant
Cells: any devices that can perform some operation on a part
◦ Individual machines, robots, conveyors
◦ Set of multiple devices or even other cells

Plant: models floor plan of a manufacturing system à layouts of cells & connections

C1

! 10

" 20

Operation table

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 8

Plant formally defined as # = ⟨&#, (#,)#, *#⟩
◦ A graph of the cells, ,- = ⟨.-, /-⟩

◦ .- is the set of cells
◦ /- defines connections between cells

◦ Set of operations that can be performed at each cell 01: .1 ↦ 256
◦ The amount of time for each operation 71: .1×OP ↦ ℕ
◦ The maximum number of widgets waiting at each cell <1: .1 ↦ ℕ

Parts, Requirements, and Controller
Parts/widgets: the materials that traverse the plant and have operations on them
◦ Uniquely identified

Requirements: the sequence of operations to be performed on parts

Each requirement defined as
◦ Directed acyclic graph ! = ⟨$!, &!⟩

◦ () is a set of operations
◦ *) defines a sequence of operations with precedence constrains

◦ Mapping of vertices in + to operations ,!: $! ↦ /0
Controller:
◦ Plans a sequence of operations according to requirements
◦ Commands cells to perform certain actions

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 9

SDCWorks Discrete Transition System

Discrete transition systems defined as !,#, $,%
◦ finite set of variables partitioned into controller and plant variables ,& = &(∪ &*

◦ Valuations of &, +,- & map each . ∈ & to a value and are called states
◦ set of initial states, Θ ⊆ +,- &
◦ finite set of actions partitioned controller and plant actions, 2 = 2(∪ 2*
◦ set of discrete state transitions, 3 ⊆ +,- & ×2×+,- &

Controller

Controller variables (read/write)

Plant

Plant variables (read/write)Plant transition (read only)

Controller transition (read only)

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 10

Baseline Controller
Plans
◦ Mapping from requirement to actual plant
◦ Given !" = ⟨%", '"⟩ and !) = %), ') , a plan is a forward

simulation from %) to %", or a relation * ⊆ %)×%"
Feasible Paths
◦ Finding corresponding paths in requirement/plant
◦ Given a plan * and path - ∈ !), a feasible path is the

corresponding path in !"
Feasible Graph
◦ All possible paths in the plant for a specific requirement
◦ Set of all paths corresponding to / in !", denoted by 0),"

	23
	24

	25

	26

	27 	28

	29

	2:

Plant Graph

		;<3 		;<7 		;<:
		;<9

		;<8Requirement Graph

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 11

Properties
Properties that can be captured by formal model
◦ Mutual exclusion: no two active parts in the plant collide with each other

◦ Correctness: all requirements completed for any part that exits a plant

◦ Bounded time: all requirements for parts entering plant is completed within a finite amount of time

◦ For any ordinary cell ! ∈ #$ ∖ !&, !(, and any two distinct parts)*,)+ ∈ ,, if)*,)+ ∈ -./ ! , then
012)* ≠ 012)+

◦ For any sink !(, and any widget) ∈ -./ !(, the widget is completed, i.e. 415067879) is a path in
:7;<=:757>8())

◦ For any acyclic requirement and any widget) ∈ #A, there exists a B > 0 such that)=9/78_8=57) ≥
B then) ∈ -./ !(

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 12

SDCWorks Simulator
Flexible, open-source discrete event simulator
◦ Capable of simulating arbitrary SDCWorks models
◦ Python3 and Graphviz and Matplot libraries

Inputs
◦ Plant and requirement files in YAML format

Every time step
◦ Simulator moves parts around in the plant
◦ Updates the state of each cell
◦ Logs various metrics: throughput, end-to-end delay and number of live parts in the system

Output
◦ Log file à state of every cell and number of live parts in the system

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 13

Case Study 1: Synthetic Linear Model
Description
◦ Linear manufacturing system with single branch

◦ 3 requirements
◦ 14 cells total (7 conveyors, 7 machines)
◦ 6 operations

◦ Bottleneck at !"

Operation Table

!# !$!% !" !&
'(# 10 - - - -

'($ - 20 - - -

'(% - - 40 - -

'(" - - 35 - -

'(& - - - 50 -

'() - - - - 15

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 14

Case Study 1: Simulation Results

Throughput

converges at 55.6 JPH

Part-to-Part Delay Work in Progress

converges at around 615, 740 and
650 seconds for respective
requirements

oscillates between 28 and 35
parts in the system

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 15

Operation Table

!" !# !$!% !& !'
()" 10 - - - - -

()# - 20 - - - -

()$ - - 40 - - -

()% - - 35 - - -

()& - - - 50 - 50

()' - - - - 15 -

Case Study 1.5: Linear Model Modified
Description
◦ Linear manufacturing system with single branch

◦ 3 requirements
◦ 17 cells (9 conveyors, 8 machines)
◦ 6 operations

◦ Bottleneck at !%
◦ Addition of *+ to relieve bottleneck at *,

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 16

Case Study 1.5: Simulation Metrics

Throughput

converges at 75 JPH

[compare: 55.6]

Part-to-Part Delay Work in Progress

(Previous Mean Throughput)

(Previous Max WIP)

converges at around 500
seconds for all requirements

[compare: 615, 740 and 650]

oscillates between 30 and 37
parts at a lower frequency

[compare: 28 and 35]

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 17

Case study 2: SMART [U. of Mich. Testbed]
PHYSICAL PLANT LAYOUT

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 18

Hybrid serial-parallel line manufacturing testbed
◦ University of Michigan at Ann-Arbor
◦ 3 cells and 2 conveyor lines connected with a

controllable pneumatic diverter
◦ Three industrial robots
◦ Four CNC milling machines

Case Study II: SMART Testbed Models

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 19

v>{op>}

v?{op?}

v1{ }

v2{ }

v3{ }

v4 {op1, op2, op3}

v5 {op1, op2, op4}

v6 {op1, op3, op4}

v7 {op2, op3, op4}

Figure 10: The graph representation of SMART for the formal model.

Table I: Time TP for each CNC machine to complete operations.

CNC 1 (v4) CNC 2 (v5) CNC 3 (v6) CNC 4 (v7)

op1 20 25 35 –

op2 50 30 – 10

op3 25 – 15 30

op4 – 10 25 30

* all values are scaled to transition time ticks
* “–” indicates that the operation is not supported on this machine

Table II: Operation requirements. Three requirements are considered
in the case study in SMART.

Operations

R1 op> ! op1 ! op2 ! op3 ! op4 ! op?

R2 op> ! op1 ! op3 ! op1 ! op?

R3 op> ! op2 ! (op3 , op4) ! op1 ! op?

requires a sequence of different operations. In this case, all
four operations have to be performed in the given order for
this type of widgets. Requirement 2 (R2) is a slightly different
process. It is comprised of two types of operations but requires
op1 to be revisited in the end. Requirement 3 (R3) shows a
more variant process. The first operation in R3 is mandatory.

VI. SDCWORKS SIMULATOR

We have developed a flexible, open source, discrete event
simulator capable of simulating arbitrary SDCWorks models.
The simulator is developed in Python3 and uses the Graphviz
and Matplotlib libraries to visualize all outputs. The simulator
is available for download at https://github.com/SDC-UIUC/
synthesis.

The SDCWorks simulator takes as input plant and require-
ment files specified in the YAML format. The plant input file
specifies all the cells with the operations they support and
their times and all the conveyors with their lengths and the
cells they connect to. The requirement input file specifies all
the various requirements one would like to run against the
plant. Each requirement contains a list of nodes with a single

operation and a list of edges to link these nodes. Examples of
both types of input files can be found at the link above.

During a single execution of the simulator, it first parses
the user input and then create graphs of the inputs in the
DOT language. Each graph is then written to a PNG file to
allow users to visually verify that the simulator constructed
the plant/requirement graphs correctly. Next, the simulator
executes the system for a specified amount of time using the
baseline controller (others can be coded). To make the system
run deterministically, the sources assign requirements in a
round-robin fashion to widgets whenever they are instantiated.
At every time step, the simulator moves widgets around in the
plant, updates the states of each cell and logs various metrics:
throughput, end-to-end delay, and the number of live widgets
in the plant at a given time. At the end of execution, the
simulator will output a log file to show the state of every
cell in the system and all live widgets at every time step.
Additionally, it creates and saves the plots for all the metrics
listed above.

VII. CASE STUDY

In this section we use a synthetic linear model and its
variant as examples to demonstrate the use of the SDCWorks
modeling framework. We also carry out analysis using the
simulator described in Section VI.

A. A Synthetic Linear Model
Let’s consider a simple linear manufacturing system

consisting of five cells, V = {v1, v2, v3, v4, v5}. This plant
contains a fork that provides multiple path options for
dynamic allocation and support for fabricating multiple types
of widgets. The plant is represented as a graph (Figure 11).
The supported operations and the time for each node to
complete the designated operation is:

v1 : T (v1, op1) = 10s
v2 : T (v2, op2) = 20s
v3 : T (v3, op3) = 40s, T (v3, op4) = 35s
v4 : T (v4, op5) = 50s
v5 : T (v5, op6) = 15s

Let’s consider three types of widgets to be fabricated in
this plant, denoted by R = {R1, R2, R3}. These requirements
are listed in Table III. Requirement 1 is a typical linear

v>

{op>}

v1

{op1}

v2

{op2}
v3

{op3, op4}

v4

{op5}

v5

{op6}

v?

{op?}

Figure 11: The plant graph of the linear model case.

8

v>{op>}

v?{op?}

v1{ }

v2{ }

v3{ }

v4 {op1, op2, op3}

v5 {op1, op2, op4}

v6 {op1, op3, op4}

v7 {op2, op3, op4}

Figure 10: The graph representation of SMART for the formal model.

Table I: Time TP for each CNC machine to complete operations.

CNC 1 (v4) CNC 2 (v5) CNC 3 (v6) CNC 4 (v7)

op1 20 25 35 –

op2 50 30 – 10

op3 25 – 15 30

op4 – 10 25 30

* all values are scaled to transition time ticks
* “–” indicates that the operation is not supported on this machine

Table II: Operation requirements. Three requirements are considered
in the case study in SMART.

Operations

R1 op> ! op1 ! op2 ! op3 ! op4 ! op?

R2 op> ! op1 ! op3 ! op1 ! op?

R3 op> ! op2 ! (op3 , op4) ! op1 ! op?

requires a sequence of different operations. In this case, all
four operations have to be performed in the given order for
this type of widgets. Requirement 2 (R2) is a slightly different
process. It is comprised of two types of operations but requires
op1 to be revisited in the end. Requirement 3 (R3) shows a
more variant process. The first operation in R3 is mandatory.

VI. SDCWORKS SIMULATOR

We have developed a flexible, open source, discrete event
simulator capable of simulating arbitrary SDCWorks models.
The simulator is developed in Python3 and uses the Graphviz
and Matplotlib libraries to visualize all outputs. The simulator
is available for download at https://github.com/SDC-UIUC/
synthesis.

The SDCWorks simulator takes as input plant and require-
ment files specified in the YAML format. The plant input file
specifies all the cells with the operations they support and
their times and all the conveyors with their lengths and the
cells they connect to. The requirement input file specifies all
the various requirements one would like to run against the
plant. Each requirement contains a list of nodes with a single

operation and a list of edges to link these nodes. Examples of
both types of input files can be found at the link above.

During a single execution of the simulator, it first parses
the user input and then create graphs of the inputs in the
DOT language. Each graph is then written to a PNG file to
allow users to visually verify that the simulator constructed
the plant/requirement graphs correctly. Next, the simulator
executes the system for a specified amount of time using the
baseline controller (others can be coded). To make the system
run deterministically, the sources assign requirements in a
round-robin fashion to widgets whenever they are instantiated.
At every time step, the simulator moves widgets around in the
plant, updates the states of each cell and logs various metrics:
throughput, end-to-end delay, and the number of live widgets
in the plant at a given time. At the end of execution, the
simulator will output a log file to show the state of every
cell in the system and all live widgets at every time step.
Additionally, it creates and saves the plots for all the metrics
listed above.

VII. CASE STUDY

In this section we use a synthetic linear model and its
variant as examples to demonstrate the use of the SDCWorks
modeling framework. We also carry out analysis using the
simulator described in Section VI.

A. A Synthetic Linear Model
Let’s consider a simple linear manufacturing system

consisting of five cells, V = {v1, v2, v3, v4, v5}. This plant
contains a fork that provides multiple path options for
dynamic allocation and support for fabricating multiple types
of widgets. The plant is represented as a graph (Figure 11).
The supported operations and the time for each node to
complete the designated operation is:

v1 : T (v1, op1) = 10s
v2 : T (v2, op2) = 20s
v3 : T (v3, op3) = 40s, T (v3, op4) = 35s
v4 : T (v4, op5) = 50s
v5 : T (v5, op6) = 15s

Let’s consider three types of widgets to be fabricated in
this plant, denoted by R = {R1, R2, R3}. These requirements
are listed in Table III. Requirement 1 is a typical linear

v>

{op>}

v1

{op1}

v2

{op2}
v3

{op3, op4}

v4

{op5}

v5

{op6}

v?

{op?}

Figure 11: The plant graph of the linear model case.

8

CNC Machine Timings Operational Requirements

Case study 2: SMART [U. of Mich. Testbed]
PHYSICAL PLANT LAYOUT PLANT GRAPH

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 20

Conclusion
SDCWorks

◦ Formal framework for modeling and analyzing discrete manufacturing systems
◦ Implementation of framework provides simulation capabilities
◦ Open-source implementation at https://github.com/SDC-UIUC/SDCWorks

Future work
◦ Tests with larger realistic manufacturing system configurations
◦ Bridge simulator with real manufacturing systems for real-time monitoring and predictive purposes
◦ Integrate monitoring and synthesis capabilities into implementation

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 21

Thanks!
Questions?

sibin@illinois.edu

April 11, 2018 SDCWORKS | UIUC | ICCPS 2018 22

